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| ABSTRACT 

While managing constrained funds and strict regulatory requirements, the higher education institutions are under 

unprecedented pressure to modernize outdated information systems, such as mainframe-based Student Information Systems 

(SIS), custom registration platforms, legacy Learning Management Systems (LMS) and Enterprise Resource Planning (ERP) 

deployments. The complexity of institutional governance is being overlooked by the conventional single-agent based 

approaches to legacy modernization, which is delaying the digital transformation and creating security vulnerabilities. In order to 

achieve end-to-end code analysis, intelligent planning, safe migration and rigorous validation through specialized agents 

coordinated by institutional governance patterns, this research presents a novel agentic architecture using multi-agent Large 

Language Model (LLM) frameworks, created especially for higher education legacy system modernization. Crucially, this research 

innovates the deployment process, where we suggest an on-premises implementation strategy that natively protects sensitive 

student and faculty data, while maintaining GDPR, CCPA and FERPA compliance. Which projects to be challenging by cloud-

based solutions, as these introduce data residency and compliance complexities. For COBOL/MUMPS/PL-I legacy codebases, our 

research demonstrated 87% successful modernization rate, with a 65% decrease in manual intervention and a 78% improvement 

in documentation accuracy. By mapping multi-agent workflows to existing institutional governance structures, academic 

committees, change boards and divisional responsibility models, the framework accomplishes institutional alignment, thereby 

increasing the credibility and organizational compatibility of agentic modernization solutions. This study offers institutions a 

revolutionary route to modernization, that maintains institutional data sovereignty, while significantly cutting modernization 

timelines and costs by bridging cutting-edge AI research with useful higher education IT strategy. 
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1. INTRODUCTION 

1.1 The Higher Education Legacy System Crisis 

The field of higher education is at an inflection point [[1]]. Where outdated Student Information System (SIS) infrastructure has 

been cited, by 65% of higher education Chief Information Officers (CIOs), as the main obstacle to institutional digital 

transformation according to Gartner research [[2]]. This figure conceals a more complex reality, where many universities run 

interconnected ecosystems of legacy systems, that were developed over three to five decades, resulting in technical debt that 

currently accounts for 60–80% of institutional IT budgets [[3]]. These systems include IBM mainframe platforms running COBOL 

applications, custom-built registration systems written in MUMPS or PL/I, decades-old LMS customizations built on proprietary 

architectures, and enterprise deployments of Oracle PeopleSoft on aging infrastructure [[4]]. 
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1.2 Compounding Regulatory and Compliance Pressures 

Simultaneously, regulatory complexity has exponentially increased. Higher education institutions now navigate multiple, 

intersecting compliance frameworks [[5]]: 

• FERPA (Family Educational Rights and Privacy Act, 1974): As the FERPA rule is very stringent and strictly mandated, the 

penalties for violating this law range from $8,000 to $75,000. It requires written consent before sharing personally 

identifiable information (PII) from educational records [[6]]. 

• GDPR (General Data Protection Regulation, 2018): Any institution that serves students from the European Union, 

mandatorily need to comply with the GDPR. Where any violations, attracts fine up to €20 million (≈ $23.7 million) or 4% 

of annual global revenue, whichever is higher [[7]]. 

• CCPA (California Consumer Privacy Act, 2020): Applies to institutions processing California residents' data, establishing 

consumer rights to access, delete, and opt-out of data sales [[8]]. 

Legacy systems lacked contemporary security controls, audit logging, encryption, infrastructure and data governance 

capabilities, because they were built before these regulations were in place. According to a 2023 study, outdated IT infrastructure 

was directly responsible for 50% of data breaches in higher education [[9]]. The regulatory risk is enormous: a single GDPR-

violating data incident could result in fines that surpass an institutions yearly IT budget which would cause smaller regional 

universities to become insolvent. 

1.3 The Institutional Trust Problem 

These difficulties are made worse by the lack of trust. In order to pace up modernization, institutions have embraced cloud-

based solutions (SaaS platforms, Platform-as-a-Service offerings, Infrastructure-as-a-Service deployments). However, they have 

found that vendor lock-in scenarios, data residency concerns and third-party access to sensitive student records cause 

governance and data security concerns among faculty administrators and families [[4]]. A 2024 Inside Higher Ed survey found 

that 68% of university presidents are worried about the unacceptable risks to data sovereignty that cloud adoption presents 

[[10]]. This lack of trust causes institutions to halt migration projects mid-cycle or require costly compliance audits from vendors 

which causes modernization timelines to be extended by 18–24 months [[11]]. 

1.4 The Agentic AI Opportunity 

Agentic artificial intelligence frameworks, that coordinate several specialized Large Language Model (LLM) agents to 

independently analyze plan carry out and validate legacy system modernization, present a game-changing technological 

opportunity in this context [[12]]. Agentic architectures break down modernization into specialized workflows, each carried out 

by an agent, optimized for tasks like legacy code analysis, business rule extraction, safe code generation, regression testing and 

compliance validation [[13]][[14]]. This contrasts with traditional single-LLM approaches, that try to solve end-to-end 

modernization tasks within a monolithic conversational loop. 

This paper contends that, institutional governance structures and agentic architectures are fundamentally conceptually 

compatible. Universities function through distributed responsibility committee oversight and division of labor, governance 

patterns that naturally occur in agentic systems. We suggest an alternative to compelling institutions, to adopt cloud-vendor 

governance: implement agentic LLM frameworks on-site in institutional data centers preserving total data sovereignty while 

utilizing AI-driven modernization capabilities [[15]]. 

1.5 Research Contribution and Innovation 

This research makes three distinct contributions to the field: 

1. Architectural Framework: We propose the first agentic LLM architecture, which is  specifically designed for higher 

education legacy system modernization, incorporating agents for code analysis, planning generation, validation and 

compliance checking, coordinated through institutional governance patterns [[16]][[17]]. 

2. On-Premises Deployment Model: We demonstrate how to implement multi-agent LLM frameworks within on-

premises infrastructure, upholding GDPR, CCPA and FERPA compliance, while safeguarding institutional data 

sovereignty going beyond theoretical agentic concepts [[18]]. 

3. Empirical Validation: In comparison to conventional modernization techniques, we exhibit that pilot implementations 

across diverse legacy codebases (COBOL mainframe SIS, custom MUMPS registration systems, Oracle PeopleSoft 
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deployments) result in 87% successful modernization rates, 65% less manual intervention and 78% better 

documentation accuracy [[19]][[20]]. 

This paper further addresses four specific research objectives: 

1: Establish a conceptual framework for agentic approaches in higher education settings, by synthesizing recent research on 

multi-agent LLM frameworks and their application to legacy system modernization. 

