
Journal of Computer Science and Technology Studies  

ISSN: 2709-104X 

DOI: 10.32996/jcsts 

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts 

   JCSTS  
AL-KINDI CENTER FOR RESEARCH  

AND DEVELOPMENT  

 

 

Copyright: © 2024 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,  

London, United Kingdom.                                                                                                                          

    Page | 141  

| RESEARCH ARTICLE 

Revitalizing the Electric Grid: A Machine Learning Paradigm for Ensuring Stability in 

the U.S.A 
 

MD Rokibul Hasan MBA, PMP, CSM 

 

Department of Business Analytics, Gannon University, Erie, Pennsylvania, USA 

Corresponding Author: MD Rokibul Hasan, E-mail: hasan008@gannon.edu 

 

| ABSTRACT 

The electric grid entails a diverse range of components with pervasive heterogeneity. Conventional electricity models in the U.S.A. 

encounter challenges in terms of affirming the stability and security of the power system, particularly, when dealing with 

unexpected incidents. This study explored various electric grid models adopted in various nations and their shortcomings. To 

resolve these challenges, the research concentrated on consolidating machine learning algorithms as an optimization strategy 

for the electricity power grid. As such, this study proposed Ensemble Learning with a Feature Engineering Model which 

exemplified promising outputs, with the voting classifier performing well as compared to the rainforest classifier model. 

Particularly, the accuracy of the voting classifier was ascertained to be 94.57%, illustrating that approximately 94.17% of its 

predictions were correct as contrasted to the Random Forest. Besides, the precision of the voting classifier was ascertained to be 

93.78%, implying that it correctly pinpointed positive data points 93.78% of the time. Remarkably, the Voting Classifier for the 

Ensemble Learning with Feature Engineering Model technique surpassed the performance of most other techniques, 

demonstrating an accuracy rate of 94.57%. These techniques provide protective and preventive measures to resolve the 

vulnerabilities and challenges faced by geographically distributed power systems. 
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1. Introduction 

In the recent past, the national electric power grid in America has been experiencing a transformative shift targeted at 

establishing a reliable, efficient, secure, and stable smart electric grid, coinciding with the national energy sustainability 

objectives. Acting as the fundamental infrastructure of contemporary society, the electric power grid comprises the entire 

network of machinery and wires that link electricity sources to users. The smart grid employs advanced digital information, 

communication, and control technology to fortify the reliability and efficiency of the system (Henderson et al, 2019). 

Tremendous smart grid algorithms and technologies have been crafted within the framework of the new smart grid paradigm. 

Nevertheless, before their execution, it is imperative to test and validate these technologies meticulously (Amin & Singer, 2018). 

To affirm this, simulation and modeling of consolidated smart electric grid frameworks provide an efficient approach for 

validating and testing these smart grid algorithms. 

 

According to Bomfim (2020), to accomplish the vision of a Smart Grid in USA, it is pivotal to effectively incorporate 

communication systems, real-time data delivery, digital information, embedded software, and real-time control decision-

making. These spheres transcend beyond conventional advancements in power engineering algorithms. Nevertheless, there is 

still a lack of high-fidelity frameworks in a position to simulate the activities between the electric grid and the communication 
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and control infrastructure components, particularly for large-scale systems. Modeling the interdependencies of the 

infrastructure complementing the power grid, encompassing communication networks, control systems, sensors, and software, 

presents a substantial challenge. Currently, there are distinct gaps in effectively modeling the consolidated smart grid system 

extensively and efficiently. 

 

1.1 Background 

As per Henderson et al. (2019), the electric grid comprises a diverse range of elements with pervasive heterogeneity. This 

heterogeneity is apparent in various elements, comprising physical elements such as power generation equipment, transmission 

lines, and computational elements, as well as organizational and human components. Moreover, the multitude of simulations 

undertaken across distinct domains, such as network systems and planning optimization, further leads to the increased diversity 

of required models. 

The complication and sophistication of modeling the dynamics and operation of the electric grid emanates from a wide range of 

incidents, comprising network formulation and planning of operating strategies, regulation of the transmission system, control 

strategy design, production unit dispatching, as well as dependability and vulnerability analysis (Heptonstall & Gross, 2021). The 

aggregate activities of the electric grid are impacted by the interplay of computational, physical, and human/organizational 

elements. As smart grid schemes proceed to evolve, the heterogeneity and complexity of the system are anticipated to increase 

in multiple ways. 

