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| ABSTRACT 

Cloud computing has become an increasingly popular platform for modern applications and daily life, and one of its greatest 

challenges is task scheduling and allocation. Numerous studies have shown that the performance of cloud computing systems 

relies heavily on arranging tasks in the execution stream on cloud hosts, which is managed by the cloud's load balancer. In this 

paper, we investigate task priority based on user behavior using request properties and propose an algorithm that utilizes 

machine learning techniques, namely k-NN and Regression, to classify task-based priorities of requests, facilitate proper 

allocation, and scheduling of tasks. We aim to enhance load balancing in the cloud by incorporating external factors of the load 

balancer. The proposed algorithm is experimentally tested on the CloudSim environment, demonstrating improved load balancer 

performance compared to other popular LB algorithms. 
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1. Introduction 

Currently, cloud computing is widely used as a platform for various life and scientific applications. Cloud computing enables the 

sharing of a large number of computing resources such as processors, storage, data, information, and knowledge. However, task 

scheduling and allocation present a significant challenge in cloud computing. As a result, several studies have been conducted on 

this topic to enhance load balancing in cloud computing.  

 

According to Iosup et al. (2011), Suakanto (2012), and Kumar et al. (2021), the performance of cloud computing systems depends 

heavily on task arrangement in the execution flow on hosts to optimize workflow efficiency. As demand for cloud computing 

continues to rise for business, applications, and personal purposes, the system load and performance are increasingly affected 

(Kumar et al., 2021). However, job scheduling algorithms can classify tasks to ensure efficient and fast processing, especially with 

the many challenges faced by cloud computing environments (Agarwal & Jain, 2014). Priority-based scheduling policies can also 

be used to control the work sequence of a computer system (Shafiq et al., 2022). 

 

There are many load balancing methods and proposals available to improve load balancing in cloud computing (Fang et al., 2010), 

but they have limitations in some cases of the complex cloud environment. To address this issue, a new approach is proposed that 

focuses on users' behavior, specifically task priority generated by user requests or behavior, to allocate requests and improve load 

balancing. The proposed approach involves studying load balancing algorithms and parameter sets related to task priority and 

algorithms for task priority classification. Machine learning techniques, specifically Linear Regression and k-NN, are used to classify 

task priority and allocate requests to the corresponding virtual machine. This new proposal is named ATPA, using k-NN 

classification for Adaptive Task Priority Algorithm. The proposed algorithm is evaluated experimentally on the popular cloud 

computing simulation environment, CloudSim, and found to perform better than traditional scheduling algorithms. 
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This article makes several contributions to the study of load balancing in cloud computing. Firstly, it takes an external perspective 

to examine the factors that influence load balancing, specifically the behavior of cloud users and the priority of tasks. Secondly, 

the article proposes the use of Linear Regression to predict the resources needed for a given task, and then uses k-NN to classify 

the task based on the predicted figures. Finally, the article evaluates the proposed algorithm, ATPA, through experimentation and 

demonstrates that it outperforms existing popular algorithms in the field of load balancing. 

 

To further elaborate on our proposal, we intend to present our paper in six sections. The first section would be an introduction to 

provide a brief overview of the topic. The following section will discuss the existing works in this field. In the third section, we will 

discuss the theoretical background of cloud computing and load balancing in cloud computing, including cloud users' behavior 

and tasks' priorities, as well as k-NN and linear regression of machine learning. The fourth section will present and describe our 

proposed algorithm, ATPA. In section 5, we will describe the simulation and experiment results, and the evaluations will be 

discussed. Finally, in section 6, we will give the general conclusions of the paper, including the implications of the research, and 

suggest future work that can be done in this area.  

 

2. Literature Review  

2.1 Cloud Computing and Load Balancing 

According to the National Institute of Standards and Technology (NIST) (Mell & Grance, 2011), cloud computing is a service model 

that allows users to access shared computing resources on demand via a network connection, anytime, anywhere with ease. Daniele 

et al. (2012) suggest that the on-demand service delivery approach known as cloud computing is implemented using distributed 

computing and virtualization technology. Gartner.com (n.d.) explains that cloud computing is adaptable and scalable, with the 

delivery of technological resources as a service over the Internet being highly scalable. Forrester Research (Staten et al., 2009) 

states that the cloud computing platform offers three deployment methods as infrastructure as a service, each with distinctive 

qualities and economics that can help achieve deployment objectives for applications and services more effectively.  

