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| ABSTRACT 

Accurate short-term and multi-horizon electricity load forecasting is a fundamental requirement for intelligent energy 

management in modern power grid systems, particularly under increasing demand variability and weather-driven consumption 

patterns. Conventional statistical, machine learning, and recurrent neural network models often exhibit limited capability in 

modelling complex non-linear relationships and long-range temporal dependencies inherent in large-scale power system data. 

To address these challenges, this paper proposes an Attention-Enhanced Transformer-based Multi-Horizon Weather-aware 

Network (ATMH-WNet) for efficient and accurate load forecasting in U.S. power grids. The proposed framework employs linear 

feature embedding and sinusoidal positional encoding to construct temporally informed latent representations, which are 

processed through a multi-layer Transformer encoder with multi-head self-attention. This design enables the model to jointly 

capture short-term dynamics and long-range dependencies while producing direct multi-step forecasts in a single forward pass, 

thereby avoiding recursive error accumulation. The proposed model is evaluated on the PJM Interconnection hourly electricity 

consumption dataset spanning 2002-2018 and is compared against persistence, SARIMA, Prophet, XGBoost, and LSTM 

benchmarks. Experimental results demonstrate that ATMH-WNet consistently outperforms all baseline models, achieving a 

mean absolute error of 1325 MW, a root mean squared error of 1873 MW, a mean absolute percentage error of 2.9%, and an 

𝑅2 score of 0.97 on the held-out test set. Compared to the strongest deep learning baseline, the proposed framework reduces 

forecasting errors by more than 20% across major accuracy metrics. Additional qualitative analyses, including load profile 

alignment, residual diagnostics, and error distribution assessment, further confirm the robustness, stability, and generalization 

capability of the proposed approach. These results establish ATMH-WNet as an effective and scalable solution for real-world 

intelligent energy management and multi-horizon load forecasting applications. 
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1. Introduction  

Global energy industry is undergoing a radical transformation driven by the accelerated integration of renewable energy, extensive 

automotive electrification, and the expansion of distributed energy sources. These processes have introduced significant variability 

and unpredictability in electricity demand patterns, creating serious challenges for power system operators. Precise short-term 

load forecasting (STLF) in large-scale electricity markets, such as the regional transmission organizations (RTOs) in the United 

States (e.g., PJM Interconnection), has become a crucial tool to ensure grid reliability, optimize unit commitment and economic 

dispatch, enable effective demand response programs, and minimize operational costs [1] – [3]. 
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PJM Interconnection serves more than 65 million people across 13 states and the District of Columbia. Such complex systems 

require accurate load forecasting to maintain stability during extreme weather, peak demand periods, and unexpected renewable 

intermittency [4]. Errors in load forecasting can cause inefficient resource allocation, higher reserve requirements, and potential 

blackouts, resulting in significant economic losses and reliability risks [5]. 

STLF has traditionally relied on statistical methods such as ARIMA, SARIMA, and exponential smoothing due to their interpretability 

and computational efficiency. However, these approaches are linear and fail to capture nonlinear and non-stationary behaviors in 

modern load profiles, which are influenced by meteorological, economic, and consumer behavior factors [6], [7]. Furthermore, 

these methods often require manual stationarity transformations and struggle to model multi-scale seasonality (daily, weekly, 

yearly) simultaneously [8]. 

Machine learning approaches, including support vector regression (SVR), random forests, and gradient boosting models such as 

XGBoost and LightGBM, offer improved performance by integrating exogenous variables like temperature, humidity, and calendar 

effects [9], [10]. These models handle nonlinear relationships and variable interactions well, but they generally assume independent 

samples, overlooking sequential dependencies essential for accurate forecasting [11]. 

Recurrent neural networks (RNNs), particularly Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs), can 

automatically learn hidden temporal patterns and address some of the limitations of statistical and classical machine learning 

methods [12]. While these models are superior in capturing nonlinear behaviors and short-term dependencies, they suffer from 

vanishing gradient issues with long sequences and high computational demands due to their sequential processing nature [13]. 