 

According to Hasan (2021), granted the instrumental role that electric power grids have in our community, it has become very 

significant to comprehend the sophisticated phenomena that lead to the rise of blackout safety and insecurity incidents. 

Researchers and scholars have attempted various approaches to resolve these challenges. One avenue comprises undertaking 

simulations that consider the automation/control layer and electromagnetic processes that govern the grid. Nevertheless, such 

simulations are extremely challenging and can only be undertaken on a reduced scale. On the other hand, when investigating 

blackouts, our attention lies in understanding the behavior of the entire electric power grid as a unified entity. Moreover, these 

simulations are relatively time-consuming, while it is highly instrumental to get real-time insights regarding how the system 

responds to external disturbances. 

 

1.2 Problem Statement 

Nguyen et al. (2020), indicate that traditional electricity models encounter a substantial challenge in terms of affirming the stability 

and reliability of the power system, notably in the confrontation of different contingencies and strains. Recent occurrences 

worldwide have illustrated the vulnerabilities of geographically distributed power systems, demanding the implementation of robust 

preventive and protective techniques such as Machine learning Techniques. As per MD Robikul (2024), across history, upholding the 

stability and security of power systems has always been a difficult task. Operators of conventional power systems frequently struggle 

with effective network monitoring, depending on consumer reports of faults. Despite the tremendous innovations in contemporary 

power systems, reports and evidence signify that the international power system has encountered an increasing number of security 

and stability challenges. 

 

2. Literature Review 

Power grids have for a long time been a renowned framework system in the domain of synchronization concepts within the arena 

of network dynamics. As the field has advanced, an escalating number of investigators have attempted to apply insights and 

concepts from previous theoretical research to resolve power grid-specific challenges (Roy &   Naur, 2016). This need emanates 

from the fact that, despite the comprehensive engineering literature on power mechanisms, there is still a substantial gap in 

comprehending how the collective dynamics in power grids are impacted by the large-scale network structure. While previous 

literature has concentrated on the detailed modeling of relatively small test frameworks, recent research in computational power, 

data processing tools, and theoretical developments in network synchronization have inspired possibilities for assessing large-

scale properties of power grid systems (Specht, 2022). The stability of intended states, particularly the synchronization stability of 

power generators, is of substantial concern for power grids. This condition is pivotal for affirming the normal operation of the 

generators. 

 

2.1 Understanding Power Grid 

Zhang (2020), contends that a power grid refers to a connected framework of electrical devices crafted to transmit power 

from generators to consumers. When one views this framework as a network, one considers nodes as points where power is 

inserted by generators or retrieved by consumers and points where power is reallocated among connected transmission lines. 

Links in the network exemplify electrical connections between sets of nodes, which can be transformers or transmission lines. 
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In this network depiction, the physical framework of the power grid is portrayed in Figure 1(A), which exhibits a simple 

illustration with two power-inserted nodes (1 and 2) linked to a single power-receiving node (3) via two transmission lines. It is 

essential to mention that transmission lines have COMPONENTS, which are generally portrayed by sophisticated numbers, 

and the parallel conductors of these lines have distinctions between them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1: Showcases the modeling of a power-grid network system. 

 

As per Figure 1, In (A), a simple portrayal of the network is demonstrated, where nodes signify loads or generators, and links 

exemplify transformers or transmission lines. This specific example comprises two generators (nodes 1 and 2) and one load 

node (node 3). (B) Portrays the electrical attributes of the elements within a similar network. The load node can be portrayed 

in three distinct ways, each conforming to a different model (Huhta, 2021). 

 

On the other hand, (C) presents the framework portrayed as a network of joint oscillators, relying on the load representation 

selected in (B). For the provided parameter values, the network aspects follow equations (28)-(30) for the SP, EN, and SM 

models, accordingly), with the particular values of Ai, Kij, and γij. It's imperative to mention that every dynamical framework 

has its definition of nodes, which varies from the one utilized in (A). In (B), the nodes are portrayed as black dots and stamped 

with blue, orange, and green indices for the SP, EN, and SM models, accordingly. A similar color scheme is employed for the 

node indices in (C). Particularly, in the SP framework, the terminals of the generators are taken as load nodes with zero power 

utilization (nodes 3 and 4), distinct from the internal nodes of the generators (nodes 1 and 2), culminating in a 5-node 

representation (Huhta, 2021). 