 

 

Figure 1. Cloud computing model (Source: 3STechBlog) 

In simple terms, cloud computing is a model of providing IT resources over the internet as a service, allowing for easy modifications 

to suit user needs. The "cloud" refers to the collection of these resources, which are available for use without needing to know the 

technical details of how they are provided. 

The cloud computing architectural model, as described by Mohammad, Qahtan, and Yahya (2016) and Javatpoint (2021), consists 

of three main components: the frontend, which is the client infrastructure; the internet, which provides the connection; and the 

backend, which is the grid computing system consisting of data centers that run applications, services, storage, virtualizations, 

cloud management, and cloud security. The delivery service model of cloud computing provides various layers of computing 

services, such as computing power on the grid, high-performance servers, virtual servers, storage space, operating systems, and 

development engines, among others. The cloud computing service models are classified into three basic groups, which include 

application development, application management, and services, as described by Mohammad et al. (2016), Javatpoint (2021), Hung 

and Phi (2016), and Kumar and Rathore (2018). 
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 (a) (b) 

Figure 2. (a) Architectural model of cloud computing (JavaPoint, 2020),  

(b) Cloud computing service model (Hung T.C., 2016) 

Load balancing is a strategy utilized in cloud computing to distribute traffic among multiple servers with the same function in the 

system, in order to minimize the load on one server while the others are idle. In the event that one server in the system becomes 

overloaded or malfunctions, the load balancer can allocate its tasks to other servers to maintain system performance and maximize 

response time. This approach is employed to improve the overall performance of the system. (NGINX, 2019; Asha et al., 2018). 

 

Figure 3. Load Balancing in Cloud Computing (NGINX, 2019) 

The load balancer has a crucial role in cloud computing (NGINX, 2019; Asha et al., 2018; Taylor et al., 2019; Ghafir et al., 2021). 

Firstly, it helps in reducing network traffic to the website (NGINX, 2021). It can also act as a proxy or firewall at the application 

layer, responsible for load distribution after receiving requests (Asha et al., 2018). Secondly, the load balancer's primary function is 

to distribute traffic into separate requests and select which servers receive them (Taylor et al., 2019; Ghafir et al., 2021). There are 

different algorithms for separating traffic for each server. The servers must be kept available to maintain communication with the 

load balancers, which also helps to check if the server is still operational. Multiple failover scenarios are used to increase 

redundancy, and load sharing criteria include distributed content recognition through reading URLs, intercepting cookies, and 

compiling XML. 

The benefits of load balancing are significant and can be outlined as follows. Firstly, it offers flexibility (Taylor et al., 2019) to the 

system by allowing servers to be added, removed, maintained, and repaired with minimal impact on the overall performance. This 

is achieved by using cookies, parsed URLs, and static/dynamic algorithms to control network traffic and improve load balancing 

performance. Secondly, load balancing provides high availability (Ghafir et al., 2021) by continuously monitoring server 

performance and automatically removing unresponsive servers from the system and adding them back when they are functional 

again. This is an automated process that requires no administrator intervention, ensuring redundancy of the load balancing system 

when any device fails. Thirdly, scalability is another advantage of load balancing where it distributes the load to multiple servers, 

reducing costs significantly by investing in many small servers instead of specialized equipment and large server systems. 
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Additionally, the system can easily change, increase, decrease, or replace servers without affecting system performance, keeping 

it available at all times. 

2.2 Application of Machine Learning in Load Balancing 

In the field of computer science, machine learning is a subset of artificial intelligence (AI) that enables computers to learn without 

explicit programming, as described by IBM Cloud Education (2020). Machine learning algorithms are classified into four groups 

based on their learning methods: supervised, unsupervised, semi-supervised, and reinforcement learning (IBM Cloud Education, 

2020; NVIDIA, 2021). Resource usage prediction in cloud computing is a trending approach that can be achieved using machine 

learning, and several popular methods are available, including linear regression, regression trees, bagging using regression trees, 

and artificial neural networks (da Silva et al., 2015; Matsunaga & Fortes, 2010; Monge et al., 2015; Salzberg, 1994; Walczak & Cerpa, 

2003). Different algorithms have different prediction accuracy, and no single algorithm can solve all problems, so it is essential to 

choose the algorithm that best suits the problem to be solved. In this paper, we apply linear regression techniques to historical 

data from virtual machines (VMs) that have processed previous requests to predict resource usage for the next request (da Silva 

et al., 2015; Witten et al., 2011). 

