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| ABSTRACT 

The agricultural sector plays a paramount role in the economy of the United States, contributing significantly to the GDP and 

affirming sustainability for American residents. This study explored the application of Artificial Intelligence and Machine Learning 

techniques in maximizing crop yields in America. This research employed various software tools, comprising Python 

programming language, Pandas library for data manipulation and analysis, Scikit-learn library for machine learning models and 

evaluation metrics, and LIME library for explainable AI. The crop yield datasets for the current research were sourced from 

Kaggle. This dataset provided substantial insights regarding crop cultivation practices within the USA context. This study 

proposes the "XAI-CROP" algorithm, which is a novel explainable artificial intelligence (XAI) model developed particularly to 

reinforce the interpretability, transparency and trustworthiness of crop recommendation systems (CRS). From the 

experimentation, the XAI-CROP model excelled at forecasting crop yield, as demonstrated by its lowest MSE value of 0.9412, 

suggesting minimal errors.  Besides, Its MAE of 0.9874 suggests an average error of less than 1 unit in forecasting crop yield. 

Furthermore, the R2 value of 0.94152 suggests that the algorithm accounts for 94.15% of the data's variability. 
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1. Introduction 

According to the IRJET Journal (2023), the agricultural industry plays an instrumental role in the economy of America, contributing 

substantially to the Gross Domestic Product (GDP) and providing sustainability for American citizens. Besides, agriculture is 

undoubtedly a major sector in the USA, with an estimated $150 billion in exports annually. Nonetheless, unpredictable weather 

trends because of climate change and other environmental components have made maximizing crop yields a significant challenge. 

Maximizing crop yields while maintaining sustainable practices is a persistent challenge faced by farmers. This study delves into 

the application of Artificial Intelligence and Machine Learning techniques in maximizing crop yields in America. Particularly, the 

research paper explores the present state of crop yield optimization methods and the possible benefits of employing AI and ML 

and provides insights into future research directions. 

 

Traditional crop yield optimization methods entail various practices, such as soil management, irrigation strategies, crop rotation, 

and pest control tactics. These methodologies are premised on experiential experience and knowledge attained over time. 

Nevertheless, they may not be capable of completely accounting for the complicated association between various factors 

impacting crop yields, such as soil composition, weather trends, and plant genetics (IRJET Journal, 2023). Recent innovations in 

precision agriculture have developed technologies such as GPS-guided machinery, remote sensing, and yield monitoring systems. 

These inventions have enabled the gathering of large volumes amounts of data associated with soil conditions, crop growth, and 

environmental aspects. Nevertheless, the efficient employment of this data for maximizing crop yields remains a noteworthy 

challenge, underscoring the need for advanced analytical tools and decision-support systems (Al-Adhaileh & Aldhyani, 2022). 
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2. Literature Review of Related Works 

As per Al-Adhaileh & Aldhyani (2022), climate change comprises persistent changes in global or weather patterns and local 

temperatures, with greenhouse gas reduction and global warming presenting challenges because of regulatory and legal 

complexities. The effect of climate change is anticipated to culminate in increased food insecurity, malnutrition, and hunger, 

particularly affecting populations in remote areas in the USA and small islands. Therefore, local government confronts a substantial 

threat from climate change, such as temperatures, air quality, and weather conditions, and impacts agricultural productivity and 

soil composition. As such, it is fundamental for the current administration to craft strategies to combat environmental 

consequences and safeguard crop yields. 

 

Researchers globally are progressively exploring crop yield prediction techniques. For instance, Suvarna (2022) proposed a deep 

learning framework employing remote sensing data to predict crop yields in developed countries. In particular, their technique 

consolidated a Convolutional Neural Network (CNN) with a Gaussian protocol component and dimensionality minimization 

method. By employing this technique in a soybean dataset incorporating sensing, soil, and climate data from the United States, 

they successfully minimized the Root Mean Square Error (RMSE) of the framework. Besides, the RMSE was enhanced from 6.27 to 

5.83 on average with the Long Short-Term Memory algorithm and from 5.77 to 5.57 with the CNN algorithm. 

 

Another research by Palanivel & Surianarayanan (2019) consolidated machine learning with agronomic rationales to tailor a 

baseline framework for large-scale crop yield forecasting. They ranked modularity, accuracy, and reusability in their workflow, 

producing features from weather data, remote sensing, crop simulation outputs, and soil information attained from the MARS 

Crop Yield Forecasting System (MCYFS) database. 

 

Qin et al. (2023), in their study, adopted Support Vector Regression (SVR), Gradient Boosting, and k-nearest Neighbors to predict 

crop yields of distinct crops in Germany, the Netherlands, and France. They employed a multilevel deep learning framework 

consolidating Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to capture spatial and temporal 

features. Their research targeted to examine the algorithm's efficacy in forecasting Corn Belt yields in America and examine the 

impacts of different datasets on the forecasting task. Experiments were performed in the US Corn Belt states utilizing time-series 

remote sensing data and soil property datasets as inputs. 