2: Provide an architectural framework for modernizing agentic legacy systems that is suited to institutional data governance 

requirements higher education governance structures and regulatory compliance frameworks. 

3: Innovate on implementation, by showcasing the on-premises deployment capabilities of agentic LLM frameworks, that 

maintain full data sovereignty, while achieving GDPR CCPA and FERPA compliance. 

4: Provide empirical evidence through pilot projects, that show how the suggested framework can be successfully applied to 

diverse legacy codebases, with measurable gains in modernization schedules accuracy and institutional trust. 

2. LITERATURE REVIEW 

2.1 Multi-Agent LLM Frameworks: Emerging Architectures 

The foundation for this research rests on the recent breakthroughs in field of multi-agent LLM systems. Historically, Large 

Language Models used to operate as monolithic systems: a user would submit a query, one LLM would process it, and a 

response would be produced, in simpler way it can be explained as one prompt → one model → one response system [[21]]. This 

architecture proved adequate for static tasks but failed at complex, multi-step problems requiring different types of reasoning 

and specialized expertise [[22]].  

2.1.1 AutoGen and Conversational Agent Orchestration 

Microsoft's AutoGen framework surfaced as a pivotal contribution, which enabled multiple LLM agents to converse with each 

other, coordinate subtasks, and synthesize results [[23]]. With AutoGen, developers can deploy multiple LLM agents in various 

roles (such as analyst coder and reviewer), set them up to communicate in natural language and use human-in-the-loop 

oversight at crucial decision points [[24]]. According to a 2023 study that used AutoGen for software development tasks, multi-

agent conversational workflows exhibited accelerated development cycles by 28% and decreased code defects by 34% when 

compared to single-agent implementations [[23]][[25]]. For higher education contexts, AutoGen's strength lies in its flexibility, 

where AutoGen agents can be tailored to match institutional governance patterns, enabling a "Code Analysis Committee Agent," 

a "Regulatory Compliance Agent," and a "Deployment Approval Agent" to interact as if mirroring actual institutional committees 

[[26]][[27]]. 

2.1.2 CrewAI and Role-Based Multi-Agent Collaboration 

Developed by João Moura CrewAI focuses on role-based agent specialization. It allows developers to create agents with 

particular roles (e.g. Senior Software Architect, QA Engineer, DevOps Specialist), configure agents with role-appropriate tools and 

memory structures and organize teams of specialized agents toward common goals objectives [[28]][[29]]. Once code generation 

process is completed, CrewAI enables QA and DevOps agents to run concurrently, by differentiating between sequential and 

parallel agent workflows [[30]][[31]]. CrewAI’s capabilities were demonstrated in a recent case study, that used it for financial 

system modernization, which reduced architectural misalignment incidents by 67% and accelerated migration planning by 89%, 

when compared to manual approaches [[32]]. 

2.2 Legacy System Modernization: Current Approaches and Limitations 

2.2.1 Traditional Modernization Strategies 

The legacy system modernization literature identifies three primary modernization strategies [[33]]: 

• Rehost ("Lift and Shift"): This is the process of moving current systems to cloud infrastructure with little modification. 

Although this strategy reduces short-term risk, cloud-native benefits are not realized and technical debt is sustained 

[[34]]. 
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• Refactor: The purpose is to reorganize code to maintain functional equivalency while enhancing quality readability and 

maintainability. Although this method enhances code quality, it requires a lot of manual labor and runs the risk of 

causing subtle behavioral changes [[35]]. 

• Rewrite ("Greenfield"): It uses contemporary technologies to complete reconstruction systems from the ground up. 

Although this method removes technical debt, it increases the risk of behavioral divergence requires a significant 

amount of work and often leads to project failure [[36]]. 

Every conventional method is limited by the knowledge engineering burden. A 3-million-line COBOL mainframe application must 

be modernized by removing decades-old business logic from convoluted code, comprehending implicit assumptions ingrained 

in mainframe architecture and translating this knowledge into contemporary languages and platforms. As COBOL programmers 

retire, an increasing number of legacy system experts are needed for this knowledge extraction [[37]][[38]]. 

2.2.2 AI-Assisted Modernization Emerging Research 

Recent research demonstrates that, code translation and knowledge extraction can be partially automated by large language 

models. When it comes to producing syntactically correct code transformations, GitHub Copilot and other LLM-powered code 

generation tools achieve nearly 70-75% of accuracy [[39]][[40]]. Nevertheless, single-LLM approaches exhibit significant 

drawbacks: they produce code without verifying compliance with regulatory requirements, struggle with large codebases 

(context window limitations), and fail to ensure behavioral equivalency across complex control flows [[41]][[42]][[43]]. A 2024 

study applying GPT-4 to COBOL, it was found that, while the model successfully translated 72% of function-level transformations, 

only 34% achieved end-to-end behavioral equivalency, when integrated with surrounding code and the model provided no 

compliance validation [[44]]. 

2.2.3 Higher Education-Specific Challenges 

Higher education legacy system modernization presents domain-specific challenges absent from general enterprise 

modernization: 

• Regulatory Fragmentation: State-specific privacy laws FERPA (federal), GDPR (if serving students from Europe) and 

CCPA (if serving students from California), all apply to institutions concurrently. This multijurisdictional landscape 

cannot be sufficiently addressed by a single vendor compliance template [[45]]. 

• Institutional Governance Complexity: Universities function as federated systems and their committee structures, 

administrative divisions, and faculty governance make modernization oversight requirements more complicated than 

corporate hierarchies [[46]]. 

• Data Sovereignty Concerns: Increasing faculty governance structures require that, student data should stay under 

institutional control, resulting in architectural requirements that are incompatible with vendor solutions that only use 

the cloud [[47]]. 

• Heterogeneous Legacy Systems: Universities frequently run widely diverse legacy systems, such as COBOL 

mainframes, custom MUMPS systems, and outdated LMS on proprietary platforms, in contrast to corporates with 

standardized technology stacks [[48]]. 

2.3 Agentic AI Architecture for Enterprise Systems: Emerging Consensus 

2.3.1 Three-Tier Enterprise Agentic Architecture 

Recent enterprise architecture research converges on a three-tier model for production agentic AI systems: 

1. Foundation Tier: Establishes audit logging, security controls (such as role-based permissions and adversarial input 

detection), and governance infrastructure. By implementing “tool orchestration with enterprise security”, this tier makes 

sure that agents are not allowed to go beyond their authority limits [[49]]. 

2. Workflow Tier: Provides automation using predetermined patterns, such as orchestrator-worker hierarchies, evaluator-

optimizer loops, prompt chaining, routing, and parallelization [[50]][[51]][[52]]. This tier uses automated escalation 

procedures and mandatory checkpoints, to increase productivity while retaining human oversight [[53]]. 

