
Journal of Computer Science and Technology Studies (JCSTS))

ISSN: 2709-104X

DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

Page | 7

Safer and More Efficient Parallel Cryptographic Algorithm and its Implementation in the

GPU

Artan Berisha

 Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Prishtina, Prishtina, Kosova

 Corresponding Author: Artan Berisha, E-mail: artan.berisha@uni-pr.edu

ARTICLE INFORMATION ABSTRACT

Received: April 08, 2021

Accepted: June 01, 2021

Volume: 3

Issue: 1

DOI: 10.32996/jcsts.2021.3.1.2

In the digital world, the demand for data security during communication has increased.

Hash functions are one of the cryptographic algorithms that provide data security in

terms of data authenticity and integrity. Nowadays, most online applications require

user authentication. These authentications are done on the server-side, which he must

manage. As the number of applications increases, building a one-way function will be

faster for calculating a hash value for small data such as passwords. In this paper, we

will present a sequential cryptographic algorithm and its parallel implementation. We

performed security analyses, executed comparisons for different amounts of data, and

provided steps for further developing this algorithm. With the construction of this one-

way function, we have provided the calculation of hash value in a shorter time for data

in small quantities, which speeds up the authentication process on the server and thus

speeds up the online services provided by the respective applications. A comparison

was made between sequential implementation, parallel implementation on the CPU,

and parallel implementation on the GPU using CUDA (Computer Unified Device

Architecture) platform.

KEYWORDS

GPU, Parallel algorithms, Hill

cipher technique, Non-invertible

matrix, Hash algorithm, One-way

hash function

1. Introduction 1

With the fast development of the Internet, many client/server-based services architecture such as online shopping, online payments

etc., has become the main services. So the authentication identity of remote users has become very important. In order to eliminate

the integrity and authentication issues, some authors proposed protocols using one-way hash functions (Fan et al., 2005) (Hwang

et al., 2010) (Song, 2010) (Berisha et al., 2012). Smart cards are used as multi-server authentication protocol with hash algorithms;

thus, the large number of authentications can slow internet traffic and slow down services.

In recent years, GPU (Graphical Processing Unit) has become more frequent in the acceleration of calculations for different issues

such as Computer Science, Mathematics, Biology, Chemistry, etc. Lately, It is being used to accelerate cryptographic algorithms for

increased effectiveness and efficiency. For this, the company NVIDIA has released the platform CUDA (Computer Unified Device

Architecture) programming On GPU. This has made easier parallel programming without caring much about mapping variables.

This paper will be implemented in GPU parallel algorithm) (Berisha et al., 2012). The second part of the paper will contain a

description of the algorithm) (Berisha et al., 2012) in the form sequentially. The third part will contain a study of GPU programming

and architecture. The fourth will be the parallel implementation of the algorithm (Berisha et al., 2012) and proof of some theorems

related to this algorithm as a hash function. In the end, results will be shown and conclusions drawn and the work in the future.

2. Description of one way hash algorithm

2.1 Hash functions

It is hard to design a function that accepts a variable input and give fixed output with non reversible property. These functions

are called hash functions and in real world are built on the idea of a compression Function) (Berisha et al., 2012). In general, the

hash function is H: {0,1}^* → {0,1}^n for some n. In order for H to be a hash Function it is needed some basic properties. It can

be applied to any block size of data, produce a fixed-length output and (Stallings, 2005).

Published by Al-Kindi Center for Research and Development. Copyright

(c) the author(s). This open access article is distributed under a Creative

Commons Attribution (CC-BY) 4.0 license

https://orcid.org/0000-0001-6620-8849

Safer and More Efficient Parallel Cryptographic Algorithm and its Implementation in the GPU

Page | 8

• Preimage resistant, for given 𝐲 ∈ {𝟎, 𝟏}𝐧 it is “hard” to find 𝐱 ∈ {𝟎, 𝟏}𝐧 such that 𝐇(𝐱) = 𝐲.

• Second preimage resistant, for given 𝐱 ∈ {𝟎, 𝟏}∗ it is “hard” to find 𝐱′ ∈ {𝟎, 𝟏}∗ , 𝐱 ≠ 𝐱′ such that 𝐇(𝐱) = 𝐇(𝐱′).

