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| ABSTRACT 

Nowadays, quadcopter unmanned aerial vehicles (UAV) are used in a wide variety of areas, such as reconnaissance and 

surveillance, firefighting, search and rescue, agricultural spraying, cargo transportation, photography, and mapping. The use of 

quadcopters in a very wide area makes their trajectory tracking control important. In order for quadcopters to perform their 

duties successfully, they must be able to follow the given trajectory with the least error. In this study, the quadcopter’s trajectory 

tracking under random noise is provided by an algorithm based on reinforcement learning and a proportional derivative (PD) 

controller. Modeling, simulations, and reinforcement learning algorithms were carried out using the MATLAB program. 

Simulations were made under noise for the x, y, z trajectories and roll, pitch, and yaw angles of the quadcopter. A detailed time 

response analysis was performed by obtaining rise time, overshoot, and settling time data. It has been observed that the 

references given were successfully followed thanks to the algorithm based on reinforcement learning. 
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1. Introduction 

Quadcopter UAVs have advantages over winged UAVs because they can take off and land vertically, perform sharp maneuvers, 

rotate around their own axis, and hover [Xuan, 2022], [Lee, 2022], [Karahan, 2023]. 

 

Developments in hardware and software technologies in the last few years have facilitated the manufacturing processes of 

quadcopters, enhanced their capabilities, and led to the expansion of their usage areas. [Elmeseiry, 2021], [Ahmed, 2022], [Karahan, 

2021] Quadcopters are used in different areas such as combating natural disasters, mining, search and rescue operations, cargo 

transportation, pesticide spraying, combating terrorism, and monitoring [Sabour, 2023], [Chaurasia, 2021], [Karahan, 2022]. 

Optimum trajectory tracking control is important for quadcopter UAVs to successfully fulfill their missions [Öniz, 2024]. 

 

In recent years, many researchers have conducted studies on quadcopter’s trajectory tracking [Zare, 2022]. In order to successfully 

perform trajectory tracking, they have developed controller designs and used various algorithms [Rokonuzzaman, 2021]. Iskander 

et al. focused on minimum snap trajectory tracking for a quadcopter and used a model predictive controller (MPC) [Iskander, 2020]. 

Singh et al. (2023) used a proportional derivative (PD) controller with minimum snap trajectory planning for a quadcopter. They 

used the MATLAB program to generate trajectories in simulations and controller design. Hong et al. (2021) combined an A* search 

algorithm and minimum snap trajectory generation for the trajectory tracking problem of a quadcopter UAV. Dong et al. (2021) 

used a heuristic search algorithm to find the optimum trajectory and used minimum instantaneous trajectory optimization to 

follow the trajectory. Sanwale et al. Realized quaternion-based attitude control of a quadcopter UAV using a 3rd-order sliding 

mode controller design and disturbance rejection [2020]. 
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However, the above methods require partial or complete knowledge about the environment in which the quadcopter will move. 

The reinforcement learning method can be applied in dynamic or uncertain environments where no information is known [Tan, 

2022]. Yoo et al. (2020) developed a hybrid reinforcement learning-based PD controller and hybrid reinforcement learning-based 

LQR (linear quadratic regulator) controllers for a micro quadcopter UAV. By performing various simulations, they showed that the 

hybrid methods they used converged to the given reference orbit faster and exhibited better control performance than standard 

reinforcement learning methods. Pi et al. (2021) controlled a quadcopter UAV in three axes (x, y, z) using a reinforcement learning 

algorithm under wind used as an external disturbance. An electric fan was used to generate wind. A 3.6 m/s wind was applied to 

the center of the x-axis of the quadcopter. The position information of the quadcopter was obtained using GPS. Wen et al. (2021) 

An optimized tracking control scheme for a quadcopter unmanned aerial vehicle system has been studied by combining both 

reinforcement learning and backstepping control techniques. Reinforcement learning has been used to overcome the difficulty of 

solving the Hamilton-Jacobi-Bellman (HJB) equation. In order to achieve optimized position control, reinforcement learning has 

been established based on the neural network approximation of the solution of the HJB equation by utilizing the extraordinary 

function approximation ability of the neural network. 