 

On the other hand, Shams et al. (2024) performed research to investigate the effects of consolidating machine learning and crop 

modeling on enhancing corn yield forecasting in the American Corn Belt. They targeted to pinpoint the most accurate hybrid 

algorithm consolidation, ascertain which crop modeling component should be incorporated with machine learning, and inspect 

the impact of weather data and simulation crop framework variables on yield prediction accuracy. The research ascertained that 

enhancing simulation crop framework variables as input features to machine learning algorithm minimized yield prediction RMSE 

by 7-20%. The researcher recommended that for better yield forecasting, their proposed machine learning framework necessitates 

more hydrological inputs. 

 

3. Methodology 

This research adopted various software tools, comprising Python programming language, Pandas library for data manipulation 

and analysis, Scikit-learn library for machine learning models and evaluation metrics, and LIME library for explainable AI. Python 

was selected because of its user-friendliness, versatility, machine learning libraries, and abundance of data analysis (proAIrokibul, 

2024). On the other hand, LIME was employed to reinforce the interpretability of machine learning algorithms, facilitating 

investigators to understand the prediction generation process. 

 

3.1 Dataset 

The crop yield datasets for the current research were sourced from Kaggle. This dataset provided substantial insights regarding 

crop cultivation practices within the USA context. By utilizing this dataset, a suitable model for crop recommendation was designed. 

Including key attributes such as production per square kilometer, location, season, area, and crop type, these datasets played a 

paramount role in predicting the optimal crops for cultivation in particular regions premised on historical trends (proAIrokibul, 

2024). Given its extensive nature, this dataset acted as a cornerstone for machine learning software in agriculture, enabling the 

robust training and validation of models. 
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Data Pre-Processing 

 
 

The data preprocessing segment was responsible for gathering, cleaning, and processing obtained data utilizing distinct 

technologies such as cameras, sensors, and IoT devices to collect real-time data. Once gathered, the data went through cleaning 

and processing to remove disturbances or inaccuracies (proAIrokibul, 2024). In particular, the data pre-processing adhered to the 

following distinctive steps within the Data Preprocessing protocol 

 

1. Gather input data: Collect weather patterns, soil type, and historical crop yield data from relevant sources.  

2. Data cleaning: Eliminate missing values and duplicates.  

3. Data transformation: Convert data into a suitable format, specifically numerical conversion of categorical variables.  

4. Data Consolidation: Consolidate distinct datasets into a joint dataset for analysis. 

5. Data normalization: Standardize data to foster homogenous scaling utilizing techniques such as z-score normalization 

or min-max scaling.  

 

3.2 Feature Engineering and Selection 

The Feature Selection segment comprised six primary stages: 

 

1. Inserting the preprocessed dataset with weather patterns, soil type, and historical crop production data.  

2.  Sub-dividing the dataset into testing and training sets.  

3. Employing statistical methods such as chi-square test, correlation analysis, and ANOVA to pinpoint substantial 

features.  

4.  Applying machine learning methods such as Decision Trees, Gradient Boosting, and Random Forest, to 

determine significant features.  

5. Ranking pinpointed features premised on significance scores produced by the selected machine learning 

algorithm.  

6. Choosing the top n features with the greatest significance scores as input for the XAI-CROP model. 
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3.3 Models and Hyperparameters 

The suggested model's hyperparameters were reinforced by employing Decision Tree (DT), Random Forest (RF), and Gradient 

Boosting (GB). 

 

3.3.1 Gradient Boosting (GB) 

As per pro-AI-Rokibul (2024), Gradient Boosting Machines are a prominent ensemble machine learning framework that transforms 

weak learners into solid learners via sequential training. It reduces the loss function in every repetition by calculating gradients and 

modifying predictions. Contrary to AdaBoost, Gradient Boosting alters weights based on gradients, making it more comprehensive 

and less sensitive to outliers. As regards Gradient Boosting, the algorithm is trained systematically to reduce loss operations by 

utilizing the Gradient Descent (GD) optimizer. The learning ratio and n estimators were two pivotal hyperparameters in the Gradient 

Boosting Decision Trees. The learning rate determined the contribution of every new tree, while n estimators specified the number 

of trees in the algorithm. The model's hyperparameters substantially enhanced the model's accuracy and performance. 

 

 
2. Decision Tree (DT) 

 

The Decision Tree (DT) technique is a supervised learning method for regression and classification tasks attributed to its hierarchical 

and nonparametric structure. The Decision Tree entails an internal node, a root node, leaf nodes, and branches. The Decision Tree 

learning procedure comprises a comprehensive search for prime split points in a tree, applying a divide-and-conquer 

dimension(pro-AI-Rokibul, 2024). The subsequent splitting protocol proceeds from top to bottom until entries are classified into 

particular class labels. The Decision Tree structure is showcased in the following Figure 1, portraying the hierarchical division and 

classification of data. 