• Collision resistant, it is “hard” to find 𝐱, 𝐱′ {𝟎, 𝟏}∗, such 𝐱 ≠ 𝐱′ and 𝐇(𝐱) = 𝐇(𝐱′).

A one-way hash function is a very important cryptographic primitive. It is used for data integrity and

Authentication. The output length of the value of a hash function is fixed and the input is variable length. Most usually

cryptographic hash functions used today are SHA-2, SHA-3 where MD5 is broken (Schneir, 1996) and it was used to break

SSL. Most of the hash functions have to give an output greater than 160 bit. This is because of the birthday

attack, which says that to find a collision for a cryptographic hash function with n bit output with probability

50% we expect n=2 input values (Paar, 2011). Nowadays, with the computing resources capability, all algorithms that

have more than 280 input cases for brute force attack are considered secure. Because of this, the output of a hash

the function must be greater than 160 bit to be secure (it means 2
160

2 = 280). Also, NIST, in its Secure Hash

Standard uses a 160-bit hash value. This makes it even harder for the birthday attack. It requires 280 random text to

Find two hash codes with the same value (Schneir, 1996).

2.2 Sequential algorithm

In (Taha et al., 2011), authors proposed a model based on matrix multiplication. It is called Hill cipher, and this

model is based on the non-invertible matrix for a practical one-way hash function. This non-invertible matrix

multiplied plaintext to generate the hash value. Proposed a solution are given in (Berisha et al., 2012). which automates the

model for a one-way hash function given by (Taha et al., 2011). The non-invertible matrix for multiplying plaintext will be

generated by given size m of the square matrix. The algorithm will generate a non-invertible matrix as a sum of

two permutation matrices. The elements of the generated matrix will be from GF(2), which means that their

value is 0,1. In (Berisha et al., 2012). there are proposed two designs of algorithms for generating hash value. Both models are

based on Cipher Block Chaining (CBC), the second model differs from the first in some additional operations.

These additional operation steps are to create diffusion using non-linear function F. Before calculating the hash

value the plaintext must be converted to binary data, and divided to column vectors {𝑩𝟏, 𝑩𝟐, … , 𝑩𝑵} of size

(mx1), 𝐵𝑖 = (𝑏𝑖0 , 𝑏𝑖1, … , 𝑏𝑖,𝑚−1), 𝑏𝑖𝑗 𝜖 {0,1}.

The padding for both proposed models is done different but in one stage, they are common. First, we see if the size of the last

column vector is less than m. If yes, it will be padded with values 1 and summed with initial vector 𝑯𝟎 modulo 2. The plaintext now

contains N column vectors with size (mx1). For the first model this padding will do the work. After that, the process of calculating

hash value will begin with the early generated non-invertible matrix. For the second model the number of column vector must be

a multiply of number 2, so if 𝑁 𝑚𝑜𝑑 2 ≠ 0 then the last column will be summed with the initial vector 𝑯𝟎 modulo 2, and N = N - 1

is the number of vector columns.

Sequential hash algorithm [1]

INPUT: Non-invertible matrix P of size m and value M.

OUTPUT: m bit hash value.

STEP 1 Convert value M to binary form b0, b1, … , bk

STEP 2 Padding value algorithm

STEP 3 Initialize S = 0, H = H0,

 H0 = h0
0h1

0 … hm−1
0 , hi

0 = 0 for i=0,1,…,m-1.

STEP 4 for j from 0 to n-1

STEP 5 for i from 0 to m-1

 Mij
′ = bi+mj

STEP 6 for i from 0 to n/m-1

STEP 6’ if (i mod 2 == 0 && i<>0)

 H = F(H, Hi)

 else for r from 0 to m-1

 hr
i = hr

STEP 7 for j from 0 to m-1

 Bj = Mij
′ + hj

 STEP 8 for k from 0 to m-1

STEP 9 for t from 0 to m-1

 S = (Pkt ∗ Bt + S)(mod 2)
 hk = S

 S = 0

JCSTS 3(1): 07-12

Page | 9

OUTPUT h0, h1 , … , hm−1.