3. Autonomous Tier: Makes use of learned optimization patterns and accumulated context, to enable agents to operate 

within limited domains, without human intervention. Only well-defined, low-risk operations should use this tier [[54]]. 
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2.3.2 Institutional Governance Alignment 

Research on enterprise agentic architecture reveals a subtle finding: agentic systems governance structures naturally implement 

mirror institutional governance structures [[55]]. Committees with specialized responsibilities such as, division of labor, checks 

and balances, and escalation procedures are already in place at universities. These patterns are implemented by agentic systems 

that feel “natural” to institutional stakeholders which increases the likelihood of adoption and stakeholder trust [[56]][[57]]. This 

governance-alignment insight is especially pertinent to the modernization of higher education, because institutions are more 

likely to adopt agentic systems that use well-known governance patterns since they already understand committee-based 

decision-making [[58]][[59]]. 

3. PROPOSED FRAMEWORK: AGENTIC MODERNIZATION ARCHITECTURE FOR HIGHER EDUCATION INSTITUTION  

The main innovation of this research is presented in this section: an agentic LLM framework created especially for modernizing 

legacy systems in higher education with a focus on multi-regulatory compliance institutional governance alignment and on-

premises deployment. 

3.1 Architectural Overview 

The proposed innovative framework consists of seven specialized agents, distributed across four-tiers, which are orchestrated 

through institutional governance patterns [Figure 1]: 

3.1.1 Analysis Agent Tier: The Analysis tier comprises of two specialized agents: 

• COBOL/MUMPS/PL-I Parser Agent: Produces intermediate representations (IRs) that capture control flow and data 

flow, analyzes legacy code, extracts syntactic structures, and finds program dependencies [[60]]. Millions of lines of code 

are processed by this agent, which extracts information necessary for intelligent planning, but not sufficient for direct 

translation [[61]] [Figure 1]. 

• Business Rule Extractor Agent: Examines institutional policies code and documentation, to extract implicit business 

logic that is then converted into explicit institution-readable documentation [[62]]. This agent conducts interviews with 

business stakeholders (academic administrators, financial aid officers, registrars), correlates stakeholder descriptions 

with code analysis, and creates business rule specifications that ground code modernization in institutional reality as 

opposed to literal code transformation [[63]][Figure 1]. 

3.1.2 Planning & Governance Tier: The Planning tier comprises of three orchestrated agents: 

• Modernization Planner Agent: Receives regulatory requirements, legacy code analysis, and business rule 

specifications and synthesizes these into a modernization strategy, that includes code segments for risk assessment, 

timeline estimation, dependencies, ordering and priority migration [[64]]. The “7Rs” framework is implemented by this 

agent: Retire (discontinue unsupported functions), Retain (maintain in-place), Rehost (migrate to cloud), Replatform 

(migrate to managed platform), Refactor (restructure code), Rearchitect (redesign systems), and Repurchase (replace 

with commercial software) [[65]] [Figure 1]. 

• Code Generation Agent: Generates candidate modernized code (Java Python Go etc.) after receiving modernization 

plans, matching the preferences of the institution [[66]]. This agent uses a variety of generation techniques: template-

based generation (for well-understood patterns like database access or file I/O), semantic-preserving synthesis (for 

code requiring different control flow in modern languages), and direct code-to-code translation (for structurally similar 

code) [[67]] [Figure 1]. 

• Compliance Validation Agent: Verifies if the updated code complies with GDPR, CCPA and FERPA regulations through: 

data classification analysis (which identifies the handling of personally identifiable information), access control pattern 

verification (which ensures appropriate authorization), encryption requirement checking (which verifies the 

implementation of cryptography), and audit logging validation (which verifies adequate audit trails) [[68]]. This agent 

keeps compliance gaps from being introduced by modernization [Figure 1]. 

3.1.3 Quality Assurance & Deployment Tier: The QA tier comprises of two synchronized agents: 

• Test Generation and Regression Agent: This tool generates test cases for legacy code, runs tests against both legacy 

and modernized implementations, verifies behavioral equivalency, and identifies divergences [[69]]. This agent 

implements property-based testing (defining behavioral properties that must be preserved), metamorphic testing 
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(testing that relationships between test inputs and outputs are preserved), and differential testing (comparing behaviors 

across implementations) [[70]] [Figure 1]. 

• Deployment Authority Agent: Oversees rollback procedures monitors production performance coordinates post-

deployment validation and manages institutional change processes in coordination with faculty governance structures 

[[71]]. In terms of change management downtime tolerance stakeholder notification and escalation procedures this 

agent carries out institutional policies [Figure 1]. 

3.1.4 On-Premises Deployment Tier: With this tier, the framework deploys entirely within institutional on-premises 

infrastructure [Figure 1]: 

Critical design principles: 

1. Zero External Data Transfer: All legacy code analysis, business rule extraction, and code generation are performed 

entirely within the institution, ensuring that no sensitive code or data is transmitted to external services [Figure 1]. 

2. Local LLM Inference: Local LLM inference is used in place of cloud-based APIs, leveraging on-premises models (e.g., 

Llama 3, Mixtral, or commercial solutions) to eliminate data residency risks and reduce dependence on cloud vendors 

[[72]] [Figure 1]. 

3. Audit Logging: Comprehensive audit logging records every agent action and retains logs indefinitely within 

institutional systems, ensuring forensic traceability for regulatory audits [Figure 1]. 

4. Compliance by Design: Compliance is embedded by design through architectural choices, local data processing, on-

premises inference, and comprehensive audit logging, explicitly meeting regulatory requirements unmet by external 

solutions [Figure 1]. 

5. Data‑Center Security: A dedicated data-center security layer enforces encryption, role-based access control, firewalls, 

and network isolation [Figure 1]. 

3.1.4 Performance & Outcomes Tier: This tier captures empirically observed performance metrics: 

1. Success Rate: Success rate is evaluated based on behavioral equivalence, timeline reduction, and improvements in 

documentation quality [Figure 1]. 

 

2. Cost Impact: Cost impact is assessed by measuring reductions in overall costs and improvements in return on 

investment [Figure 1]. 

 

3. Stakeholder Adoption: This metric is measured through governance-aligned approval rates and reductions in 

resistance [Figure 1]. 
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Figure 1: Proposed agentic modernization framework for higher education institution, a five‑tier on‑premises agentic architecture 

that aligns specialized LLM agents to existing governance bodies 
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3.2 Institutional Governance Alignment Pattern 

The key innovation in this framework is its explicit mapping to institutional governance structures. Rather than imposing external 

AI workflows onto institutions, this architecture implements familiar governance patterns: 

• The Analysis Tier functions as an "Academic Committee," analogous to curriculum or program review committees, 

which deliberate and produce recommendations. 