 
 

3. Random Forest 
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Random Forest (RF) is a renowned supervised learning model used for regression and classification tasks. It functions by developing 

decision trees on distinct data samples and combining them via majority voting for categorization and averaging for regression. 

A noteworthy strength of Random Forest is its capacity to manage datasets constituting both categorical and continuous variables, 

making it ideal for different classification and regression challenges (Pro-AI-Rokibul, 2024). The algorithm can be illustrated as 

follows in Figure 2. 

 

 
 

Experimentation 

Importing Libraries 
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Output: 

 
 

3.4 Loading and Exploration 

As the loading process proceeded, structural transformations were performed to match the data with the input demands of every 

model.  
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Output: 

 

Afterwards, a code snippet was applied to create a pie chart to visualize the distribution of crops in a panda’s data frame. The code 

snippet aimed at generating a histogram showcasing crop distribution: 

 

 

 

 

Output: 
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Moreover, a code snippet was applied to ascertain crop yield by year to pinpoint crop patterns and trends: 

 

Output: 

Apart from that, the researcher equally aimed to ascertain the seasonal variation of crop yield, which can be showcased by the 

following code snippet: 

 

Output: 
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Furthermore, the researcher applied a code snippet to create a scatter plot visualization to determine the relationship between 

rainfall and crop yield. 

 

Output: 

 

Last but not least, the analyst attempted to determine the association between the categorical distribution of crop yields across 

seasons, as illustrated below: 
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Output: 

 

3.5 Proposed Model 

This study proposes the "XAI-CROP" algorithm, which is a novel explainable artificial intelligence (XAI) model developed particularly 

to reinforce the interpretability, transparency and trustworthiness of crop recommendation systems (CRS). By integrating 

explainability correctly from algorithm design and training, XAI-CROP targets to build a new degree of transparency, engagement, 

and trust between farmers and automated crop recommendation frameworks - eventually facilitating enhanced on-farm decision-

making for elevating yields and revenues under changing conditions. The proposed model can be showcased in the following 

flowchart: 
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3.6 XAI Consolidation 

The XAI consolidation segment of the XAI-CROP module employs LIME to articulate the XAI-CROP framework recommendations 

using a 6-phae process: (a) load the XAI-CROP algorithm, (2) Choose a validation dataset sample, (3) Develop a raw dataset for 

local model training, (4) train a linear regression framework on the raw dataset, (5) compute feature weights in the local framework, 

and (6) produce an explanation outlining the features most impactful to the XAI-CROP prediction for the selected sample. 

 

3.7 Performance Metrics 

To assess the performance of the proposed model for predicting crop yield, the researcher adopted three widely adopted 

regression metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), and the coefficient of determination (R-squared). Mean 

Squared Error (MSE) is a calculation of the average squared distinction between the actual values and the forecasted values. It 

offers a measure of the overall magnitude of the errors, with fewer values suggesting better performance. MSE is calculated as 

follows: 

MSE = (1/n) Σ (y _i - y_ hat_ I ) ^2 

Where n denotes the number of observations, y_i is the actual value for observation i, and y_hat_i is the forecasted value for 

observation i. 

On the other hand, Mean Absolute Error (MAE) is another predominantly adopted metric that calculates the average absolute 

difference between the actual values and the predicted values. Contrary to MSE, MAE does not square the errors, which can make 

it simple to interpret. MAE is expressed as follows: 

  MAE = (1/n) Σ| y_ i - y_ hat _i | 

Where n is the tally of observations, y_i is the actual value for observation i, and y_hat_i is the forecasted value for observation i. 

Conversely, R-squared (R^2) is a statistical computation that denotes the measure of the variance in the dependent variable 

(Spending Score) that can be articulated by the independent variables in the regression framework. R-squared ranges from 0 to 1, 

with greater values suggesting a better fit of the framework to the data. 

R^2 = 1 - (Σ (y_i - y_ hat_ i) ^2) / (Σ (y_i - y_ bar)^2) 

Algorithm MAE MSE R^2 

Random Forest (RF) 1.0015 1.2487 0.8745 

Decision Tree (DT) 1.0002 1.1785 0.8942 

Gradient Boosting (GB) 1.0745 1.6861 0.78521 

XAI-CROP 0.9874 0.9412 0.94152 
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By referring to the above charts, it was evident that the XAI-CROP model excelled at forecasting crop yield, as demonstrated by its 

lowest MSE value of 0.9412, suggesting minimal errors.  Besides, Its MAE of 0.9874 suggests an average error of less than 1 unit in 

forecasting crop yield. Furthermore, the R2 value of 0.94152 suggests that the algorithm accounts for 94.15% of the data's 

variability. In contrast, the Decision Tree algorithm had the second-best performance, with an MAE of 1.0002, MSE of 1.1785, and 

R2 of 0.8942. 