 

In this study, the optimal tracking control problem of a quadcopter with a complex trajectory is solved by off-policy reinforcement 

learning without any information about the environment. Random noise is added to a complex trajectory, and the quadcopter is 

made to follow this trajectory through reinforcement learning. Since an irregular trajectory with random noise is used, there is no 

prior knowledge about the trajectory to be followed. First, the data-driven policy iteration algorithm is explained. Then, this 

algorithm is applied to the quadcopter. Trajectory tracking simulations are performed with MATLAB for x, y, z positions, and roll, 

pitch, yaw angles. Simulations show that trajectory tracking is successfully achieved thanks to the developed algorithm. 

 

This study extends the works of the conference paper titled “Optimal Trajectory Tracking Control for a Quadrotor UAV Based on 

Off-Policy Reinforcement Learning” [Karahan, 2024]. The Introduction section has been expanded by conducting a more 

comprehensive literature review. The reinforcement learning algorithm for optimal trajectory tracking has been explained in more 

detail theoretically, and more equations have been included. The control scheme of the quadcopter has been explained in more 

detail. A large number of new simulations have been performed for attitude and position control. 

 

2. Quadcopter Modeling and Data-Driven Policy Iteration  

In this part, the reinforcement learning based data-driven policy iteration algorithm is described. First, reinforcement learning is 

explained for the optimal trajectory tracking problem. Thereafter, the dynamic model of the quadcopter is given. After, the control 

diagram of the quadcopter is given. Afterwards, the application of the data-driven policy iteration algorithm for the quadcopter is 

explained. Lastly, simulations for the attitude and position control are shown. 

 

2.1 Reinforcement Learning for Optimal Trajectory Tracking  

Within the framework of the proposed reinforcement learning method, the quadcopter model is transformed into a nonlinear 

affine form, and the optimal tracking problem is solved. The nonlinear affine system can be expressed as in equation (1) below. 

 

�̇�(t) = f(x(t)) + g(x(t))u(t)                                                                                                                                                                     (1) 

 

In the above equation, x = [x1...xn]T ∈ Rn, u = [u1...um] ∈ Rm, f(x(t)) ∈ Rn, g(x(t)) ∈ Rn×m is defined. It is assumed that f(0) = 0 and f(x(t)) 

+ g(x(t))u(x(t)) satisfies the Lipschitz condition for continuity in the field Ω ⊆ Rn. 

 

If f(x) and g(x) are known and g-1(x) is available, the control signal ud(t) for the desired orbit can be written as in equation (2). 

 

ud(t) = g-1(xd(t))(�̇�d(t) - f(xd(t)))                                                                                                                                                             (2) 

 

Kamalapurkar et al. (2015) used the feed-forward method to solve the optimal trajectory tracking problem. In this method, they 

optimized the cost function using the feedback signal ue(t) = u(t) − ud(t) and obtained equation (3). 

 

Ve(ed(t)) = ∫ 𝑡(𝑒𝑑(𝜏)𝑇𝑄𝑒𝑒𝑑(𝜏)  + 𝑢𝑒(𝜏)𝑇𝑅𝑢𝑒(𝜏))𝑑𝜏
∞

𝑡
                                                                                                                          (3) 

 

This cost function can be obtained by solving the HJB equation. 

 

𝑢𝑒
∗ = - ½[R-1g(x(t))T ∂Ve(ed(t))/∂ed]                                                                                                                                                     (4) 
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The definitions used in the optimal trajectory tracking control problem with reinforcement learning are given in equations (5) and 

(6). ed(t) finds the error by giving the difference between the actual trajectory x(t) and the desired trajectory xd(t). 

 

ed(t) = x(t) - xd(t)                                                                                                                                                                                 (5) 

 

V(ed(t), xd(t)) =∫ 𝑒
∞

𝑡
-λ(τ-t)(ed(τ)TQeed(τ) + u(τ)TRu(τ))dτ                                                                                                                         (6) 

 

In equations (5) and (6), Qe ∈ Rn×n ≻ 0 and R ∈ Rm×m ≻ 0 are defined. 