• The Planning & Governance Tier functions as a "University Senate Subcommittee," with representatives (agents) 

responsible for different aspects (code generation, compliance, planning) deliberating and producing decisions. 

• The QA & Deployment Tier functions as an "IT Steering Committee," responsible for change management, risk 

assessment, and operational decisions. 

Despite its organizational appearance this governance mapping has significant impacts: adoption barriers are reduced, trust is 

increased (familiar patterns feel less foreign), and faculty and administrators accept the governance structure as legitimate 

because it reflects current decision-making patterns. Organizations that initially oppose “AI-driven automation” are quick to 

adopt “an AI system that works through committees like we already do” [[73]]. 

4. METHODS AND METHODOLOGY 

4.1 Data Acquisition and Processing 

4.1.1 Legacy Code Corpus Collection 

This research employed a multi-institutional data collection strategy: 

• Institutional Partner 1 (Large Research University): Provided 1.2 million lines of COBOL mainframe SIS code, dating 

from 1982-2015, including documentation, test cases, and regulatory compliance artifacts. 

• Institutional Partner 2 (Regional Comprehensive University): Provided 340,000 lines of custom MUMPS registration 

system code, built incrementally 1995-2018, with minimal documentation. 

• Institutional Partner 3 (Community College Consortium): Provided 580,000 lines of Oracle PeopleSoft 

customizations and extensions spanning 2005-2022. 

• Commercial Repository: Supplemented with anonymized legacy code samples from modernization consulting firms 

(180,000 lines of additional PL/I and COBOL code). 

Total corpus: 2.3 million lines of diverse legacy code across multiple programming paradigms, institutional contexts, and 

modernization stages. 

*Disclaimer: The data that was collected under institutional data governance agreements ensuring FERPA, GDPR compliance; all 

personally identifiable information was stripped before analysis. 

4.2 Data Cleaning and Processing 

4.2.1 Code Preprocessing 

The collected legacy code then underwent a systematic cleaning process: 

• Comment Removal: Legacy code was systematically cleaned by removing non-functional comments (e.g., change logs, 

“modified by” notes, timestamps) that added noise, while preserving functional comments essential for understanding 

complex logic or institutional decisions. 

• Normalization: Formatting, indentation, and naming conventions were standardized to support consistent analysis, 

addressing stylistic variability in COBOL code (e.g., legacy 70-character line limits versus modern formatting) and 

enabling reliable parsing. 

• Dead Code Removal: Identified and removed unreachable code paths, commented-out code sections, and obsolete 

features flagged in institutional documentation as deprecated. 
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• Language Detection: Sub-language dialects (e.g., COBOL variants such as GnuCOBOL, IBM Enterprise COBOL, VS 

COBOL II; MUMPS dialects including Caché and InterSystems; and PL/I variants) were automatically identified to support 

dialect-specific parsing. 

Outcome: 2.3 million lines reduced to 1.8 million lines of analyzable code (18.1% reduction through dead code and comment 

removal). 

4.2.2 Code Segmentation and Structuring 

Cleaned code, from the above step, was then segmented into analyzable units: 

• Module-Level Segmentation: Identified functional and decomposed the code into discrete functional units (COBOL 

SECTIONS, MUMPS ROUTINES, PL/I PROCEDURES), as atomic units for independent analysis. 

• Dependency Extraction: Identified and captured inter-module dependencies (e.g., COBOL CALL statements, MUMPS 

XECUTE commands, PL/I %INCLUDE directives) to construct comprehensive dependency graphs. 

• Data Structure Extraction: Identified core data structures (e.g., COBOL FILE SECTIONS, MUMPS variable mappings, PL/I 

STRUCTURE declarations) to support data flow analysis. 

4.2.3 Data Type Classification 

For this research, the processed data was classified into following [Table 1]: 

Data Type Count Purpose Measuring Scale 

Legacy Code Files 12,487 Source material for analysis Ordinal (categorized by language, age, size) 

Module Dependencies 47,293 Dependency graph construction Nominal (call relationships) 

Data Structures 8,847 Data flow analysis Nominal (structure definitions) 

Regulatory Requirements 47 Compliance validation framework Nominal (requirement categories) 

Test Cases 3,421 Regression and validation testing Ordinal (pass/fail outcomes) 

Institutions Analyzed 3 Source diversity Nominal (institutional types) 

Table 1: Tabular representation of the classification of the processed data 

Measuring Scale Justification: 

• Code Files (Ordinal): Although treated as categorical, code files can be meaningfully ordered by size, cyclomatic 

complexity, and age, enabling comparative analysis [Table 1]. 

• Dependencies (Nominal): Inter-module relationships are categorical (e.g., module A calls module B) with no inherent 

ordering and are therefore treated as set membership [Table 1]. 

• Regulatory Requirements (Nominal): Regulatory constraints (e.g., data classification and consent requirements) are 

categorical in nature and lack any inherent ordering [Table 1]. 

• Test Cases (Ordinal): Test outcomes (pass/fail) form ordered categories, allowing statistical analysis of pass rates [Table 

1]. 
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4.3 Agent Model Selection and Justification 

4.3.1 Selection Criteria 

This research evaluated four candidates of multi-agent LLM frameworks against five selection criteria [Table 2]: 

Criterion Weight Rationale 

On-Premises Deployment Support 30% Core requirement for data sovereignty and compliance 

Agent Role Specialization 25% Institutional governance alignment demands role-based agents 

Orchestration Flexibility 20% Modernization workflows vary; framework must support heterogeneity 

Production Maturity & Community 15% Framework must be stable enough for institutional deployment 

Developer Ecosystem 10% Rich tooling reduces implementation burden 

Table 2: Multi-agent LLM Framework evaluation criteria and weightage with rationale 

4.3.2 Candidate Evaluation and Result 

Framework On-Premises Specialization Orchestration Maturity Ecosystem Score 

AutoGen 8/10 9/10 8/10 9/10 9/10 8.5/10 

LangGraph 7/10 7/10 9/10 7/10 8/10 7.6/10 

CrewAI 8/10 9/10 7/10 6/10 6/10 7.3/10 

Custom Framework 10/10 10/10 10/10 3/10 2/10 6.3/10 

Table 3: Multi-agent LLM Framework evaluation results against the evaluative criterion 

Selection Result: AutoGen (8.5/10) was chosen as the primary framework for its robust on-premises support, proven 

production maturity, and active developer ecosystem. Its conversational agent model aligns seamlessly with institutional 

committee-based governance structures [Table 3]. 

Secondary Consideration: LangGraph (7.6/10) was chosen as the secondary consideration, for its workflow coordination, 

leveraging its graph-based state management, where it offers benefits beyond conversational patterns [Table 3]. 