Transformer-based architectures, initially designed for natural language processing [14], have revolutionized time-series 

forecasting by using self-attention mechanisms to learn global dependencies efficiently. Self-attention dynamically emphasizes 

significant time steps, enabling parallel processing and improved performance on long sequences. Time-series variants such as 

Informer [15], Autoformer [16], and FEDformer [17] address quadratic complexity issues and employ decomposition techniques to 

extract trend and seasonal components, achieving state-of-the-art results in long-term forecasting. 

Recent work has adapted transformers for electricity load forecasting. Giacomazzi et al. [1] investigated the Temporal Fusion 

Transformer (TFT) across various grid hierarchies, demonstrating its efficiency in integrating both static and dynamic covariates. 

Sievers et al. [2] proposed a federated transformer model for privacy-preserving load forecasting in smart grids. Hertel et al. [3] 

explored multiple training strategies for forecasting concurrent load time series using transformer models. Badhe et al. [18] 

developed a temporal fusion transformer combined with meta-heuristic optimization to enhance load prediction accuracy. Perçuku 

et al. [19] surveyed ML/DL models and highlighted the advantages of deep learning, particularly transformer-based models, in 

capturing complex time-dependent load patterns. Jain et al. [20] evaluated various machine learning approaches for electrical load 

forecasting, emphasizing the benefits of hybrid ML/DL frameworks. 

Hybrid approaches have also emerged, integrating transformers with graph neural networks for spatial-temporal modeling [4], 

multi-frequency feature analysis, and decomposition-based methods to better extract temporal patterns [5]. Surveys by Dong et 

al. [5] illustrate the superiority of transformer-based models in handling multivariate inputs and complex temporal structures. 

Zhong et al. [12] and Dou et al. [13] demonstrated the effectiveness of combining deep learning architectures (ANN–LSTM–

Transformer) and hybrid decomposition techniques to enhance forecasting accuracy. 

Despite these advances, challenges remain in real-world U.S. grid applications. Most transformer-based models have been tested 

on European or Asian utilities, whose consumption patterns and weather differ from U.S. grids. There is a shortage of studies 

integrating high-resolution weather data with precise temporal alignment. Additionally, attention mechanisms in load forecasting 

require further research to support operational decision-making. 

This paper addresses these gaps by proposing an enhanced attention transformer architecture tailored for short-term load 

forecasting in the PJM East region. The model incorporates multi-head self-attention for long-range dependencies, cyclic encoding 

to capture temporal periodicities (daily, weekly, yearly), and exogenous weather features (temperature, humidity, wind speed, 

precipitation). It processes 168-hour input sequences to generate 24-hour ahead forecasts, balancing computational efficiency 

and predictive performance. 
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The objectives of this study are: 

• Develop a multivariate attention-enhanced transformer for U.S. grid load forecasting with integrated weather features. 

• Evaluate the model against statistical, tree-based, RNN, and transformer baselines. 

• Perform ablation studies to quantify contributions of attention mechanisms, cyclic encodings, weather features, and 

architecture. 

• Provide interpretability insights via attention visualization and feature importance analysis. 

• Demonstrate potential applications in intelligent energy management systems. 

The contributions of this work include: 

• Proposal of an attention-enhanced transformer architecture with cyclic encoding and weather integration, achieving 

state-of-the-art performance on PJM East hourly load data. 

• Extensive experimental validation showing superior accuracy over multiple baselines. 

• Systematic ablation analysis quantifying key components’ impact on forecasting performance. 

• Visualization of attention patterns and per-horizon performance for practical interpretation. 

• Extension toward intelligent energy management in sustainable power systems. 

The remainder of the paper is organized as follows: Section II reviews related work; Section III presents the proposed attention-

enhanced transformer framework; Section IV describes experiments, results, and ablation studies; and Section V concludes with 

insights and future directions. 

2. Literature Review 

Recent developments in the smart grids, integration of renewable energy and electrified transportation systems have greatly 

enhanced the complexity in solving the energy forecasting and management issues. To achieve grid stability, optimize resource 

allocation, while encouraging sustainable energy transitions, accurate forecasting of the electricity load, renewable generation, and 

electric vehicle (EV) charging demand has become crucial. Conventional statistical methods usually fail to record nonlinear 

temporal correlations, excessive volatility, and multi-source interactions of the contemporary energy systems. Because of this trend, 

researchers have embraced deep learning, attention models, Transformers, hybrid models and ensemble approaches to become 

more accurate and robust in making predictions. 