 

The derivative of the desired orbit is given in equation (7). 

 

�̇�d(t) = rd(xd(t)), rd(0) = 0                                                                                                                                                                     (7) 

 

In the equation given above, xd(t) is bounded, and rd(xd(t)) ∈ Rn is a continuous Lipschitz function. Data-driven policy iteration 

algorithm can solve the system with unknown dynamics. Equation (8) is obtained by using X(t) = [ed(t)T xd(t)T]T ∈ X ⊂ R2n and 

equation (1). 

 

�̇�(t) = F(X(t)) + G(X(t))u(t)                                                                                                                                                                   (8) 

 

F(X(t)) and G(X(t)) are defined as in equations (9) and (10) below. 

 

F(X(t)) = [
𝑓(𝑒𝑑(𝑡) + 𝑥𝑑(𝑡) − 𝑟𝑑(𝑥(𝑡))

𝑟𝑑𝑥𝑑(𝑡)
]                                                                                                                                               (9) 

 

G(X(t)) = [
𝑔(𝑒𝑑(𝑡) + 𝑥𝑑(𝑡))

0
]                                                                                                                                                            (10) 

 

The cost function equation is determined as follows. 

 

V(X(t)) = ∫ 𝑒
∞

𝑡
-λ(τ-t) (X(τ)TQX(τ) + u(τ)TRu(τ))dτ                                                                                                                                 (11) 

 

Q = [
𝑄𝑒 0
0 0

]                                                                                                                                                                                     (12) 

 

The decay coefficient λ needs to be used in the cost function. If the desired trajectory does not go to zero as time (t) approaches 

infinity, the cost function with λ = 0 will be unbounded because the feedforward component ud(t) depends on the desired state 

trajectory. To overcome this drawback, the component e−λ(τ−t) is added to handle the above cases; for example, this component is 

used in cases where the desired trajectory is a finite cyclic signal [Modares, 2014], [Modares, 2014], [Kiumarsi, 2014]. 

 

2.2 Dynamic Model of the Quadcopter 

In this section, the dynamic model of the quadcopter is presented, and the relevant equations are presented. Figure 1 describes 

the dynamic model of the quadcopter [Pham, 2022]. 

 

 
Fig. 1 Dynamic model of the quadcopter 
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In Figure 1, Ex, Ey, and Ez represent the Earth centered coordinates. Bx, By, and Bz represent the body centered coordinates. The roll 

axis is specified by the roll axis, the pitch axis is specified by the yaw axis, and the yaw axis is specified by the yaw axis [Karahan, 

2023]. The position state variables are presented in (13), and the Euler angles state variables are shown in (14). 

 

p = [px, py, pz]T ∈ R3                                                                                                                                                                                                                                                              (13) 

Θ = [ϕ, θ, ψ]T ∈ R3                                                                                                                                                                           (14) 

 

The dynamic model is presented in equations (15) and (16). 

 

m�̈� = fR𝑒3
3 – mge3,3                                                                                                                                                                          (15) 

 

J�̈�= τ – C(Θ, �̇�)�̇�                                                                                                                                                                             (16) 
 

Tp ∈ R symbolizes the total lift force of the rotors on the body centered coordinates. Equation (17) shows the total lift force. The 

torque equation is given in (18). In the following equations, kw and kt are the aerodynamic constants, m represents the mass of the 

quadcopter, and g symbolizes the acceleration due to gravity. 

 

Tp = T1 + T2 + T3 + T4 = kwuz                                                                                                                                                           (17) 

 

τ = [lτkwuϕ, lτkwuθ, ktuψ]                                                                                                                                                                   (18) 

 

Jx, Jy, and Jz are the inertial moments about the x, y, and z axes. Equation (19) shows the diagonal matrix of moments of inertia. 