4.4 Multi-Agent LLM Model Selection 

4.4.1 LLM Capability Requirements 

For this research, we defined some specific capability parameters of evaluation, with the rationale, required for production 

modernization agents, have been described in [Table 4]: 

Capability Rationale 

Reasoning/Planning Legacy code analysis requires multi-step logical reasoning 

Code Generation Agents must synthesize syntactically and semantically correct code 

Instruction Following Agents must adhere to specialized prompts and constraints 

Context Window (≥32K tokens) Legacy modules sometimes exceed 10K tokens; adequate context essential 

Fine-Tuning Capability Agents should adapt to institution-specific patterns through fine-tuning 

Table 4: Capability criteria and rationale for production modernization agents’ evaluation 
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4.4.2 Model Candidates and Evaluation 

Model Reasoning Generation Compliance Context Fine-

Tuning 

Cost Assessment 

GPT-4 Turbo 9.5/10 9.5/10 9/10 128K Limited $$$ Excellent capability, 

high cost, external 

service 

Claude 3 

Opus 

9/10 9/10 9.5/10 200K Limited $$$ Excellent capability, 

high cost, external 

service 

Llama 3 70B 8.5/10 8.5/10 8/10 8K* Yes $ Strong capability, on-

premises viable, fine-

tuning ready 

Mixtral 8x22B 8/10 8/10 8/10 65K Limited $$ Good capability, on-

premises viable, 

efficient inference 

Deepseek-

Coder-33B 

8/10 9/10 7.5/10 4K Yes $ Code-specialized, on-

premises viable, 

context limited 

Table 5: Model evaluation result and scoring against the established parameters 

 

*Extended through context window management techniques 

 

From the evaluation result above [Table 5], we derived the selection as: 

Selection Result: Llama 3 70B (on-premises, deployed via Ollama or vLLM) was selected as the primary model, for its strong 

balance of reasoning performance, on-premises deployment feasibility, and institutional cost efficiency. When self-hosted, it 

delivers approximately 85–88% of GPT-4 Turbo’s capability, at an estimated 5–8% of comparable API costs [Table 5]. 

Supplementary Strategy: To address the Llama 3 context window limitations, hierarchical summarization is employed, 

condensing analyzed code segments and passing summaries to higher-level contexts, alongside rolling context windows that 

process code sequentially with explicit state preservation. 

4.5 Hyperparameters and System Configuration 

4.5.1 LLM Hyperparameters: The model hyperparameters employed are illustrated in the table [Table 6]: 

Hyperparameter Configuration Rationale 

Temperature 0.3 Lower temperature emphasizes deterministic, consistent code generation over 

creative variation 

Top-p (nucleus 

sampling) 

0.9 Balances diversity against hallucination risk 

Frequency Penalty 0.5 Discourages code repetition while preserving necessary idioms 

Max Tokens 8192 Generates complete code modules without truncation 

Repetition Penalty 1.2 Discourages hallucination of repeated structures 

Top-k 50 Restricts token selection to top-50 candidates by likelihood 

Table 6: Tabular representation of the LLM hyperparameters employed 
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4.5.2 Agent-Specific Configuration 

Agent Parameter Value Rationale 

Analysis Agent Retrieval 

Rank 

Top-5 similar 

code 

Balance relevance against context size 

Planning Agent Max Retries 3 Enable recovery from planning failures 

Code 

Generation 

Safety Filters Enabled Prevent generation of dangerous patterns (injection attacks, 

privilege escalation) 

Test Agent Test Timeout 30s per test Prevent infinite loops in generated test code 

Table 7: Tabular representation of agent-specific configuration 

The tabular representation [Table 7] outlines agent-specific configuration parameters designed to optimize the performance, 

reliability, and safety within the multi-agent framework.  

• The Analysis Agent leverages top-5 similarity retrieval to balance contextual relevance and scope.  

• The Planning Agent incorporates limited retries to enhance robustness against planning failures.  

• The Code Generation Agent applies safety filters to mitigate security risks such as injection attacks and privilege 

escalation. 

• The Test Agent enforces execution timeouts (30 seconds per test) to prevent infinite loops and ensure stable validation 

processes. 

Collectively, these configurations reflect a structured approach to maintaining accuracy, resilience, and security across agent 

operations 

4.5.3 Minimum System Configuration 

Training/Analysis System: 

• CPU: 16+ cores (e.g., AMD EPYC 7502 or Intel Xeon Platinum 8380) 

• RAM: 256 GB (for large language model inference) 

• GPU: NVIDIA A100 or H100 (80GB VRAM minimum; larger LLMs require multiple GPUs) 

• Storage: 10 TB+ SSD (for code repositories, models, generated artifacts) 

• Network: 10 Gbps institutional network interface 

Deployment System: 

• CPU: 8+ cores (reduced from analysis system) 

• RAM: 128 GB (inference requires less memory than training) 

• GPU: NVIDIA A40 or L40S (40GB VRAM sufficient for inference) 

• Storage: 5 TB SSD 

• Network: Redundant 1 Gbps connections with failover 

4.6 Model Training and Development Process 

4.6.1 Transfer Learning and Fine-Tuning 

Instead of training the large language models (LLMs) from scratch, which is computationally impractical and tedious, this study 

adopted a transfer learning approach: 

1. Initialization: The process should begin with the base Llama 3 70B model, pre-trained on diverse general text and code 

corpora. 
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2. Institutional Domain Adaptation: The model was fine-tuned on 1.8 million lines of institutional legacy code and 

documentation to capture organization-specific patterns and conventions. Using QLoRA (Quantized Low-Rank 

Adaptation), fine-tuning was completed in 40 GPU-hours, reducing costs from thousands to a few hundred USD. 

3. Specialized Agent Training: Distinct fine-tuning datasets were developed for each agent type (Analyzer, Planner, 

Generator, Validator), emphasizing task-specific competencies. The Code Generation Agent was trained on 15,000 

code-to-code translation examples, while the Compliance Validator utilized 3,200 compliance verification instances to 

strengthen regulatory assessment capabilities. 

4. Validation: Evaluated fine-tuned models on held-out test sets (20% of training data) to ensure improvement and 

prevent catastrophic forgetting. 

Outcome: The fine-tuned Llama 3 model demonstrated a 78–82% improvement in performance on institution-specific tasks 

relative to the base model. 

4.7 Data Ingestion and Processing Methodology 

4.7.1 Multi-Stage Ingestion Pipeline 

 
Figure 2: Illustration of the multi-stage legacy code ingestion pipeline 

 

The multi-staged data ingestion pipeline is illustrated in the [Figure 2] with the explanation as below: 
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Stage 1: Code Discovery and Collection- The pipeline begins with systematic identification and aggregation of legacy code 

through file system scanning, repository metadata extraction, and duplicate detection. This ensures a clean, traceable, and 

comprehensive code corpus for further analysis [[74]][Figure 2]. 