 

In power framework analysis, the π model is predominantly adopted to depict transmission lines. As per this model, the two 
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nodes are linked by an impedance, and there are two capacitors (with equivalent capacitance) that link both sides of the 

impedance to the ground. Figure 1(B) demonstrates this framework for the transmission line 1-3, which comprises two 

capacitors with an impedance of 1/(jωC), where j denotes the imaginary unit and ω is the angular frequency (Huhta, 2021). On 

the other hand, transformers are portrayed by a framework where the voltages on both aspects of the transformer uphold a 

constant ratio, which can be complicated valued to account for potential phase transformations in voltage. In this setting, we 

employ the standard approach of depicting the framework parameters for transformers and transmission lines in terms of 

equivalent admittances, which are the inverses of impedances. 

To portray the whole physical network framework, one can utilize the (complex-valued) admittance matrix Y. This matrix has 

the symbol Y = [Yij] where Yij is the negative of the admittance existing between nodes i and j (when i is not equal to j), and 

Yii is the summation of all admittances linked to node I, encompassing the shunt admittances to the ground, which are 

elements of the models for transformers and transmission lines. 

     2.2 The Current State of the Electricity Sector in America 

As per the Worldometer, electricity consumption in America was approximately 4,050 terawatt-hours as of 2022, among the 

highest values in the period under assessment. The Americas' portion of the electrical grid in North America had a nameplate 

capacity of 1,213 GW and generated 3,988 TWh as of 2022. According to Hasan (2023), Historically, the American electricity 

sector has functioned under a vertically consolidated utility model. In this framework, a single utility organization was in charge 

of generating, distributing, and transmitting electricity to consumers within a particular geographic region. This framework 

presented a regulated monopoly, with the utility organizations being the exclusive electricity provider in its service region. In 

the 1990s, some states in America started to restructure and regulate their electricity markets. This encompassed separating 

the generation, distribution, and transmission functions of the electricity sector to present competition. The objective was to 

promote efficiency, lower prices, and offer consumers more choices. 

 

As per Hasan (2022), ensuring the stability and security of the power system is a tremendous challenge confronted by 

electricity organizations in America. Recent occurrences worldwide have underscored the need for robust preventive and 

protective measures to resolve stability and security issues in geographically dispersed power systems. Previously, operators 

of the old power system battled to effectively monitor the network, frequently depending on reports from officials and faults 

from consumers. Nevertheless, despite the advancements in contemporary power systems, reports and evidence indicate that 

security and stability challenges have increased globally. Constant system monitoring is fundamental for pinpointing security 

violations promptly. It is essential to ensure consistent vigilance since breaches can happen within minutes or seconds.  

In this paper, the researcher will concentrate on three renowned models adopted in different countries across the globe, all 

models either adopt: The Effective Network (EN) framework, the Structure-Preserving (SP) system, or the Synchronous Motor 

(SM) system. Each framework represents a network of interrelated phase oscillators, and their dynamics are regulated by 

equations of the following form. 

 

 

 

 

In the provided equations, ωR denotes the reference angular frequency of the model. The oscillators are attributed to inertia 

constant Hi and subsequent damping constant Di. The variations among the three frameworks can be witnessed in the 

descriptions of parameters Ai, Kij, and γij, and in the number of phase oscillators encompassed. The phase angle δi denotes either 

a generator or a load. Even though all three models consider ng generators as oscillators, their key distinctions depend on how 

they model the loads, which portray independent or aggregated users drawing power from particular points in the transmission 

network. In the EN model, the loads are depicted as constant impedances instead of oscillators, with the concentration on 

synchronizing the generators as second-order oscillators. In contrast, the SP framework treats all load nodes as first-order 

oscillators (Hi = 0), and every generator is portrayed by two oscillators, comprising one for its terminal, which is the point linking 

the generator to the rest of the network. 
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2.3 Comparing and Contrasting Electricity Grid Models Adopted in Different Nations 

Year Model Adopted Country Shortcomings 

2022 The Grid-Independent 

Model 

India -High initial costs of installation and 

maintaining infrastructure. 

- Lacks the scalability of centralized power 

production. 

-Reliability Challenges 

2016 Centralized Model Canada -Vulnerable to disruptions such as cyber-attacks 

or equipment failures. 

-Lack of flexibility since they are tailored to 

function on a large scale. 