3. Compute unified device architecture

3.1 GPU programming

It is a platform for programming and parallel computation developed by NVIDIA and implemented in

graphic processing units (GPU). Driven by the market demand for a platform for general use in programming

and computing in real time, with higher graphics GPU has managed to present some hardware and software

techniques as the architecture of unified shader (UNIFIED shader architecture) processors range (streaming

processors) (Schneir, 1996) (Paar, 2011).

The traditional GPU includes processors range, which can be used for operations in pixels and vertices

(Thomson et al., 2002). First of all these processors are organized in groups called Streaming Multiprocessor (SM). Eg NVIDIA

G80 has 128 series processors, while one SM has 8 stream processors. This means that the G80 GPU contains

16 SM. Role of SM in GPU is the creation, management and execution of threads in hardware. Implements a

synchronization barrier for data to be read and those that will be calculated. To manage the number of multiple

threads architecture then SM applies Single Instruction Multiple Threads (SIMT). With this SIMT an SM

manages, and executes ranks threads in a group of 32 threads called warp. This should take into account when

the number of threads is not a multiple of 32, so these exceptions should be avoided (Arul et al., 2009).

As a device for computation, the GPU is built for parallel programming and computation compared

with CPU that is sequential computation. From this discrepancy in the method of calculation of CPU and GPU

it is because the GPU is built for numerous calculations, with pronounced parallelism (reflection in the computer

graphics). For that, the GPU are devices with the possibility of processing a large set of data (Comba et al., 2003) (Luebke, 2008).

For parallel computation, the user can specify the number of threads to be executed on the GPU. This

could make by stating the number of threads to be executed in a SM specifying the size of the block. Also, the

user will determine the number of blocks within the network (Garland et al., 2008). All threads within a network create kernel

which upon completion of calculations can send the result to the CPU (Figure 1).

Figure 1. Network, blocks and threads

GPU is designed for operation in a large batch of data (Figure 2), so the problem should be reflected in the

the architecture of the GPU. In order to improve the calculation and reduce difficulties for programming the GPU,

NVIDIA company has introduced a platform called CUDA parallel programming (NVIDIA, 2010). This platform is based

on the language C/C ++, recently more heading toward C ++, this has enabled all those who have knowledge

on the language, C/C ++ have facilities in different implementations in parallel programming.

Figure 2. Inside structure of CPU and GPU

Below is the code for calculating the sum of two vectors as well as the multiplication of two matrices in CUDA.

Code for the sum of two vectors:

Safer and More Efficient Parallel Cryptographic Algorithm and its Implementation in the GPU

Page | 10

// Core to calculate the sum of two vectors

__global__ void vecAdd(float * in1, float * in2, float * out, int len) {

 int i = blockDim.x * blockIdx.x + threadIdx.x;

 if (i < len)

 out[i]=in1[i]+in2[i];

}

int threads = 256;

int number_of_threads = (length + threads -1)/threads;

//Execution of kernel

vecAdd<<<number_of_threads, threads>>>(Input1, Input2, Output, length);

Code for matrix multiplication:

//Kernel for matrix multiplication

__global__ void matrixMultiply(float * A, float * B, float * C,

 int nrAR, int nrAC, int nrBR, int nrBC, int nrCR, int nrCC) {

 int Row = blockIdx.y*blockDim.y+threadIdx.y;

 int Col = blockIdx.x*blockDim.x+threadIdx.x;

 if ((Row < nrAR) && (Col < nrBC)) {

 float Cvalue = 0.0;

 for (int i = 0; i < numAColumns; ++i)

 Cvalue += A[Row*nrAC+i] * B[Col+i*nrBC];

 C[Row*nrCC+Col] = Cvalue;

}

}

dim3 dimGrid((nrCC-1)/BLOCK_SIZE+1, (nrCR-1)/BLOCK_SIZE+1, 1);

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE, 1);

//Execution of kernel

matrixMultiply<<<dimGrid,dimBlock>>>(d_A,d_B, d_C,nrAR, nrAC, nrBR, nrBC, nrCR, nrCC);

4. Parallel implementation of algorithm

The sequential algorithm implemented in (Berisha et al., 2012) is inadequate to build a parallel version of it, this is because

of the CBC (Cipher Block Chaining) mode used to calculate the hash value. This mode uses the output from

the previous step as input parameter and then delivers the resulting value which is used for the next step. So

each step depends on the previous calculation which disables the parallel implementation of the algorithm.