 

J = diag(Jx,Jy,Jz)                                                                                                                                                                                 (19) 

 

The input signals, depending on the rotation speed of the rotors, are given from (20) to (23), where wj(j = 1, 2, 3, 4) represents the 

rotation speed of the corresponding jth rotor blade. 

 

uz = 𝑤1
2 + 𝑤2

2 + 𝑤3
2 + 𝑤4

2                                                                                                                                                                 (20) 

 

uϕ = 𝑤2
2 - 𝑤4

2                                                                                                                                                                                    (21) 

 

uθ = 𝑤1
2 - 𝑤3

2                                                                                                                                                                                    (22) 

 

uψ = 𝑤1
2 - 𝑤2

2 + 𝑤3
2 - 𝑤4

2                                                                                                                                                                  (23) 

 

2.3 Control Diagram and Data-Driven Policy Iteration Algorithm 

Quadcopter is a system with 6 degrees of freedom and four control inputs, namely [px, py, pz, ϕ, θ, ψ]T and [uz, uϕ, uθ, uψ]T. The 

typical control scheme of the quadcopter is shown in Figure 2. 
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Fig. 2 Control Diagram of the Quadcopter 

 

The position control block generates an orbit that sets the desired angles for the attitude control block. The attitude control block 

tracks the desired angles generated by the position control block. In Figure 2, there are two separate cascade structures, and as a 

result of the trajectory control, reference attitude angles are generated for the inner control structure. In the following equations, 

Ap = diag(ap, ap, ap) ∈ R6x6 , ap = [02×1 e2,1] and Bp = m-1kw[e6,2, e6,4, e6,6]. 

 

Let xp = [px, ṗx, py, ṗy, pz, ṗz]T and thus transform equations (15) into (24) and (25). 

 

�̇�𝑝 = Apxp + Bpup                                                                                                                                                                               (24)    

 

�̇�𝑝𝑑 = Apdxpd                                                                                                                                                                                     (25)    

 

The variable Ẋ𝑝  is defined as in (26). 

 

�̇�𝑝 = [
�̇�𝑝

�̇�𝑝𝑑
] = [

𝐴𝑝 𝐴𝑝 − 𝐴𝑝𝑑

06𝑥6 𝐴𝑝𝑑
] 𝑋𝑝 + [

𝐵𝑝

06𝑥3
]up                                                                                                                                   (26 

 

According to the equations above, the cost function is determined as in (27) and (28). 

 

Vp(Xp(t)) = ∫ 𝑒
∞

𝑡
-λ(τ-t) (Xp(τ)TQpXp(τ) + up(τ)TRpup(τ))dτ                                                                                                                       (27) 

 

Qp = [
𝑄𝑒𝑝 06𝑥6

06𝑥6 06𝑥6
] ∈ R12x12, Rp ∈ R3x3                                                                                                                                                (28) 

 

Then, the optimal control input up = [upx, upy, upz]T is derived from the off-policy iteration algorithm, the control input uz is get, and 

the desired heading angles for the inertial control loop are set according to the following equations. The desired yaw angle ψd is 

chosen as a constant of 0.  

 

uz  = √𝑢𝑝𝑥
2 + 𝑢𝑝𝑦

2 + (𝑢𝑝𝑧 + 𝑢𝑏)2                                                                                                                                                       (29) 

 

ψd = 0                                                                                                                                                                                              (30) 

 

ϕd = arcsin(upxsin(ψd) − upycos(ψd)/uz)                                                                                                                                             (31) 

 

θd = arctan(upxcos(ψd) + upysin(ψd)/(upz + ub)                                                                                                                                  (32 
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Once the desired set of heading angles is obtained, the attitude controller equations are solved in a similar manner. If xΘ = [ϕ, ϕ̇, 

θ, θ̇, ψ, ψ̇]T is defined, equation (16) can be transformed into equations (33) and (34). 

 

�̇�Θ = FΘxΘ + BΘuΘ                                                                                                                                                                             (33) 

 

�̇�Θd = FΘdxΘd                                                                                                                                                                                     (34) 

 

Similarly, ẋΘd can be written as in (35). 