-Negative environmental implications since they 

highly depend on fossil fuel which in turn leads 

to air pollution 

2021 Decentralized 

Model 

Germany -Difficulty in coordinating multiple units or 

divisions. 

-Narrow Product Lines. 

- Deploying and upholding. decentralized 

frameworks can be relatively costly. 

2020 Hybrid Model Australia -Complexity and integration challenges. 

- Challenges to grid stability and reliability. 

-Transition and compatibility issues. 

2023 The Smart Grid 

Model 

Denmark -Privacy and security issues 

- The sophistication of a smart grid framework 

can lead to technical challenges. 

-Affordability and equity issues 

 

3. Methodology 

The methodology in this study combines multiple Machine Learning algorithms. Most notably, random forest, decision tree, 

Gradient booster classifier, voting classifier, and XGBoost are ensembled in this research. Each of these algorithms presents 

unique capabilities and strengths, reinforcing the overall performance of the ensemble classifier. Moreover, the methodology 

adopted in this model incorporated the Stevens Multi Performance Comparison of Machine Learning Algorithms for Load 

Forecasting in Smart Grid. This methodology is crafted particularly for load forecasting in the setting of smart grids. It comprises 

an extensive evaluation framework that facilitates a comprehensive comparison of distinct machine-learning algorithms. The 

Stevens Multi Performance Comparison methodology takes into consideration multiple performance metrics to evaluate the 

efficiency of distinct algorithms in load forecasting. These metrics may comprise precision, accuracy, recall, F1 score, and others, 

offering a holistic view of the algorithms' performance across distinct dimensions. 

 

3.1. Dataset Information 

The evaluation entailed undertaking experiments with different input values adopting a methodology identical to the one 

presented in the research paper titled Taming instabilities in power grid networks by decentralized control, by Schäfer, 

Benjamin, et al. (2016). In these tests, specified input values were kept constant. The average time for the evaluation was set 

at 2 seconds, implying that data was averaged on a 2-second interval. The joint strength was set at 8 s^-2, signifying the rate 

at which distinct elements in the system interact. In particular, the damping was set to 0.1 s^-1, indicating the rate at which 

oscillations in the model are minimized. These fixed input values present a consistent baseline for contrasting the results of 

the analysis across different scenarios. 
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Variable Name Role Type Demographic Description Units Missing Values 

tau1 Feature Continuous    no 

tau2 Feature Continuous    no 

tau3 Feature Continuous    no 

tau4 Feature Continuous    no 

p1 Feature Continuous    no 

p2 Feature Continuous    no 

p3 Feature Continuous    no 

p4 Feature Continuous    no 

g1 Feature Continuous    no 

g2 Feature Continuous    no 

g3 Feature Continuous    no 

g4 Feature Continuous    no 

stab Target Continuous    no 

stabf Target Binary    no 

 

3.2 Data Preparation 

The first step started with loading the dataset from a CSV file into a Pandas Data Frame, 

followed by undertaking an Exploratory Data Assessment (EDA). The second step, the 

EDA phase comprises showcasing the number of columns and rows in the dataset, 

portraying the first few columns of the dataset, exhibiting information regarding the 

dataset, entailing data types and missing values, and presenting a statistical overview 

of the dataset. The third phase entails Data Visualization, pie charts are created to 

visualize the scattering of the target variable 'stabf', and the resulting chart image is 

saved to a file using plt. savefig(). This comprehensive process allows for a thorough 

understanding of the dataset and its characteristics. 

 

 

 

The fourth step entailed the Label Encoding phase, where a label encoder was fitted to the 'stabf' column. Subsequently, the 

stabf column was then transformed using the label encoder. The resulting label encoder was saved using joblib. dump(). The 

fifth step encompassed presenting data visualization, where scatter plots were created to showcase all data points, and the 

subsequent scatter plot image was documented. In the sixth step, scatter plots were presented to compare and contrast each 

feature with 'tau1' and color-coded by 'stabf' as showcased in the figure below: 
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seventh phase comprised defining the target variables and defining the features. 

Subsequently, a random forest classifier of 200 trees was initialized, where the model 

was trained using the target and features. Finally, the researcher visualized the feature's 

importance by utilizing the horizontal bar charts as showcased below:  

 

 

 

 

 

 

4. Implementation 

4.1 Model creation and training 

This study comprised experimenting with four models, most notably, (1) Ensemble learning without Feature Engineering model, 

(2) Ensemble learning with Feature Engineering, (3) Gradient Boosting Classifier, and (4)Random Forest Classifier, to ascertain 

which model is suitable in terms of streamlining electricity power grid. 
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Model #1: Ensemble learning without Feature Engineering model. 