 

2.1 Transformer-Based Load and Electricity Price Forecasting 

It has been recently discovered that Transformer-based architectures are especially successful at capturing long-range temporal 

dependencies present in electricity load and price time series. One of the first systematic enhancements of the standard 

Transformer for short-term load forecasting is proposed by Ahmad et al. [21], who introduce TFTformer with feature-specific load, 

weather, and temporal embeddings. In addition, the Transformer encoder is augmented with a Temporal Convolutional Network 

(TCN) to strengthen long-term dependency modeling. Experiments on datasets from Belgium, New Zealand, and five Australian 

states demonstrate that TFTformer outperforms traditional baselines with over 50% reduction in MSE, improves CARD performance 

by 42 points, and surpasses iFlowformer and iReformer by 1617 points, highlighting the effectiveness of feature-aware embedding 

and convolution–attention fusion. 

 

While the work in [21] primarily focuses on load forecasting, Bâra and Oprea [22] apply Transformer-based models to day-ahead 

electricity price prediction in pan-European markets. Their approach addresses missing non-renewable generation and sold energy 

data through synthetic data generation and inverse optimization. The model achieves high predictive accuracy across markets in 

Romania, Spain, Poland, Finland, and the Czech Republic, with test R2 values ranging from 0.95 to 0.98 and consistently low MAE. 

However, the authors acknowledge that the method incurs high computational cost due to complex feature engineering and 

optimization, in contrast to the structurally streamlined approach in [21]. 

To reduce architectural complexity while retaining attention mechanisms, Nguyen and Tran [31] propose a lightweight 

Transformer-MLP hybrid for short-term load forecasting. Their model employs a single-layer Transformer encoder with learnable 

positional encoding and an MLP decoder. Using univariate 30-minute interval data from Australian regions (NSW, QLD, VIC), the 

model achieves MAPE values between 0.69% and 0.95%, outperforming LSTM, CNN, and standalone MLP models. Nevertheless, 

the simplified design limits the method to univariate, single-step forecasting, reflecting a trade-off between efficiency and 

generalization. 
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Beyond numerical inputs, Hasan et al. [35] extend Transformer-based forecasting by incorporating contextual semantic information 

from textual news data. Their TSB-Forecast model integrates Time2Vec temporal embeddings, SBERT-based semantic feature 

extraction, and an ensemble of XGBoost and Extra Trees regressors. Compared with purely numerical Transformer-based models, 

TSB-Forecast achieves 38.7% lower MAE, 18.2% lower RMSE, and 50.6% lower SMAPE, demonstrating that semantic context can 

substantially improve forecasting accuracy at the cost of increased data dependency and system complexity. 

2.2 Hybrid Deep Learning Models for Load and Consumption Forecasting  

 

With the growing adoption of Transformer architectures, several studies explore hybrid deep learning models to better capture 

nonlinear temporal dynamics and multi-source interactions. He et al. [23] compare LSTM, Bi-LSTM, and a hybrid Transformer-

BiLSTM model for wind and photovoltaic (PV) power forecasting. Their results show that Bi-LSTM mitigates time-lag and bias issues 

inherent in standard LSTM, while the Transformer–BiLSTM hybrid achieves the best performance, improving forecasting accuracy 

by 19% for wind power and 35% for PV power relative to Bi-LSTM. This highlights the effectiveness of combining global attention 

with recurrent temporal modeling to handle extreme variations. 

Shifting focus to data fusion, Özen [24] proposes a CNN–LSTM–FFNN hybrid model for electricity consumption forecasting using 

hourly datasets from Chicago, Pittsburgh, and IHEC (Paris). The model achieves a mean RMSE of 0.0732, outperforming CNN, CNN–

LSTM, LSTM–LSTM, and naive Transformer baselines. Unlike [23], which emphasizes temporal depth, this study demonstrates that 

integrating spatial feature extraction with nonlinear fusion layers can significantly enhance forecasting accuracy, particularly under 

data-scarce conditions. 