To realize a parallel version of the algorithm, we should use CTR (Counter) mode instead of CBC mode,

method which can be easily implemented (Berisha et al., 2012). This method returns the encryption block in stream cipher, here is

generated a string of bits, which is guaranteed not to be repeated for a long time (although the generation of

these numbers is done in ascending order, increasing by one). Below is the implementation of an encryption

block, which then will implemented in CUDA kernel with different block size and threads.

4.1 Parallel algorithm

INPUT: Non invertible matrix P of size m, CTRi and value M.

OUTPUT: m bit hash value.

STEP 1 Convert value M to binary form b0, b1, … , bm−1

STEP 2 Initialize S = 0

STEP 3 For fixed value of i (i- block)

for j from 0 to m-1

 Mij
′ = bi+mj

 STEP 4 for j from 0 to m-1

 Bj = Mij
′ + CTRj

 STEP 5 for k from 0 to m-1

STEP 6 for t from 0 to m-1

 S = (Pkt ∗ Bt + S)(mod 2)

 hk = S

JCSTS 3(1): 07-12

Page | 11

 S = 0

 OUTPUT h0, h1, … , hm−1.

5. Results

Modified hash algorithm (Berisha et al., 2012) is implemented in CUDA platform and executed in GPU. We used a test

bed with graphic card GeForce GT 610 with 48 cores and 1 GB RAM. The effect of changing file size for

calculating hash value was chosen. Below is a table (Table. 1) with our gained results from (Berisha, 2015) with added

column for execution time for parallel version implemented on GPU. For parallel version implemented in Java we used 4 core

processor with 3.4 GHz except for the four last cases we used 16 core processor with speed 2.8 up to 4.2 GHZ.

Table 1. Time (ms) for calculating hash value with proposed parallel model and sequential model for

different file size

File size (bit)

Calculating hash

value (ms)

sequential model

(A)

Calculating

hash value

(ms)

parallel model

(B) (Java)

Calculating

hash value

(ms)

parallel model

(C) (GPU)

Speedup

=A/B

Speedup

= A/C

256 11 0 0 N/A N/A

512 11 0 0 N/A N/A

1024 11 0 0 N/A N/A

2048 11 0 0 N/A N/A

4096 11 0 0 N/A N/A

8192 11 0 0 N/A N/A

16384 17 31 25 0.54 0.68

32768 30 31 25 0.96 0.83

65536 62 31 20 2.00 3.1

131072 124 47 27 2.63 4.59

262144 237 78 41 3.03 5.78

524288 501 125 73 4.00 6.86

1048576 2855 191 125 14.94 22.84

2097152 5266 406 174 12.97 30.26

4194304 10811 764 327 14.15 33.06

We can see the proposed parallel algorithm is faster for the file size greater than 64 KB, and for a large amount of

data it is 30 times faster than sequential model and two times faster than implemented parallel algorithm (Luebke, 2008)

in Java.

Figure 3. Graphical view of performance of proposed parallel algorithms in Java and GPU implementation against sequential

algorithm.

6. Conclusion and Future Work

In this paper we proposed a parallel model of the earlier proposed sequential model. For a small amount

of data (1 KB – 64 KB) this proposed parallel model is not faster than a sequential model, but for a larger amount of

data (greater than 64 KB), it is faster (Figure 3). For a larger amount of data, the speedup increases exponentially.

In future, we need to see for non-invertible matrices in GF(pm) and to speed up the calculating process by using

Parallel implementation of matrix multiplication.