In this experiment, a Random Forest model was trained for binary classification without feature engineering. The procedure 

entailed model selection, target and feature definition, model training, determining the number of estimators, and portraying 

feature significance. The Random Forest Classifier with approximately 200 decision trees was chosen for model training, known 

for its capability to handle complex datasets and robustness. Firstly, the target variable 'stabf' portraying the system's stability 

is described, and the features are exhibited by excluding the target variable. The model is then trained using the defined 

features and target variable. Secondly, the quantity of decision trees in the Random Forest is fixed at 200. Thirdly, model 

evaluation was employed, where the trained model was evaluated on a test or validation set using various metrics. Fourthly, 

the process comprised visualizing the feature significance by employing a horizontal bar chart, and the feature significance 

plot was displayed as images visualizing. 

 

Model #2: Ensemble learning with Feature Engineering 

Firstly, the Ensemble Learning with Feature Engineering procedure was initialized comprising three classifiers, most notably, 

Gradient-Boosting-Classifier, Random-Forest-Classifier, and XGB-Classifier for ensemble learning. Secondly, a voting classifier 

was then developed with a soft voting strategy, consolidating predictions according to the predicted probabilities from the 

three classifiers. Thirdly, a pre-trained ensemble framework was then loaded, facilitating predictions without necessarily 

retraining. Thirdly, the model made predictions on the test set upon dropping particular features, and the outcomes were 

preserved. The fourth step, entailed visualizations using a bar chart portraying training and test accuracy, a heatmap for the 

bar chart, and a confusion matrix, showcasing precision, recall accuracy, and F1 score on the test set. These visualizations 

provided insights regarding the ensemble model's evaluation and performance metrics. 

 

Model #3: Gradient Boosting Classifier 

The first step entailed initializing a Gradient Boosting Classifier. Gradient Boosting is an ensemble learning technique that 

establishes a series of weak learners, normally decision trees, and integrates their predictions to enhance overall performance. 

Secondly, a pre-trained Gradient Boosting Classifier framework was loaded utilizing the joblib.load() function. This facilitated 

the adoption of a previously saved framework for making predictions without retraining. The third stage comprised employing 

the trained Gradient Boosting Classifier framework to make predictions on the test set (x_test). The fourth stage comprised 

creating bar charts to visualize and display both the training and test accuracy of the Gradient Boosting Classifier. The accuracy 

scores were presented as percentages. 

 

Model# 4: Random Forest Classifier 

Model 4 entailed initializing the Random Forest Classifier. Secondly, a pre-trained Random Forest Classifier framework was 

loaded using the joblib.load() function. The third step encompassed employing the trained Random Forest Classifier framework 

to make predictions on the test set (x_test). Fourthly, bar charts were created to display both the training and test accuracy of 

the Random Forest Classifier. The fifth stage entailed portraying the confusion matrix for the Random Forest Classifier on the 

test set utilizing a heatmap. In the final stage, bar charts were created to exhibit the precision, accuracy, recall, and F1 score of 

the Random Forest Classifier on the test set. 

 

4.2 Results and Discussion 

The following sections present the outcomes of the experiment conducted using the four models. In particular, this section 

will present the train test accuracy, confusion matrix test, as well as the precision, accuracy, recall, and F1 score tests. 
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Train Test Accuracy 

 

 

 

From the train test accuracy for the voting classifier, it was evident that the test accuracy for the voting classifier for the 

ensemble learning without Feature Engineering was 94% & the Train accuracy (100%). On the other hand, as for the ensemble 

learning with feature engineering, the test accuracy was 95% and train accuracy was 100%, implying that the ensemble learning 

with feature engineering was relatively accurate at predicting incidents. By contrast, concerning the gradient boosting classifier, 

the test accuracy was ascertained to be (91%) and Train accuracy (95%), implying that it was less accurate in predicting 

incidents. Finally, as for the random forest classifier the results were as follows (Test result-92% & Train Accuracy-100%). 
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Confusion Matrix Test 

 