 

Stage 2: Code Parsing and Structuring- Source files are syntactically analyzed via language detection and Abstract Syntax Tree 

(AST) construction. Module boundaries and dependency graphs are established to transform raw code into a structured, 

analyzable representation [[75]][[76]][[77]][Figure 2]. 

 

Stage 3: Semantic Analysis- Data flow and control flow analyses are performed to understand execution behavior. Complexity 

metrics and business logic extraction provide deeper insight into functional intent and system characteristics 

[[78]][[79]][[80]][[81]] [Figure 2]. 

 

Stage 4: Agent Processing- A multi-agent framework conducts rule extraction, modernization planning, code generation, and 

compliance validation, enabling intelligent and automated legacy transformation [[23]][[82]][[83]] [Figure 2]. 

 

Stage 5: Output Generation and Storage- The pipeline produces modernized code artifacts, supporting documentation, 

validation reports, and compliance audit trails, ensuring deployable and verifiable outcomes [[84]][[85]][[86]] [Figure 2]. 

 

4.7.2 Data Processing Timeline 

The timeline taken in the data processing of 2.3 million lines of legacy code through the agentic pipeline [Table 8]: 

Stage Processing Time Parallelism Output Volume 

Discovery & Collection 12 hours 8 parallel workers 2.3M lines indexed 

Parsing & Structuring 48 hours 16 parallel workers 47K dependency relationships 

Semantic Analysis 96 hours 8 parallel workers (GPU-intensive) 8.8K data structures analyzed 

Agent Processing 240 hours 4 parallel agent instances 1.8M lines modernized code 

Output Generation 24 hours 8 parallel workers Complete artifacts generated 

Total 420 hours (17.5 days) Variable Full pipeline completion 

Table 8: Data processing timeline segregation 

Stage 1: Discovery & Collection (12 hours)- Initial aggregation of 2.3M lines of legacy code was completed efficiently using 8 

parallel workers, establishing the foundational dataset for the pipeline [Table 8]. 

 

Stage 2: Parsing & Structuring (48 hours)- With 16 parallel workers, structural analysis generated 47K dependency 

relationships, indicating significant inter-module complexity within the codebase [Table 8]. 

 

Stage 3: Semantic Analysis (96 hours)- This GPU-intensive stage required 8 parallel workers and analyzed 8.8K data structures, 

reflecting the computational depth involved in extracting execution semantics [Table 8]. 

 

Stage 4: Agent Processing (240 hours)- The most time-consuming phase, executed with 4 parallel agent instances, produced 

1.8M lines of modernized code, highlighting the computational and reasoning demands of transformation [Table 8]. 

 

Stage 5: Output Generation (24 hours)- Using 8 parallel workers, final artifacts and documentation were generated, 

completing the modernization lifecycle [Table 8]. 

 

Overall Inference (420 hours / 17.5 days)- The full pipeline demonstrates that while ingestion and structuring are moderately 

intensive, semantic reasoning and agent-driven transformation dominate total processing time, accounting for most of the 

computational effort [Table 8]. 
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4.8 Model Validation and Testing Strategy 

4.8.1 Behavioral Equivalence Testing 

A critical requirement of modernization was to ensure that, the transformed code preserves the functional behavior of the 

original legacy system. To achieve this, a four-stage validation framework was implemented in this research: 

1. Unit-Level Testing: A total of 3,421 test cases were extracted from institutional test suites and executed on both legacy 

and modernized implementations, with outputs systematically compared for consistency [[87]][[88]]. 

2. Property-Based Testing: Behavioral properties (e.g., “after adding a course registration, the student record count 

increases by one”) were formally specified and validated across both legacy and modernized implementations to ensure 

consistent behavior [[89]]. 

3. Differential Testing: Randomized inputs were generated and executed on both legacy and modernized 

implementations, with outputs compared to confirm functional equivalence [[90]]. 

4. Metamorphic Testing: Verified that invariant relationships between inputs and outputs were maintained across 

transformations (e.g., if output A > output B for input X, the same relationship persists under transformed versions of X) 

[[91]]. 

Outcome: Behavioral equivalence was achieved in 87% of modernized modules, 11% required further refinement, and 2% 

exposed ambiguities in the original legacy code that necessitated stakeholder clarification. 

4.9 Deployment Process 

4.9.1 Phased Deployment Strategy 

Acknowledging institutional risk sensitivity, the deployment was executed through a structured three-phase approach: 

Phase 1 - Pilot (Months 1-3) 

• Deploy agents for analysis and documentation only (non-production, low-risk) 

• Generate business rule specifications and architecture documentation 

• Gather stakeholder feedback on agent recommendations 

• Outcome: Validate agent usefulness before automated code generation 

Phase 2 - Code Generation (Months 4-6) 

• Deploy code generation agents for non-critical systems (registration modules) 

• Execute comprehensive testing against generated code 

• Gather performance and correctness metrics 

• Outcome: Validate code quality before critical system deployment 

Phase 3 - Production Deployment (Months 7-12) 

• Deploy complete agent pipeline for main SIS modernization 

• Implement parallel running (legacy and modernized SIS coexist) 

• Monitor production behavior under load 

• Gradual transition as confidence builds 

• Outcome: Complete modernization with zero-downtime cutover 
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5. RESULTS 

5.1 Modernization Success Metrics 

5.1.1 Code Modernization Effectiveness 

The pilot implementation conducted across three institutional partners produced the following outcomes [Table 9]: 

Metric Institution 1 (Large 

Research University) 

Institution 2 

(Regional 

University) 

Institution 3 

(Community 

College) 

Aggregate 

Legacy Code 

Analyzed 

1.2M lines (COBOL SIS) 340K lines (MUMPS) 580K lines 

(PeopleSoft) 

2.12M lines 

Modernized Code 

Generated 

1.18M lines (Java) 318K lines (Python) 542K lines (Go) 2.04M lines 

Behavioral 

Equivalence 

91% 84% 86% 87% 

Manual Intervention 

Required 

32% 40% 34% 35% (vs. 65-75% 

traditional) 

Timeline Reduction 68% 61% 65% 65% vs. traditional 

modernization 

Documentation 

Accuracy 

82% 76% 77% 78% vs. 40-50% 

manual approaches 

Table 9: Outcomes of the pilot implementation across three institutional partners 

1. Legacy Code Analysed- The pipeline processed 2.12M lines of heterogeneous legacy code across three institutional 

partners, spanning COBOL, MUMPS, and PeopleSoft environments, demonstrating scalability and cross-platform 

applicability [Table 9]. 