Safer and More Efficient Parallel Cryptographic Algorithm and its Implementation in the GPU

Page | 12

References

[1] Fan C.I., Chan Y. C., Zhang Z.K. (2005). Robust remote authentication scheme with smart cards. Computers & Security; 24 (8), 619–28.

https://doi.org/10.1016/j.cose.2005.03.006

[2] Hwang M.S., Chong S.K., Chen T.,Y. (2010). Dos-resistant ID-based password authentication scheme using smart cards. Journal of Systems and

Software ;83(1):163–72. https://doi.org/10.1016/j.jss.2009.07.050

[3] Song R.G. (2010). Advanced smart card based password authentication protocol. Computer Standards & Interfaces ;32(5-6):321–5.

https://doi.org/10.1016/j.csi.2010.03.008

[4] Berisha, A., Baxhaku, B., Alidema, A. (2012). A Class of Non Invertible Matrices in GF(2) forPractical One Way Hash Algorithm. New York :

International Journal of Computer Applications,, Vol. 54, 10.5120/8667-2574

[5] Stalings, W. (2005) Cryptography and Network Security, PrInciples and Practice. s.l. : Prentice Hall,

[6] Schneir, B. (1996). Appiled Cryptography. s.l. : Wiley Computer Publishing.

[7] Paar, C., Pelzl, P., (2011). Understanding Cryptography. s.l. : Springer.

[8] Taha, A.M., Farajallah, M., Tahboub, R. (2011) A Practical One Way Hash Algorithm based on Matrix Multiplication. . s.l. : International Journal

of Computer Applications, 23(2),0975-8887. 10.5120/2859-3677

[9] Huang, Q., Huang, Z., Werstein, P. and Purvis, M. (2008). GPU as a General Purpose Computing Resource. In Proceedings of the 2008 Ninth

international Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT 2008). Dunedin, New Zealand,

December,151-158. 10.1109/PDCAT.2008.38

[10] R. Suda, R., Aoki, T., Hirasawa, S., Nukada, A.,Honda, H. and Matsuoka, S. (2009) Aspects of GPU for General Purpose High Performance

Computing. In Proceedings of the 2009 Asia and South Pacific Design Automation Conference (ASP-DAC 2009). Yokohama, Japan, January 2009,

pp.216-223. 10.1109/ASPDAC.2009.4796483

[11] Thompson, C. J., Hahn, S., and Oskin, M. (2002). Using Modern Graphics Architectures for General-Purpose Computin: a Framework and

Analysis. In Proceedings of the 35th Annual ACM/IEEE international Symposium on Microarchitecture (MICRO-35). Istanbul, Turkey. November

306-317. 10.1145/774861.774894

[12] Arul, S., Dash, M., Tue, M., and Wilson, N. (2009).Hierarchical Agglomerative Clustering Using Graphics Processor with Compute Unified

Device Architecture, In Proceedings of International Conference on Computer Design and Applications (ICCDA 2009), Singapore, May 2009, pp.

556-561. 10.1109/ICSPS.2009.167

[13] Comba, J. L. D., Dietrich, C. A., Pagot, C. A. and Scheidegger, C. E.. (2003) Computation on GPUs: From a Programmable Pipeline to an

Efficient Stream Processor. Revista de Informatica Te ´ orica e Aplicada, 1, 41-70.

[14] Luebke, D. (2008). CUDA: Scalable Parallel Programming for High-Performance Scientific Computing. In Proceedings of 5th IEEE International

Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2008), Paris France, 836-838. 10.1109/ISBI.2008.4541126

[15] Garland, M., Grand, L. S. and Nickolls, J. et al.l. (2008). Parallel Computing Experiences with CUDA. IEEE

Micro, 28(4), 13-27. 10.1109/MM.2008.57

[16] NVIDIA. CUDA [EB/OL]. (2010-01-09). http://www.nvidia.cn/object/cuda home cn.html

[17] Berisha, A. (2015). Parallel Implementation of Proposed One Way Hash Function, , Scardus Conference, Tetove. udc: 004.421.032.24:003.26

https://doi.org/10.1016/j.cose.2005.03.006
https://doi.org/10.1016/j.jss.2009.07.050
https://doi.org/10.1016/j.csi.2010.03.008
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.5120%2F8667-2574&v=0507d607
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.5120%2F8667-2574&v=0507d607
https://doi.org/10.5120/2859-3677
https://doi.org/10.1109/PDCAT.2008.38
https://doi.org/10.1109/ASPDAC.2009.4796483
https://doi.org/10.1145/774861.774894
https://doi.org/10.1109/ICSPS.2009.167
https://doi.org/10.1109/ISBI.2008.4541126
https://doi.ieeecomputersociety.org/10.1109/MM.2008.57
http://www.nvidia.cn/object/cuda%20home%20cn.html