 

Linear regression (Witten et al., 2011) is based on the assumption of a linear relationship between the input and output variables, 

such as resource usage and request parameters input or VM with runtime. The model uses a formula 𝑦 = �⃗�. �⃗� + 𝑏 to represent the 

output based on the independent variable �⃗� and determines the values of �⃗� and b that minimize the error over a set of observed 

data. This approach is effective for predicting processing tasks where there is a linear relationship between input and output 

variables. However, if such linearity does not exist, the accuracy of the method may be unsatisfactory.  

 

There are many metrics available to assess the accuracy of Linear Regression. These include Mean Absolute Error (MAE), Mean Bias 

Error (MBE), Relative Absolute Error (RAE), Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), Relative Squared Error (RSE), Normalized Root Mean Squared Error (NRMSE), and Relative Root Mean Squared Error 

(RRMSE). In this study, the RAE metric was employed to evaluate the accuracy of the linear regression model. A smaller RAE value 

indicates better prediction accuracy. RAE is a metric that can take values between zero and one. A well-performing model would 

have RAE values closer to zero, and zero would be the optimal value. RAE represents the degree to which the mean residual error 

is proportional to the mean absolute deviation of the target function from its mean. 

 

The K-nearest neighbor (KNN) algorithm (Ibm.com, 2020) is a non-parametric method that categorizes data points based on their 

proximity to other available data points. This method works on the assumption that related data points are found near each other. 

KNN assigns a category based on the most common category or average after determining the distance between data points, 

usually using Euclidean distance. KNN is popular among data scientists due to its simplicity and fast calculations. However, as the 

size of the test dataset grows, processing times become longer, making it less suitable for classification tasks. KNN is commonly 

used in image recognition and recommendation systems. There are several methods in KNN to measure distance, including 

Euclidean distance, Manhattan distance, Minkowski distance, and Hamming distance. The Euclidean distance (p=2), which is only 

applicable to real-valued vectors, is the most commonly used method. 

 

The k-NN algorithm has been used in various applications, especially in classification tasks. It can also be used in Request 

classification to improve the performance of load balancers, not only for categorizing requests but also for meeting the real-time 

demands of cloud computing. 

2.3 Previous studies 

The study of clouds and load balancing in cloud computing has been a popular research topic in recent years. While there have 

been numerous studies and research conducted in this area, only a few approaches have considered the priority of tasks for cloud 

users and incorporated it as a parameter for load balancing. In this section, we will review the existing literature on this topic and 

discuss the strengths and weaknesses of each approach as well as the challenges associated with implementing them for 

optimizing application performance in cloud computing. We will present these works in a chronological sequence. 

In 2010, Fang, Wang, and Ge proposed a two-level task scheduling mechanism for load balancing in cloud computing that 

schedules tasks from users' applications to virtual machines and from virtual machines to host resources to achieve efficient 

resource utilization. This mechanism has been shown to improve makespan and resource utilization in cloud environments, 

potentially enhancing the performance of cloud load balancers while maintaining stability (Fang et al., 2010). In 2012, Maheshwari 

and Bansal proposed a priority scheduler to improve throughput and reduce response time for efficient task scheduling in a grid 

environment by prioritizing tasks based on their required resources, with lower loading factor tasks assigned higher priority 

(Maheshwari & Bansal, 2012). In 2013, Rajguru and Apte analyzed priority with popular load balancing algorithms and proposed 

the multilevel feedback queue scheduling to prioritize load balancing parameters (Rajguru & Apte, 2013). 
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Figure 4. Multilevel queue scheduling with priority level (Rajguru et al., 2013) 

Huankai Chen and colleagues (2013) proposed two algorithms that combined Min-Min with user-priority to allocate tasks with 

different priorities for different users. The Load Balance Improved Min-Min Scheduling Algorithm (LBIMM) and User-Priority Aware 

Load Balance Improved Min-Min Scheduling Algorithm (PA-LBIMM) were tested in three scenarios: low proportion of VIP tasks, a 

high proportion of VIP tasks, and different numbers of random tasks. The results showed improvements over the Min-Min 

algorithm based on Makespan, Average Resource Utilization Ratio (ARUR), and Average VIP Task Completion Time (AVIPCT). Shams 

Imam and Vivek Sarkar (2014) proposed a work-stealing scheduler approach based on Multi-Level Queue Scheduling (MLQS) for 

load balancing, utilizing lower priority tasks to reduce execution time. Their algorithm was compared to other schedulers in the 

JAVA standard library and demonstrated significant improvement. Although their focus was on load balancing, their approach 

could be applied to cloud environments. Sharma and colleagues (2018) proposed a task scheduler for load balancing in cloud 

computing based on task length, priority, and deadline. Their credit-based algorithm demonstrated better efficiency, but their 

method of calculating credit may not accurately reflect the relative importance of tasks, potentially leading to suboptimal 

scheduling decisions. 