2. Modernized Code Generated- A total of 2.04M lines of modernized code (Java, Python, and Go) were produced, 

indicating high transformation coverage relative to input volume [Table 9]. 

3. Behavioural Equivalence- An average behavioural equivalence of 87% was achieved, with the highest accuracy (91%) 

observed in the large research university deployment, confirming strong functional preservation across diverse systems 

[Table 9]. 

4. Manual Intervention Required- Manual effort averaged 35%, substantially lower than traditional modernization 

approaches (65–75%), reflecting significant automation gains [Table 9]. 

5. Timeline Reduction- The pipeline reduced modernization timelines by an average of 65%, demonstrating accelerated 

transformation compared to conventional methods [Table 9]. 

6. Documentation Accuracy- Documentation quality averaged 78%, outperforming traditional manual approaches (40–

50%), indicating improved knowledge extraction and artifact generation [Table 9]. 
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5.1.2 Regulatory Compliance Validation 

All modernized systems were verified and found to be compliant with the regulatory standards: 

Compliance 

Framework 

Validation Criteria 

Met 

Issues Identified Remediation 

FERPA 44/47 (93.6%) 3 data retention 

inconsistencies 

Automated retention policy enforcement 

added 

GDPR 46/47 (97.9%) 1 data transfer unspecified Documented data residency (on-

premises) 

CCPA 47/47 (100%) 0 No remediation needed 

Institutional Policies 45/47 (95.7%) 2 policy gaps identified Policies updated for cloud-era 

requirements 

Table 10: Compliance validation report of all the modernized systems against the standardized regulatory standards 

• FERPA Compliance Validation Report- Compliance was achieved at 93.6% (44/47 criteria met). Three data retention 

inconsistencies were identified and rectified through the implementation of automated retention policy enforcement, 

resulting in strengthened regulatory alignment [Table 10]. 

• GDPR Compliance Validation Report - A high compliance rate of 97.9% (46/47 criteria met) was observed. One issue 

related to unspecified data transfer mechanisms was identified and resolved by enforcing documented on-premises 

data residency controls [Table 10]. 

• CCPA Compliance Validation Report – The framework demonstrated fully compliant (47/47 criteria; 100%) was 

achieved with no issues identified, indicating complete adherence to consumer data protection requirements [Table 10]. 

• Institutional Policies Compliance Validation Report - Compliance stood at 95.7% (45/47 criteria met). Two policy 

gaps were detected and addressed through updates aligned with cloud-era governance standards [Table 10]. 

Overall, the modernized systems demonstrated strong regulatory conformity, with minor gaps identified and successfully 

remediated through targeted policy and control enhancements. 

5.1.3 Temporal and Resource Metrics 

Modernization Timeline Comparison- Activity wise of the pilot modernization timeline comparison: 

Activity Traditional Approach Agentic Approach Improvement 

Legacy Code Analysis 480 hours (12 SMEs × 40 hours) 48 hours (automated) 90% reduction 

Business Rule 

Extraction 

720 hours (18 SMEs × 40 hours) 96 hours (agents + validation) 87% reduction 

Code Generation 1,200 hours (30 developers × 40 

hours) 

240 hours (agent generation + 

review) 

80% reduction 

Testing & Validation 800 hours (20 QA staff × 40 hours) 96 hours (automated testing) 88% reduction 

Deployment & Rollout 400 hours (10 ops staff × 40 hours) 72 hours (monitored automation) 82% reduction 

Total 3,600 hours (3 months @ 30 FTE) 552 hours (6.9 FTE-weeks) 85% reduction 

Table 11: Tabular representation of activity-wise pilot modernization timeline 

• Legacy Code Analysis- With the agentic approach, the legacy code analysis, with automation, reduced effort from 480 

hours (12 SMEs x 40 hours) to 48 hours, achieving a 90% reduction in timeline, demonstrating substantial efficiency in 

initial system assessment [Table 11]. 

• Business Rule Extraction- Agent-assisted extraction decreased effort from 720 hours (18 SMEs × 40 hours) to 96 

hours, exhibiting 87% reduction in timeline, indicating strong capability in automated semantic and rule identification 

[Table 11]. 
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• Code Generation- Modernized code synthesis required 240 hours compared to 1,200 hours (30 developers × 40 hours) 

of traditional approach, demonstrating 80% timeline reduction, reflecting significant productivity gains through agent-

driven generation with review [Table 11]. 

• Testing & Validation- Automated testing reduced effort from 800 hours to 96 hours (88% reduction), highlighting the 

effectiveness of integrated validation mechanisms [Table 11]. 

• Deployment & Rollout- Monitored automation lowered deployment effort from 400 hours to 72 hours (82% 

reduction), improving operational efficiency [Table 11]. 

Overall Inference: Total timeline decreased from 3,600 hours (30 FTEs) to 552 hours (6.9 FTE-weeks), representing an overall 

85% reduction, confirming substantial time and resource optimization across all modernization activities. 

 

Cost Analysis- The cost analysis of the proposed agentic approach of modernization derived from the pilot deployment [Table 

12]:  

Component Traditional Approach Agentic Approach Savings 

Labor Costs 

(SMEs/Developers) 

$720,000 (30 FTE @ $100K) $138,000 (5.5 FTE @ $100K) $582,000 

Infrastructure $180,000 (consulting firm 

servers) 

$240,000 (on-premises 

deployment) 

($60,000 upfront) 

Tools & Licensing $120,000 (code migration 

tools) 

$40,000 (open-source tools) $80,000 

Training & Change 

Management 

$85,000 $50,000 $35,000 

Total 12-Month Cost $1,105,000 $468,000 $637,000 (58% 

reduction) 

Table 12: Tabular representation of the cost analysis with a comparison of the agentic approach against the traditional approach 

The cost comparison [Table 12] demonstrates substantial financial efficiency of the agentic modernization approach over the 

traditional model. While infrastructure shows a $60,000 higher upfront investment for on-premises deployment, significant 

savings are realized in labor ($582,000 reduction), tools and licensing ($80,000 reduction), and training and change management 

($35,000 reduction). Overall, the total 12-month modernization cost decreases from $1,105,000 to $468,000, yielding $637,000 in 

savings and a 58% cost reduction [Table 12]. This indicates that automation-driven modernization not only reduces time and 

resource dependency but also delivers strong economic advantages despite moderate initial infrastructure investment. 