Extending this work, Özen et al. [25] develop an ensemble-level hybrid framework that combines univariate deep learning models, 

multivariate CNN-LSTM networks, and a linear regression fusion layer. On the Chicago dataset, the framework achieves an RMSE 

of 0.0871, outperforming ARIMA, Random Forest, CNN, and LSTM models. Furthermore, introducing a Transformer–Gaussian 

Process hybrid reduces RMSE to 0.0768, emphasizing the benefit of probabilistic modeling over purely deterministic deep learning 

approaches, albeit with increased computational complexity. 

Feature engineering also plays a crucial role in hybrid pipelines. Du et al. [29] propose the MCPO–VMD–FDFE framework, which 

incorporates signal decomposition, frequency-domain feature enhancement, and an improved PatchTST model. Evaluated on 

weekday, Saturday, and Sunday load profiles, the method achieves a cumulative RMSE reduction of 45.65 compared to baseline 

models. This contrasts with the data-fusion strategies in [24], [25], underscoring the importance of multi-stage preprocessing and 

decomposition. 

Beyond forecasting accuracy, Mushref et al. [30] integrate prediction with grid control by introducing a hybrid ANFIS-Transformer 

framework optimized using Enhanced HawkFish Optimization. Using real-time load data from Kaggle, the model achieves a load 

RMSE of 4.15 kW, voltage RMSE of 1.24 V, and MAPE between 1.50% and 3.10%. Smart-grid control experiments further 

demonstrate a 54.4% reduction in energy loss, distinguishing this work from purely predictive studies [23], [25], [29]. 

2.3 Graph-Based and Spatio-Temporal Forecasting Models 

Although hybrid models improve temporal modeling, they often neglect spatial dependencies inherent in power systems. To 

address this, Zhu et al. [27] propose the Spatial-Temporal Dynamic Graph Transformer (SDGT), which combines VMD-based 

periodic decomposition with a dynamic spatio-temporal correlation graph. Experiments on Australian and Tetouan (Morocco) 

datasets show MAE reductions of 38%-49% and RMSE reductions of 33%-45% relative to baseline models, demonstrating the 

effectiveness of explicitly modeling evolving spatial correlations. 

Complementing this approach, Orji et al. [28] introduce a GAT–LSTM model that integrates Graph Attention Networks with LSTM 

through early feature fusion. Applied to the Brazilian electricity system, the model reduces MAE by 21.8%, RMSE by 15.9%, and 

MAPE by 20.2%. Compared with SDGT [27], this method employs a simpler graph structure but leverages grid topology and edge 

attributes, making it suitable for well-defined power networks. 

Beyond graph-based approaches, alternative spatial generalization strategies have also been explored. Shape clustering combined 

with domain-adversarial transfer learning has been shown to improve residential load forecasting performance under distribution 

shifts [42], while diffusion-based generative attention models further enhance short-term residential load prediction by capturing 

uncertainty and complex temporal patterns [43]. 
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At the building scale, Cao [47] proposes TDAGNN, which integrates temporal decomposition, multi-head interactive attention, and 

self-scaling diffusion graph neural networks. Using the BIM-SHMC dataset, the model achieves superior performance with an 

average improvement of 13.3% over STGCN, demonstrating the ability of graph-based learning to capture abrupt phase changes 

in high-rise buildings. 

To improve generalization across datasets, Xiao et al. [49] propose a hierarchical attention-based model that combines SENet-

enhanced TCNs with BiGRU and global attention. The model exhibits strong robustness, with cross-dataset R2 standard deviation 

below 3.7%, emphasizing hierarchical feature alignment rather than explicit grid topology modeling. 

2.4 Electric Vehicle Charging Demand Forecasting 

With the rapid expansion of electric vehicle (EV) adoption, accurate EV charging demand forecasting has become increasingly 

important. Hussain et al. [26] propose a hybrid Transformer-LSTM model for medium- and long-term EV charging demand 

forecasting using the ACN datasets from Caltech and JPL. The model achieves MAE and MSE reductions of 17.27% and 19.79% on 

the Caltech dataset, and 24.91% and 23.17% on the JPL dataset for a 30-day horizon, demonstrating the effectiveness of hybrid 

temporal architectures in modeling long-term EV usage patterns. 