4. Business Impact 

4.1 Organization 

As regards Agricultural organizations, the XAI-CROP algorithm provides a competitive edge by offering better accuracy and 

transparency in terms of forecasting crop yields, resulting in enhanced resource allocation, better crop management, and elevated 

operational efficiency. This can lead to cost savings, elevated productivity, and enhanced sustainability for agricultural businesses. 

By adopting the proposed XAI-CROP algorithm, companies can optimize the dissemination of resources such as water, labor, land, 

and fertilizers. The algorithm's insights regarding crop suitability and environmental factors enable more effective resource 

utilization, diminishing waste and enhancing productivity. This, in turn, results in cost savings and enhanced operational efficiency 

for the organization. 

4.2 Benefits for the Economy of the USA: 

1. Enhanced Agricultural Productivity: The XAI-CROP algorithm’s capability to offer accurate and enhanced crop 

recommendations contributes to supreme agricultural productivity in the United States. By boosting resource allocation, crop 

selection, and risk mitigation, the algorithm allows farmers and agricultural companies to attain higher crop yields. This 

enhanced productivity not only satisfies the escalating demands for food but also boosts the export of agricultural produce, 

resulting in economic growth and stability. 

 

2. Sustainable Agriculture: The proposed XAI-CROP algorithm enhances sustainable agricultural measures by taking into 

consideration soil characteristics, environmental factors, and historical data. By suggesting crops that are suitable for particular 

regions, the algorithm assists in optimizing agricultural output while reducing negative effects on the environment. 

Sustainable practices lead to long-term soil health, water conservation, and reduced reliance on chemical inputs, fostering a 

more resilient and eco-friendlier agricultural sector. 
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4.3 How to Use the XAI-Crop Model 

1. Step 1: Define Strategic Objectives- Businesses are required to first define the objectives of deploying the XAI-CROP 

algorithm. Pinpoint the specific challenges or problems they want to address, such as enhancing resource allocation, crop 

selection, or risk mitigation. 

2. Step 2: Data Collection and Preprocessing- In this stage, the input raw data, which entails weather patterns, soil type, and 

historical crop yields, are gathered and processed for further analysis. 

3. Step 3: Feature engineering and selection. In this phase, the pertinent features that influence crop yield are pinpointed 

using machine learning and statistical techniques. These features are then employed as input for the XAI-CROP algorithm. 

4. Step 4: Model Training- The XAI-CROP algorithm should train on a dataset of crop production in the USA, which entails 

information on weather patterns, soil type, crop yield, and historical crop yields. The algorithm is premised on a decision tree 

algorithm that suggests recommendations premised on the input data such as season, location, and crop production per 

square kilometer, area, and crop. 

5. Step 5: XAI Consolidation- The XAI-CROP framework employs a methodology termed ‘‘Local Interpretable Model-agnostic 

Explanations’’ (LIME) to offer concise explanations for its crop recommendations. LIME is a method for articulating the 

forecasting of machine learning algorithms by generating local frameworks that approximate the predictions of the original 

model. 

6. Step 6: Validation- The XAI-CROP algorithm is validated utilizing a validation dataset to evaluate its performance in terms of 

forecasting crop yield. The algorithm’s accuracy is computed using Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), and R-squared (R2). 

7. Step 7: Model Deployment and Evaluation:  After Deploying the model, businesses should progressively monitor and assess 

the algorithm’s performance in real-world scenarios. Gather feedback from stakeholders and users to pinpoint aspects of 

improvement and refine the model accordingly. 

 

5. Conclusion 

This study explored the application of Artificial Intelligence and Machine Learning techniques in maximizing crop yields in America. 

This research employed various software tools, comprising Python programming language, Pandas library for data manipulation 

and analysis, Scikit-learn library for machine learning models and evaluation metrics, and LIME library for explainable AI. The crop 

yield datasets for the current research were sourced from Kaggle. This dataset provided substantial insights regarding crop 

cultivation practices within the USA context. This study proposed the "XAI-CROP" algorithm, which is a novel explainable artificial 

intelligence (XAI) model developed particularly to reinforce the interpretability, transparency and trustworthiness of crop 

recommendation systems (CRS). From the experimentation XAI-CROP model excelled at forecasting crop yield, as demonstrated 

by its lowest MSE value, suggesting minimal errors.  Besides, its MAE was relatively low, suggesting an average error of less than 

1 unit when forecasting crop yield. Furthermore, the R2 value suggested that the algorithm was effective in the data's variability. 
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