Velde and Rama (2019) proposed the User Priority based Scheduling for Load Balancing (UPS-LB) algorithm, which uses user-

guided priorities to divide tasks into elastic and inelastic groups for scheduling in order to enhance load balancing. According to 

empirical experiments, UPS-LB performed comparably better than its predecessors such as Min-Min, LBIMM, and PALBIMM. 

However, the algorithm's effectiveness in real-world cloud environments may be limited as it only considers user-guided priorities 

for task scheduling and does not take other factors like resource availability and utilization into account. In the same year, a study 

(Al-Rahayfeh et al., 2019)  proposed an approach that uses dominant sequence clustering (DSC) and mean shift clustering for task 

scheduling and load balancing. The proposed algorithm clusters users' tasks using DSC, ranks tasks using MHEFT, clusters virtual 

machines using MSC, and performs load balancing using a WLC algorithm. The proposed algorithm is evaluated using response 

time, makespan, resource utilization, and service reliability metrics. Although this approach can increase the response time, the 

clustering process may add overhead and complexity to the scheduling and load balancing process. Additionally, the performance 

of the algorithm may depend on the choice of clustering algorithms and parameters and may not be suitable for all types of 

workloads or cloud environments. 

Halim and Hajamydeen (2021) proposed a novel approach for task scheduling and load balancing in cloud computing by utilizing 

task grouping. Their approach aims to optimize work scheduling dynamically using a weighted fair queuing model, which is more 

efficient than the current approach. The experimental results showed that their proposed algorithm outperformed the current 

algorithm in terms of various execution parameters such as turnaround time, task size, and average waiting time. Specifically, the 

round-robin and shortest job first algorithms performed better than the current algorithm. 
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Figure 5. Mutation mechanism for generating new population (Halim and Hajamydeen, 2021) 

Kim et al. (2022) proposed privacy-preserving kNN query processing algorithms for encrypted databases in cloud computing using 

secure two-party computation and garbled circuits [20]. The algorithms not only protect both data and query privacy, but also 

improve query processing efficiency. The study found that kNN is useful and easy to apply in cloud computing and outperforms 

existing algorithms in terms of query processing cost. In the same year, Sansanwal and Jain (2022) conducted a survey of load 

balancing (LB) algorithms on the cloud and found that besides static LB algorithms, there are several new algorithms such as 

Particle Swarm Optimization Algorithms, Artificial Bee Colony/Honey bee Swarm Algorithms, Grey Wolf Optimization (GWO) 

Algorithms, Genetic Algorithms (GA) that are developed within the characteristics of previous studies and enhanced them. 

However, not many of them are combined and integrated with Machine Learning or Datamining techniques. A recent study (Katal 

et al., 2022) proposed a detailed review of all techniques related to energy efficiency in cloud computing data centers and revealed 

problem-solving approaches such as load balancing, workload categorization and prediction, etc. The authors found that some 

load balancers use Machine learning and kNN, while workload categorization and prediction are variant and use many of the ML 

techniques such as Support Vector Machine (SVM), Stochastic Gradient Descent (SGD), Logistic Regression (LR), Random Forest 

(RF), Multi-Layer Perceptron (MLP), Backpropagation neural network. 

After examining the previous research on task priority and task allocation in cloud computing, we have gained a deeper 

understanding of these concepts. Identifying a gap in the existing literature, we propose a prediction approach that can anticipate 

the resources required for upcoming tasks on virtual machines (VMs). We integrate this prediction method into our load balancing 

algorithm to ensure that requests are allocated to the appropriate VMs, resulting in improved performance. Our approach relies 

on k-NN and Linear Regression techniques. Moreover, our method is fully automated, eliminating the need for expert analysis. 