 

�̇�𝛩𝑑 = [
�̇�𝛩

�̇�𝛩𝑑
] = [

𝐹𝛩 𝐹𝛩 − 𝐹𝛩𝑑

06𝑥6 𝐹𝛩𝑑
] 𝑋𝛩𝑑 + [

𝐵𝛩

06𝑥3
]uΘ                                                                                                                              (35) 

 

Accordingly, the cost function is defined as follows. 

 

VΘ(XΘ(t)) = ∫ 𝑒
∞

𝑡
-λ(τ-t) (XΘ (τ)TQΘXΘ (τ) + uΘ(τ)TRΘuΘ (τ))dτ                                                                                                                (36) 

 

 

QΘ = [
𝑄𝑒𝛩 06𝑥6

06𝑥6 06𝑥6
] ∈ R12x12, RΘ ∈ R3x3                                                                                                                                               (37) 

 

The simulation coefficients of the quadcopter are shown in Table 1. Below, m is the mass of the quadcopter kw and kt represents 

the aerodynamic constants, g represents the gravitational acceleration, l represents the arm length of the quadcopter, and J 

represents the diagonal of the moments of inertia Jx, Jy, and Jz. 

 

Table 1. Simulation coefficients of the quadcopter 

Coefficient Value 

m 2 kg 

kw 1 Ns2 

kt 1 Ns2 

g 9.8 m/s2 

l 0.2 m 

J diag(5.1, 5.1, 5.2) 10-3kg.m2 

 

3. Simulations  

Simulations were performed using the MATLAB program. The desired orbit is pd = [2sin(at), 2cos(at), 0.8t]T and a = 0.5. First of all, 

in order to ensure that the system remains stable during the data collection phase, 2 PD (proportional derivative) controllers were 

used for position and attitude control loops. Kp and Kd coefficients were selected experimentally with [12, 15] for the outer loop 

and [5, 100] for the inner loop. Simulations were realized for attitude and position. 

 

3.1 Attitude simulations 

In this section, simulations are performed to follow the roll, pitch, and yaw angles of the quadcopter. Figures 3 to 5 show these 

simulations. During the simulations, noise is added to both PD controllers. upe = ∑ 0.01100
𝑚=1 sin(wmt) represents the noise added to 

the position control loop, and uΘe = ∑ 0.02500
𝑚=1 sin(wmt) represents the noise added to the attitude control loop. The wm values are 

randomly selected frequencies in the range [−100, 100]. 

 

In Figure 3, phi_r shows the roll angle given as a reference. Phi is the roll angle. As seen in Figure 3, distortion is seen in the 

simulation because of the noise given to the system. As seen in Figure 3, the off-policy reinforcement learning algorithm 

successfully captured the reference. 
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Figure 3. Roll angle reference tracking 

 

In Figure 4, theta_r shows the reference pitch angle, and theta gives the pitch angle. When Figure 4 is examined, it is observed that 

the reinforcement learning algorithm can successfully track references in a noisy environment. 

 

 
Figure 4. Pitch angle reference tracking 

 

In Figure 5, psi_r symbolizes the reference yaw angle, and psi is the yaw angle. In this work, the reference yaw angle is initially fixed 

at 0. The proposed reinforcement learning algorithm could exactly track the reference yaw angle fixed at zero. 
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Figure 5. Yaw angle reference tracking 

 

Table 2 shows the time response of roll, pitch, and yaw trajectories. Rise time and settling time are given in seconds, and overshoot 

is given in percent. 

 

Table 2. Attitude Controller’s Time Response 

Parameter Rise time Overshoot Settling Time 

Roll 0.938 s 297.1% 50.12 s 

Pitch 9.95 s 0% 37.52 s 

Yaw 0 s 0% 0 s 

 

When the values in Table 2 are examined, the rise time of the roll trajectory is 0.938 seconds. This indicates that the quadcopter 

can quickly arrive 90 percent of the given reference. At the beginning of the simulation, a high overshoot is observed while 

following the roll trajectory due to intense noise. However, with the help of the reinforcement learning algorithm, the quadcopter 

learned how to track the desired trajectory over time, and the overshoot decreased. The settling time in the roll angle simulation 

is 50 seconds and after this time, the quadcopter can follow the given reference in a very close range. 