To provide systematic benchmarking across forecasting horizons, Ahmadian and Gadh [32] evaluate statistical, machine learning, 

and deep learning models using one million 15-minute EV charging records. Their results show that tree-based and SARIMA 

models perform well for very short horizons, while LSTM and attention-based models excel at longer horizons, offering practical 

guidance for model selection. 

At the station level, Singh et al. [33] propose an Attention-Augmented LSTM (AA-LSTM) model, achieving a MAPE of 3.90% and 

MSE of 0.40, outperforming standard LSTM and RNN models. Compared to [26] and [32], this work emphasizes interpretability 

and computational efficiency, demonstrating that competitive performance can be achieved without overly complex architectures. 

2.5 Renewable Energy Forecasting 

Beyond load forecasting, deep learning models are widely applied to renewable energy prediction. Zaman et al. [38] propose the 

Federated Temporal Dense Granular Transformer (FTDGT) for wind power forecasting, emphasizing privacy preservation and 

robustness. Compared with competing models, FTDGT improves RMSE by 12%, MAE by 15.5%, and R2 by 9.2% across diverse 

datasets. 

For short-term photovoltaic (PV) power forecasting, Ait Chaoui et al. [39] introduce a Wavelet-Transformer-TC-GRU hybrid model. 

Using 95,885 five-minute PV records, the model achieves MAE of 209.36, RMSE of 616.53, and R2=0.96884, significantly 

outperforming LSTM, GRU, and CNN–LSTM baselines. This work highlights the importance of multi-resolution signal 

decomposition for high-frequency forecasting. 

To enhance interpretability, Siddiqa et al. [45] propose SolarTrans, a two-stage framework combining Transformers with large 

language models. The model achieves MAE values between 0.0782 and 0.1544, RMSE values between 0.1760 and 0.4424, and R2 

up to 0.9692, while the explanation module attains ROUGE-1 of 0.7889 and BLEU of 0.6558, addressing transparency challenges in 

renewable energy forecasting. 

Additionally, attention-enhanced Seq2Seq transfer learning has been successfully applied to climate-adaptive building energy 

forecasting, demonstrating strong generalization across varying environmental conditions [34]. 

2.6 Smart Grid Optimization, Fault Detection, and Advanced Applications 

Beyond forecasting, deep learning techniques have been integrated into broader smart grid optimization tasks. Yu et al. [40] 

propose an ensemble of attention-enhanced N-BEATS and XGBoost for district heating load forecasting, achieving an RMSE of 

0.6427 and R2=0.9664. 

Hussain et al. [44] introduce the FireNet–XGBoost hybrid model for mid-term building load forecasting, achieving RMSE of 18.71 

and R2=0.9334 
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Transformer-based attention mechanisms have also been applied to fault detection and self-healing smart grid networks. Dubey 

et al. [36] demonstrate that attention-driven Transformers improve anomaly localization and adaptive recovery in power systems. 

Alternative attention-based recurrent architectures, such as GRU-attention models [37] and GA-LSTM frameworks [46], have also 

shown competitive performance in very short-term residential load forecasting, offering efficient alternatives to Transformer-heavy 

architectures. 

Finally, Shen et al. [50] propose GridSense, a large language model-based situational awareness framework for smart grids. The 

system achieves a load forecasting RMSE of 0.15 and anomaly detection accuracy of 90.25% even with limited training data, 

highlighting the future potential of LLM-driven intelligence in smart grid applications. 