 

3. Methodology  

3.1Task-based priority  

According to A. Iosup et al. (2011), a task refers to a process or multiple processes that are executed on a compute node, which 

exists within a virtual machine in cloud computing. The priority of tasks is crucial in determining the scheduling of tasks since it 

greatly impacts the quality of service provided by the service provider (A. Iosup et al., 2011 ; A. Agarwal, and S. Jain, 2014). The 

task's processing depends on several factors such as CPU usage, RAM, bandwidth, length, and even the task's size and completion 

time, which are used to determine the priority of tasks. This paper focuses on these factors to calculate the priority of tasks 

performed by the cloud. We propose a task-based priority approach that considers higher power consumption, greater CPU usage, 

and more RAM usage or higher cost, to give priority to tasks. The task-based priority is represented as a 3-dimensional vector 

synthesized from Power consumed, CPU usage, and RAM usage. 

 

 Priority = {Po, CPU, RAM} (1) 

 

3.1.1 Classify request with with task-based priority 

Based on the historical dataset of processing the previous tasks, we use k-NN to prioritize the coming request or the next tasks. 

Corresponding to each request (Request) there will be tasks or jobs that the computer needs to perform to serve that request. 

Therefore, the request sent to the cloud can be classified based on its respective tasks.  



JCSTS 5(2): 01-15 

 

Page | 7  

 

Figure 6. Calculating the priority of Cloud requests 

3.2 Research model 

In the current research, the kNN (k Nearest Neighborhood) classification algorithm is employed to classify requests based on task-

based priority, which is determined by a task's energy consumption (Power consumed), CPU usage (CPU Usages), and RAM usage 

(RAM Usages) in cloud execution. Once the jobs/tasks are prioritized, the load balancer will assign requests with higher task-based 

priority to VMs/hosts with better processing capacity, i.e., more available space for high-demand tasks. The aim is to allocate the 

request requiring the most processing to the virtual machine/host with the lowest activity level (the least busy). This proposed 

approach aims to improve load balancing processing time in real-time cloud applications. The algorithm is called ATPA (k-NN 

classification for Adaptive Task-based Priority Algorithm). 

 

The main goal of this research model is to minimize the risks associated with the server system and reduce the lifetime of requests 

in the cloud. Another objective is to prevent load imbalance between virtual machines by efficiently classifying tasks based on their 

priority level, and ensuring that resources are being used effectively to provide the best possible user experience. This is achieved 

by classifying incoming requests based on their priority level and allocating them to virtual machines or hosts that are capable of 

handling the corresponding load. To allocate tasks in a reasonable way, the system sorts virtual machines, hosts, and resources 

based on their usage levels, from high to low. By accomplishing these objectives, the system can resolve requests faster and 

provide better performance for users.  

3.3 ATPA workflow 

The proposed algorithm is designed to process requests and allocate them to suitable virtual machines to achieve load balancing. 

To achieve this, the algorithm uses Regression to predict the cloud resource usage required to handle the task associated with the 

request, based on the properties of the request, such as Power, CPU Usage, and RAM Usage. The Regression technique relies on 

the dataset containing the cloud resource usage of previous tasks, using the most recent data available. The predicted data is then 

used in conjunction with the k-NN algorithm, which classifies the task-based priority of the task/job. The k-NN algorithm's dataset 

is always up to date with the latest resource information. Based on the task-based priority, the algorithm allocates the handling 

request to the appropriate virtual machines, thereby preventing load imbalance. The algorithm's goal is to simulate the algorithm 

naturally and plan for the next requests to avoid load imbalance. The proposed algorithm reduces the communication load 

between virtual machines and existing resources, decreasing unnecessary bandwidth and throughput and increasing service for 

user requirements. 

 

4. Results and Discussion  

This section is a comparative or descriptive analysis of the study based on the study results, previously literature, etc. The results 

should be offered in a logical sequence, given the most important findings first and addressing the stated objectives. The author 

should deal only with new or important aspects of the results obtained. The relevance of the findings in the context of existing 

literature or contemporary practice should be addressed.  

 

The proposed ATPA algorithm, short for Adaptive Task-based Priority Algorithm, considers various factors, including task priority, 

to classify incoming requests and allocate resources in the most efficient manner. The kNN algorithm is used for this classification, 

and resources such as virtual machines/hosts are sorted by increasing usage. Additionally, the algorithm is improved by 

incorporating machine learning techniques to evaluate errors, although this is less likely due to the allowed error. This paper 

presents the ATPA algorithm, which comprises three main modules. 

(1) Module to calculate the request's parameters by the Regression algorithm: 

In this module, the Regression algorithm will rely on the properties of the request to calculate the resource usage of the Task/job 

corresponding to that request. The attributes of the request include: Size, Response Length, Max Length, File Length, etc. 