 

The rise time of the pitch orbit is 9.95 seconds. The quadcopter does not show any overshoot while following the pitch orbit. The 

quadcopter can follow the pitch orbit more stably than the roll orbit. The settling time of the quadcopter in the pitch orbit is 37 

seconds. In this case, the quadcopter has a shorter settling time compared to the roll orbit. 

 

In this study, since the yaw reference is fixed at 0, the rise time and settling time are zero seconds, and the overshoot is 0% for the 

yaw trajectory. 

 

3.2 Position Simulations 

In this part, the x, y, and z axis trajectories of the quadcopter are simulated. As a reference, the sinusoidal function is used for the 

x and y axes, and the ramp function is used for the z axis. Figures between 6 and 8 present the simulations performed for x, y, z 

trajectories. 

 

In Figure 6, the blue line shows the reference x-trajectory and the red line shows the trajectory that the quadcopter actually follows. 

Thanks to the successful operation of the reinforcement learning algorithm, the quadcopter can follow the reference trajectory 

almost without error. Only at the beginning of the simulation, during the rise of the quadcopter, a small tracking error was seen. 
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Figure 6. X-axis reference tracking 

 

In Figure 7, the blue line shows the reference y-trajectory and the red line shows the trajectory that the quadcopter actually tracks. 

Thanks to the reinforcement learning algorithm, the quadcopter could accurately follow the reference orbit. Some very small 

tracking errors emerge in the first 10 seconds, but later, the reference and the trajectory followed by the quadcopter entirely 

overlap. 

 

 
Figure 7. Y-axis reference tracking 

 

In Figure 8, the blue line shows the reference z value, and the red line shows the actual trajectory followed by the quadcopter. 

With the help of the algorithm, the ramp orbit is tracked nearly without error. 
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Figure 8. Z-axis reference tracking 

 

Table 3 presents the time response for position simulations. 

 

Table 3. Position Controller’s Time Response 

Parameter Rise Time Overshoot Settling Time 

x 0.735 s 6.97% 3.087 s 

y 1.8 s 10.82% 10.72 s 

z 1.88 s 0% 3.17 s 

 

The quadcopter reaches the reference value with a very fast rise time while following the x-trajectory. It shows a low overshoot of 

around 7% and has a very short settling time of 3 seconds. 

 

The quadcopter reaches 90% of the given reference value with a short rise time of 1.8 seconds while following the y-trajectory. It 

shows a slight overshoot of about 10% and has an acceptable settling time of 10 seconds. 

 

The quadcopter presents a quick rise time of 1.88 seconds while tracking the z-trajectory. It represents 0% overshoot and has a 

quick settling time of 3 seconds. 

 

According to these data, it is clear that the quadcopter accurately tracks the x, y, z orbits with the help of the reinforcement learning 

algorithm. 

 

4. Conclusion 

In this research, the optimum trajectory tracking of a quadcopter based on reinforcement learning is considered. First, the dynamic 

equations of the quadcopter are presented. Thereafter, the data-driven policy iteration algorithm is discussed. The cost function 

used in the algorithm is chosen. Modeling of the quadcopter and its controllers and development of the reinforcement learning 

algorithm are performed using MATLAB/Simulink program. Thanks to the simulations, the ability of the quadcopter to track the 

attitude and position orbits under random noise is observed. Time response data are obtained, and a mathematical inspection is 

realized. Simulations prove that the reinforcement learning-based algorithm could successfully follow the given trajectories under 

noise. The successful results obtained in this study were limited to simulations. In practical applications, some problems that could 

not be detected in simulations may be encountered. Therefore, future studies are planned to compare the consistency of simulation 

results with real-life results by focusing on practical applications. 
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