Table 1.  Summary of Recent Deep Learning-Based Energy Forecasting Studies 

Year Ref. Model Name Key Results Limitations 

2025 [21] TFTformer >50% MSE reduction vs. baselines; 42% over 

CARD; 16–17% over iFlowformer/iReformer 

High computational complexity; 

needs high-quality auxiliary data 

2025 [22] Transformer + 

Synthetic Inputs 

R² = 0.95–0.98 (test); 0.91–0.97 (evaluation) Complex feature engineering and 

inverse optimization 

2025 [23] Transformer-BiLSTM 19% improvement (wind); 35% improvement (PV) High computation cost; fusion 

challenges 

2023 [24] CNN-LSTM-FFNN Average RMSE = 0.0732 Dependence on correlated weather 

data 

2025 [25] Hybrid CNN-LSTM + 

LR 

RMSE = 0.0871; improved to 0.0768 Increased model complexity 

2025 [26] Hybrid Transformer MAE ↓ 17.27–24.91%; MSE ↓ 19.79–23.17% Limited scalability 

2025 [27] SDGT MAE ↓ 38–49%; RMSE ↓ 33–45% High computational cost 

2025 [28] GAT-LSTM MAE ↓ 21.8%; RMSE ↓ 15.9%; MAPE ↓ 20.2% Requires detailed grid topology 

2025 [29] MCPO-VMD-FDFE Overall RMSE reduction = 45.65% Multi-stage decomposition 

complexity 

2025 [30] ANFIS-Transformer Load RMSE = 4.15 kW; Voltage RMSE = 1.24 V Optimization overhead 

2025 [31] Transformer-MLP MAPE = 0.69–0.95% Univariate, single-step forecasting 

2025 [32] Benchmark Study MAE = 0.23–0.46 kW; RMSE = 0.46–1.20 kW Horizon-dependent performance 

2025 [33] AA-LSTM MAPE = 3.90%; MSE = 0.40 Limited EVCS diversity 

2025 [34] Attention Seq2Seq Accuracy = 96.2%; R² = 0.98 Long-term data requirement 

2025 [35] TSB-Forecast MAE ↓ 38.7%; RMSE ↓ 18.2% Depends on news/text data 

2025 [36] AACNN-

Transformer 

Accuracy up to 97.14% Fault-detection focused 

2025 [37] GRU-Attention MAPE = 0.77% Very short-term horizon 

2025 [38] FTDGT RMSE ↓ 12%; MAE ↓ 15.5% Federated communication overhead 

2025 [39] WT-Transformer 

Hybrid 

RMSE = 616.53; R² = 0.9688 Site-specific validation 

2025 [40] N-BEATS + XGBoost RMSE = 0.6427; R² = 0.9664 Ensemble tuning required 

2025 [41] ORA-DL Demand accuracy = 93.38% System complexity 

2024 [42] AT-Seq2Seq MAPE < 2% Domain similarity dependence 

2025 [43] Diffusion + 

Attention 

MAE ↓ 47.4%; MAPE ↓ 57.6% High training cost 

2025 [44] FireNet-XGBoost RMSE = 18.71; R² = 0.9334 Single-building study 

2025 [45] SolarTrans RMSE = 0.176–0.442 Limited evaluation duration 

2024 [46] GA-LSTM RMSE = 0.6056 Genetic optimization overhead 

2025 [47] TDAGNN Average improvement = 13.3% Requires building topology 

2025 [48] MTCAT RMSE ↓ 30–50% Domain-specific 

2025 [49] TSEBG Cross-dataset R² std = 3.7% Complex hierarchy 

2025 [50] GridSense RMSE = 0.15; anomaly accuracy = 90.25% High LLM inference cost 
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3. Methodology 

The general process used in this research will be based on a systematic pipeline of a multi-horizon weather-sensitive prediction, 

as shown in Figure-1 overall methodology. The steps it takes are to prepare the multivariate time-series data that is initially 

preprocessed and further divided into three disjoint data subsets to have the fair and unbiased evaluation. In particular, the dataset 

is segmented into training, validation, and test set in 80%, 5%, and 15% proportions, respectively. The model learning is done on 

the training set, the convergence and the overfitting is observed and controlled using the validation set and in the end the final 

performance on unseen data is evaluated using test set. 

Given the data splitting, the forecast forthcoming is a issue of a supervised multi-horizon prediction problem, where UPTs are 

assigned to each other fixed-length historical input windows and future goal sequences. In order to draw comparative standards, 

a few benchmark models are taken into account along with the proposed approach. These are persistence-based forecasting, 

classical statistical forecasting models like SARIMA and Prophet, machine learning forecasting models like XGBoost, and a recurrent 

neural network forecasting model LSTM. The baselines are a wide array of forecasting paradigms and serve to act as benchmarks 

against which the proposed architecture performance can be measured. 