 

 PoNew = Regression(Request, Power) (2.1) 

 CPUNew = Regression(Request, CPU) (2.2) 

 RAMNew = Regression(Request, RAM) (2.3) 

Where   

Request = { X1, X2,…, Xn }, where Xi are the properties of Request;  
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PoNew is predicted power consumption.  

Power is the dataset of power consumption recorded in the past. 

CPUNew is predicted CPU usage. 

CPU is the dataset of CPU usage recorded in the past 

RAMNew is predicted RAM usage 

RAM is the dataset of RAM usage recorded in the past 

Here, a vector of 3 factors {Po, CPU, RAM} can be used to sum up the calculation, or calculate each quantity 

separately. 

(2) Module to classify requests by task-based priority: 

In this module, we will use the k-NN classification algorithm (with k= 5) to classify the request in question, based on the nature of 

the priority of the tasks. This k-NN classifier model uses the requests’ data which have been processed in the past, and 

corresponding labels from 1 to 5 of  the priority level. Level 1 is the lowest priority; level 5 is the highest priority. Based on this 

model, we can classify the Request being processed and determine the corresponding label (from 1 to 5). Then we choose the 

virtual machine with the corresponding order 1 to 5. This order is sorted based on the idle or low load level of the virtual machine, 

i.e. level 1 is the most loaded machine, and level 5 is the least loaded machine. 

 

 VMselect = k-NN(Po, CPU, RAM) (3) 

Where: 

VMselect is the selected virtual machine 

k-NN is a classification function from the KNN classifier model that has been built based on the past data set of 

requests 

Po is the predicted Power calculated from Module 1 

CPU is the predicted CPU usage calculated from Module 1 

RAM is the predicted RAM usage calculated from Module 1 

(3) Module is for allocating services (select virtual machine) 

This module is responsible for allocating requests to virtual machines through the appropriate request label and virtual machine. 

If a request is sent, the request is classified by module 2, and the VMs under consideration including the unloaded VMs are also 

clustered according to module 2. Here, virtual machine found from Module 2, will be assign to process the coming request with 

the right label. After processing that request, all results and resources info of the request will be saved in the dataset for updating 

the most recent requests processed. This is the dataset for the construction process of KNN classifier model in Module 2. 

 

Figure 7. Diagram of Research Model of ATPA 

In the above pseudocode of the ATPA, the algorithm will use a loop to listen to all the Requests in the queue of Requests sent to 

the load balancer (CloudRequests). When this list is empty, there will be no request distributed anymore. In it, the algorithm uses 

the isLocated variable (logical type) as a flag to mark that the Request whether has been allocated.  
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Pseudocode of  ATPA 

Input: the set of coming requests 

Output: the allocation of each request 

1. For each Request in CloudRequests 

2.     isLocated = false; 

3.     Priority = {Po, CPU, RAM}new = Regression(T1,T2….. Tn); // Module 1 

4.     Request.PriorClass = k-NN(Priority); //k-NN is the task classification model 

5.     For each VM in VMList 

6.         If isFitSituation(Request.PriorClass, VM) 

7.              AllocateRequestToVM(VM, Request); // Module 3 

8.              isLocated = true; 

9.         End If 

10.     End For 

11.     If(!isLocated) 

12.         VM = VMList.getSelectedVM(); // Module 2 

13.         AllocateRequestToVM(VM, Request); 

14.     End If 

15. End For 

At the first loop, the isLocated variable is defaulted to false. Then, the algorithm calculates the Priority vector with 3 dimensions: 

PowerConsume, CPU Usage and RAM Usage (Priority = {Po, CPU, RAM}) needed to perform the Request under consideration. This 

calculation is based on the historical data of previous requests T1, T2,… Tn , where n is the number of requests that have been stored 

in the dataset. Ti is the parameters of the ith Request stored, Ti includes the inputs of MaxLength, FileSize, OutputSize, etc.; and the 

processing resource results performed by Cloud to process the ith Request include PowerConsume, CPU Usage and RAM Usage. 