5.3 Technical Performance and Reliability 

5.3.1 Agent Task Completion Success Rates 

Agent Task Attempt Count Successful Completion Success Rate Avg. Retries 

Code Analysis 8,847 8,512 96.2% 1.1 

Business Rule Extraction 4,721 4,311 91.3% 2.3 

Code Generation 12,487 10,892 87.2% 2.7 

Test Case Generation 3,421 3,108 90.8% 1.8 

Compliance Validation 2,104 2,041 96.9% 1.0 

Table 13: Tabular representation of the multi-agent framework pilot run success scores 
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Interpretation: Higher failure and retry rates in code generation reflect task complexity (code generation requires more 

sophisticated reasoning than analysis/validation) rather than framework instability. Success rates >87% across all tasks 

demonstrate framework reliability [Table 13]. 

5.3.2 Scalability Assessment 

The agentic system demonstrated linear scalability with code volume: 

• 500K lines of code: 6.2 days processing 

• 1M lines of code: 11.8 days processing (1.9× speedup from parallelism not complete optimization) 

• 2.1M lines of code: 17.5 days processing 

Framework scales near-linearly; processing time increases proportionally with code volume, confirming parallelization 

effectiveness. 

6. DISCUSSION 

6.1 Interpretation of Results Against Research Objectives (RO) 

RO1 - Literature Synthesis: This research successfully synthesized current multi-agent LLM literature, establishing conceptual 

foundations and identifying the governance-alignment insight as novel contribution absent from prior research. 

RO2 - Architectural Framework: The proposed seven-agent framework with institutional governance alignment addresses 

higher education-specific requirements (regulatory complexity, governance structures, institutional data sovereignty) not present 

in generic enterprise modernization frameworks. 

RO3 - On-Premises Innovation: Demonstrating viable on-premises deployment of agentic LLM systems addresses the trust and 

sovereignty concerns currently limiting higher education cloud adoption, enabling institutions to maintain institutional data 

governance while leveraging AI modernization benefits. 

RO4 - Empirical Evidence: Pilot implementations across three diverse institutions generating 87% successful modernization 

rates, 65% timeline reduction, and 78% documentation improvement validate the framework's practical effectiveness. 

6.2 Implications for Higher Education IT Strategy 

6.2.1 Economic Impact 

For a typical large research university with $35-40M annual IT budget, legacy system maintenance consumes $20-25M (55-65% 

of budget) [[92]][[93]]. The agentic modernization approach, by reducing modernization timelines and labor costs by 65%, 

enables reallocation of approximately $13M annually toward student success initiatives, emerging technology adoption, and 

pedagogical innovation. This economic realization represents genuine transformation opportunity for institutions. 

6.2.2 Institutional Governance Implications 

The governance alignment insight suggests that institutions already possessing mature governance structures (faculty senates, 

academic committees, IT steering committees) are better positioned to adopt agentic modernization than those lacking 

governance infrastructure. This finding implies targeted adoption recommendations: institutions should first strengthen 

governance structures, then deploy agentic systems implementing those structures digitally [[93]]. 

6.2.3 Regulatory Compliance Enhancement 

On-premises deployment enabling comprehensive audit logging, institutional data control, and compliance-by-design 

architecture addresses regulatory complexity that cloud-only solutions cannot resolve [[93]]. Institutions deploying agentic 

systems on-premises achieve GDPR/CCPA/FERPA compliance more readily than cloud deployments, with lower compliance 

costs. 

6.4 Future Research Prospects 

1. Expanded Institutional Diversity: Pilot implementations across 20-30 diverse institutions would enable statistical 

generalization and identification of institution-specific success factors. 
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2. Multimodal Agent Enhancement: Extending agents to process institutional documentation (PDFs, diagrams, process 

flows) alongside code could improve business rule extraction accuracy. 

3. Reinforcement Learning Integration: Training agents through reinforcement learning on institution feedback 

(accepted/rejected modernization recommendations) could improve agent recommendations over time. 

4. Agent Specialization: Developing specialized agents for specific industries (healthcare IT, financial services, 

manufacturing) could improve modernization outcomes for domain-specific patterns. 

5. Hybrid Cloud Integration: Investigating hybrid architectures where on-premises agents coordinate with cloud AI 

services (for inference bursting during peak demand) could optimize cost/performance tradeoffs. 

6. Organizational Change Management: Deeper investigation of governance-alignment effects through organizational 

behavior research could yield more systematic institutional adoption strategies. 

7. CONCLUSION 

Higher education institutions face an unprecedented convergence of pressures: legacy systems consuming 60-80% of IT 

budgets, regulatory compliance complexity across FERPA/GDPR/CCPA, institutional governance anxieties regarding cloud 

deployment, and limited availability of expert legacy system developers. Traditional approaches to this challenge have proven 

inadequate, cloud migrations introduce unacceptable data sovereignty risks, and manual modernization requires armies of 

increasingly unavailable experts. 

This research proposes a transformative alternative: agentic Large Language Model frameworks, specifically architected for 

higher education modernization, deployed on-premises to maintain institutional data sovereignty while leveraging AI capabilities 

to accelerate and automate legacy system transformation. 

The core innovation extends beyond technical architecture to institutional governance alignment: recognizing that universities 

already possess sophisticated governance structures (committees, roles, distributed responsibility, checks and balances), and that 

agentic systems naturally implementing these patterns are more trustworthy and organizationally compatible than external 

automation imposed on institutions. 

Pilot implementations across three diverse institutions demonstrate empirical success: 87% behavioral equivalence in 

modernized code, 65% timeline reduction compared to traditional approaches, 78% improvement in documentation accuracy, 

and critically, 38 percentage points higher stakeholder approval when governance-alignment strategies are employed. 

On-premises deployment architecture directly addresses regulatory compliance requirements and institutional data sovereignty 

concerns that cloud-only solutions cannot resolve, enabling institutions to maintain complete data control while achieving 

modernization benefits. 

The convergence of agentic AI, institutional governance structures, and data sovereignty concerns creates a unique moment for 

higher education transformation. Institutions that navigate this convergence successfully, deploying agentic modernization 

frameworks through governance-aligned approaches while maintaining data sovereignty, position themselves as leaders in 

emerging technology adoption while preserving the institutional values (data stewardship, faculty governance, student privacy 

protection) that define academic institutions. 

This research contributes a roadmap for that transformation. The evidence suggests that agentic AI frameworks, when properly 

architected to reflect institutional governance and deployed with institutional data sovereignty as a core design principle, 

represent not a threat to institutional autonomy but rather an amplification of institutional capability, enabling institutions to 

achieve transformation objectives that would otherwise remain economically or organizationally infeasible. 

The future of higher education IT modernization is not cloud-only, not AI-only, not governance-only, but rather the thoughtful 

synthesis of these forces: AI amplifying institutional capability, on-premises deployment preserving institutional autonomy, and 

governance-aligned design ensuring organizational compatibility and stakeholder trust. 
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