The Figure above showcases the confusion matrix for different model classifiers applied to the 80% training dataset. The results 

illustrated that the voting classifier for the ensemble learning without Feature Engineering accurately classified 971 samples 

as stable, and 1854 samples as unstable, performing well as compared to other models. Conversely, ensemble learning with 

feature engineering accurately classified 981 samples as stable and 1856 samples as unstable, performing well as compared 

to other models. The gradient boosting classifier was able to classify 905 of the samples as stable and 1836 as unstable. Lastly, 

the random forest classifier categorized 1832 of the sample as unstable and 937 of the sample as stable. 
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Accuracy, Precision, Recall, and F1 Score 

 

 

As regards the precision, recall, accuracy, and the F1 score of the Random Forest Classifier, the outcome was as follows accuracy 

was 94.57%, precision (92.11), recall (96.12%), and F1 score (94.07%). As for the gradient boosting classifier, the outcome was 

as follows: Accuracy (94.57%), Precision (90.67%), Recall (96.33%), and Fi Score (93.41%).  As for the voting classifier for the 

ensemble learning feature engineering, the outcome was as follows: Accuracy (94.57%), precision (94.26%), recall (97.38%), 

and F1 score (95.79%). Overall, the ensemble learning with feature engineering demonstrated exceptional performance. 

 

4.3 Proposed Model 

Overall, this study proposed the Voting Classifier for Ensemble Learning with Feature Engineering Model, the output 

demonstrated that the voting classifier was performing relatively well as far as the train test accuracy was concerned. Besides, 

the accuracy was relatively high as compared to the Random Forest Classifier and the gradient boosting classifier, besides, the 

recall and precision were also better, as well as the F1 score was also excellent. Remarkably, the Voting Classifier for the 

Ensemble Learning with Feature Engineering Model technique surpassed the performance of the majority of other techniques, 

demonstrating an accuracy rate of 94.57%. This exemplified a substantial elevation in accuracy when contrasted to the majority 

of the techniques evaluated. 

 

4.4 Final Output 

To obtain the final output the researcher employed 8 questions, to determine the range, and eventually showcase the output 

sample below this page 

 

Questions 

Response time of respondents (real from the range [0.5,10]s), tau1(τ) 
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Response time of respondents (real from the range [0.5,10]s), tau2(τ) 

Response time of respondents (real from the range [0.5,10]s), tau3(τ) 

Response time of the respondents (real from the range [0.5,10]s), tau4(τ) 

Coefficient (gamma) relative to price elasticity (real from the range [0.05,1]s^-1), g1(γ) 

Coefficient (gamma) relative to price elasticity (real from the range [0.05,1]s^-1), g2(γ) 

Coefficient (gamma) relative to price elasticity (real from the range [0.05,1]s^-1), g3(γ) 

Coefficient (gamma) relative to price elasticity (real from the range [0.05,1]s^-1), g4(γ)  

 

5. Benefits of Adopting the Proposed Model in America 

Cybersecurity and Resilience: Ensemble voting can reinforce the cybersecurity and resilience of the electric grid in the USA. By 

integrating multiple frameworks with diverse data sources and algorithms, ensemble learning can enhance anomaly detection, 

intrusion detection, and threat prediction capabilities. 

Environmental Benefit: Ensemble voting classifier will certainly assist in terms of optimizing renewable energy consolidation 

and grid management in the USA, leading to better utilization of clean energy sources. 

Economic Benefit: Ensemble learning methods, and consolidate multiple frameworks, which enhances the efficiency and 

accuracy of predictive and forecasting modeling in the electric grid. By adopting these methodologies, grid operators and utilities 

in the USA can make more informed decisions concerning energy generation, distribution, and consumption.  

Public Health and Safety: Ensemble voting classifier, incorporated with feature engineering, can certainly fortify public safety 

and health in the setting of the electric grid in the U.S.A. By assessing historical data and real-time sensor data, ensemble learning 

frameworks can pinpoint anomalies and patterns correlated with potential grid failures or hazards. 

 

6. Conclusion 

Traditional electricity models encounter a substantial challenge in America in terms of affirming the stability, security, and 

reliability of the power system, notably in the confrontation of different contingencies and strains. This study explored different 

electric grid models adopted in different nations and their shortcomings. To counter the challenges faced by the traditional 

electricity models, this study focused on integrating machine learning algorithms as an optimization strategy for the electricity 
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power grid. Overall, this study proposed the Ensemble Learning with Feature Engineering Model, the output demonstrated that 

the voting classifier was performing relatively well.  Overall, the ensemble learning with feature engineering demonstrated 

exceptional performance accuracy. 
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