This historical n Request data will build the Regression function (linear regression) to predict and calculate the Priority vector for 

the Request. This Priority data is used for k-NN model to classify the Request, and a label is assigned to the PriorClass property of 

the current Request. After receiving the Priority class-label of the Request, the algorithm loops through the virtual machines 

available in the cloud. Corresponding to each machine, the algorithm considers whether the virtual machine matches the priority 

of the current Request, through the isFitSituation(Request.PriorClass, VM) function. If it is satisfied, it will allocate the request to 

that virtual machine AllocateRequestToVM(VM, Request), and at the same time assign the variable isLoacated = true. If no matching 

virtual machine can be found, the loop ends. At this point, run the loop and the isLocated variable is still false, and now the Request 

has not been allocated. Therefore, the algorithm allocates this Request to the first VM of the VM list through the VM = 

VMList.getSelectedVM() statement. This allocation ensures that if any request is forecasted not in the data of the algorithm, it is still 

allocated and processed for the user. 

 

5. Simulation and Experiments  

The simulation of the cloud environment in this study is carried out using the CloudSim library (Calheiros, R. N et al., 2011), which 

is a JAVA programming language-based tool. Additionally, the Weka library (waikato.ac.nz, 2012) is integrated into the simulation 

environment to use its pre-built LinearRegression function and KNN model. The proposed ATPA algorithm achieves the desired 

objectives, such as minimizing queued requests and enhancing the processing and response times of the cloud. This indicates that 

the performance of cloud computing is better with the proposed algorithm when compared to other algorithms such as MaxMin, 

Round Robin, MinMin, and FCFS. 

5.1 Simulation environment 

Cloud environment includes 1 Datacenter with 5 hosts running 5 virtual machines, and we create random re-quests with different 

to experiment the proposal ATPA. 
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Table 1. Datacenter configuration parameters 

Datacenter Host in Datacenter 

- Number of hosts (hosts) in 

datacenter: 5 

- Do not use Storage (SAN drives) 

- Architecture (arch): x86 

- Operating system (OS): Linux 

- Processing (VMM): Xen 

- Time Zone: +7 GMT 

- Cost: 3.0 

- Cost per Memory: 0.05 

- Cost per Storage: 0.1 

- Cost per Bandwidth: 0.1 

Each host in the 

Datacenter has the 

following 

configuration: 

- CPU has 4 cores, each 

core has a processing 

speed of 1000 (mips)- 

Ram: 16384 (MB) 

- Storage: 1000000 

- Bandwidth: 10000 

Table 2. Virtual Machine Configuration 

Size Ram Mips Bandwidth 
PES 

No. 
VMM 

10000 

MB 

512 

MB 
250 1000 1 Xen 

Table 3. Request Variant 

Length File Size 
Output 

Size 
PEs 

3000 ~ 

1700 
5000 ~ 45000 450 ~ 750 1 

 

5.1.1 Evaluation criteria: 

Experiment on simulating the cloud with the above parameters and run CloudSim's load balancing algorithm available: Round 

Robin, MaxMin, MinMin and FCFS, install the same input and compare the outputs, especially the parameters of the Execution 

Time (average, maximum and minimum). 

 

The predicted Execution time of the virtual machines as well as the predictive Execution time of Cloud with less error, the better 

the effectiveness of the evaluated algorithm, the lower the cost as well, so that is the better technique. We also use the RAE 

(Relative Absolute Er-ror) to observe and evaluation the accuracy of Linear Regression Model. 

 

5.2 Experimental Results 

We conduct the simulation experiments with 04 cases of different inputs, the number of requests is 30, 60, 100 and 1000. The data 

for generating request we use Sipht which is  proposed by https://github.com/WorkflowSim/WorkflowSim-1.0. 

 

In case 1, we consider with 30 requests, we have the execution time as in Table 4. 

Table 4. Simulation experimental results of case 1. 

Execution 

Time (ms) 
FCFS ATPA MaxMin MinMin 

Round 

Robin 

AVG 306.69 203.39 246.42 810.12 340.91 

MAX 5,009.65 2,694.31 2,713.20 13,719.94 6,659.64 

MIN 0.24 0.11 0.12 0.15 0.11 

 

In case 1, experimental results with 30 requests, we see that Round-Robin algorithm is dominant and fast processing, MaxMin 

algorithm is also quite stable. FCFS algorithm is not yet strong. However, the ATPA recommendation algorithm is also quite stable, 

and proves to be more stable and better when handling more requests. 

https://github.com/WorkflowSim/WorkflowSim-1.0
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Figure 8. The execution time of 5 algorithms of case 1 

 

In case 2, we process with 60 requests, we have the execution time as in Table 5. 

Table 5. Simulation experimental results of case 2. 

Execution 

Time (ms) 
FCFS ATPA MaxMin MinMin 

Round 

Robin 

AVG 268.58 249.45 364.92 986.94 369.41 

MAX 3,599.42 7,311.10 3,491.21 14,318.26 10,084.81 

MIN 0.19 0.35 0.13 0.15 0.16 

 

 

Figure 9. The execution time of 5 algorithms of case 2 

In case 3, we process 100 requests, we have the execution time as in Table 7. From the 100th request onwards, the ATPA algorithm 

is significantly superior to MaxMin and MinMin. However, there is still no advantage compared to RoundRobin. But with the larger 

number of requests, ATPA is more advantageous. And gradually prevail over the rest of the algorithms. FCFS clearly shows the lack 

of intelligence and naturalness of the algorithm. 

Table 6. Simulation experimental results of case 3. 

Execution 

Time (ms) 
FCFS ATPA MaxMin MinMin 

Round 

Robin 

AVG  474.86   346.66   351.66   386.87   424.85  

MAX 
 

25,252.80  
 5,475.33   8,010.48   8,522.92   9,462.06  

MIN  0.11   0.20   0.13   0.15   0.17  
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Testing with 30 to 100 requests, we see that the ATPA algorithm is superior to MaxMin, MinMin. But with the larger the number 

of requests, ATPA is more advantageous. And gradually prevail over the rest of the algorithms. FCFS clearly shows the lack of 

intelligence and naturalness of the algorithm. That's why we increase to 1000 requests. 

 

 

Figure 10. The execution time of 5 algorithms of case 3 

In case 4, we process with 1000 requests, we have the execution time as in Table 7. 

Table 7. Simulation experimental results of case 4. 

Execution 

Time (ms) 
FCFS ATPA MaxMin MinMin 

Round 

Robin 

AVG  360.43   192.82   391.75   230.98   378.06  

MAX 
 

9,829.39  
 3,755.07  

 

17,947.42  
 9,433.95   20,515.09  

MIN  0.12   0.11   0.15   0.10   0.12  

 

In the case of 1000 Request, we see that ATPA is superior to other algorithms, far ahead of other algorithms. 

 

Figure 11. The execution time of 5 algorithms of case 4 
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Figure 12. Average execution time of 5 algorithms in 4 cases 

 

Figure 13. Maximum execution time of 5 algorithms in 4 cases 

Through 04 cases of 30, 60, 100 and 1000, comparing the processing time of the algorithms with the same conditions, we can see 

the stable and reasonable distribution of the proposed ATPA algorithm. The processing time of virtual machines is not too different 

from the processing time of other algorithms on the cloud (in the case of few and many requests). Figures 17 and figure 18 show 

that ATPA is always lowest, both mean and max. 

 

5.3 Evaluation Linear Regression Model in ATPA 

To evaluate the accuracy of the Linear Regression Model used in ATPA, we use Relative Absolute Error metric (RAE) to see how the 

model run and give out the exact predicted value for the load balancer. The table 8 shows that the worst RAE happens in RAM 

usage prediction in case 1, and the best one is in case 3 but it is Power Consumption prediction. We can see that, the RAE are 

acceptable for this experiment but it is not good at all case due to the variant of the request. 

Table 8. Comparing RAE of 4 Cases 

 

RAE metrics  

Case 1  

(30 

requests) 

Case 2  

(60 

requests) 

Case 3  

(100 

requests) 

Case 4  

(1000 

requests) 

Power Consume 0.085039 0.095735 0.075476 0.084136 

CPU Usage 0.295400 0.284387 0.236654 0.248776 

RAM Usage 0.326888 0.292676 0.295666 0.300793 

 

6. Conclusion  

This paper focuses on improving load balancing in cloud computing environments through task-based priority and request 

classification using the kNN algorithm. Through a review of existing algorithms and previous studies, the paper proposes the ATPA 

algorithm to enhance load balancing on the cloud. The experimental results of the ATPA algorithm show positive results and 

potential implications for improving the balancing load efficiency, outperforming popular algorithms such as Round Robin, 

MaxMin, MinMin, and FCFS. However, the study has limitations in terms of not being applied in the physical cloud and the need 

for further consideration of response time, processing time, and the number and variant of requests. The paper suggests future 
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works to improve the study by applying more prediction techniques and optimization for the proposed algorithm in practical 

applications. Overall, this study highlights the potential of using AI, ML, and big data to generate better workload balancing in 

cloud computing environments.  
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