The essence of the methodology is the suggested ATMH-WNet (Attention-based Transformer to Multi-Horizon Weather-aware 

Forecasting) framework that includes the sequential processing of the input sequences in the sequence of embedding, attention-

based temporal encoding, and direct output mapping stages. The model uses first temporal enriching of raw inputs, then 

contextual dependencies in time using a Transformer encoder, then direct multi-horizon forecast in the single forward pass. This 

end-to-end model enables the model to incorporate short-term dynamics and long-range temporal dynamics without using 

recursive prediction strategies. 

The performance of the models is measured according to the standard regression measures, such as R², RMSE, MAE, MAPE, and 

MSE, which are calculated on the test data. Collectively, this approach methodology guarantees a systematic comparison of the 

suggested ATMH-WNet and the available forecasting baselines at the same data splits and assessment standards. 

 

 
Figure 1: Overall methodological framework of the proposed study, illustrating the data preprocessing and splitting strategy, 

baseline forecasting models, the proposed ATMH-WNet architecture for multi-horizon weather-aware forecasting, and the 

evaluation pipeline 

3.1 Dataset Description  

The empirical foundation of this study is built upon the Hourly Energy Consumption dataset [51] sourced from the PJM 

Interconnection, which represents a massive regional transmission organization in the United States. This dataset provides a high-

fidelity longitudinal record of power consumption, encompassing a total of 145,366 hourly observations. The temporal scope of 

the data is extensive, spanning from January 1, 2002 to August 3, 2018 thereby capturing diverse seasonal cycles, holiday variations, 

and long-term economic shifts. By utilizing such a robust and high-resolution time-series repository, the research ensures that the 

model is exposed to the complex, non-linear fluctuations inherent in large-scale power grid operations, which is critical for 

validating the robustness of the Attention-Enhanced Transformer framework. 
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Figure 2: Sample of Raw Dataset 

 

3.2 Preprocessing Pipeline 

This study employs an extensive preprocessing pipeline to transform raw hourly electricity demand data into a structured 

multivariate time-series representation suitable for attention-based transformer architectures. The preprocessing workflow 

integrates temporal encoding, exogenous weather variables, normalization, and supervised sequence construction to enhance 

forecasting performance and model interpretability. 

 

3.2.1 Temporal Feature Engineering 

Electricity demand exhibits strong daily, weekly, and seasonal periodicity. To capture these recurring temporal patterns while 

avoiding artificial discontinuities, cyclic encodings were applied to time-related variables derived from the timestamp. Specifically, 

hour-of-day, day-of-week, and month-of-year were transformed using sine and cosine mappings as follows: 

 

ℎ𝑜𝑢𝑟ₛᵢₙ =  𝑠𝑖𝑛(2𝜋 
ℎ

24
),  ℎ𝑜𝑢𝑟꜀ₒₛ =  𝑐𝑜𝑠(2𝜋 

ℎ

24
),      (1) 

𝑑𝑎𝑦ₛᵢₙ =  𝑠𝑖𝑛(2𝜋 
𝑑

7
),   𝑑𝑎𝑦꜀ₒₛ =  𝑐𝑜𝑠(2𝜋 

𝑑

7
),      (2) 

𝑚𝑜𝑛𝑡ℎₛᵢₙ =  𝑠𝑖𝑛(2𝜋 
𝑚

12
),  𝑚𝑜𝑛𝑡ℎ꜀ₒₛ =  𝑐𝑜𝑠(2𝜋 

𝑚

12
),    (3) 

where h, d, and m denote hour, day of week, and month, respectively. This representation preserves circular continuity (e.g., hour 

23 to hour 0) and is particularly well-suited for transformer attention mechanisms. 

Additionally, binary indicators for weekends and U.S. federal holidays were incorporated to capture systematic demand reductions 

during non-working days. 
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Figure 4:  Monthly box plot distribution 

 

Figure 3: Distribution electricity load vs temperature data 
Figure 3: Distribution electricity load vs temperature data 
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Figure 5: Representation of relation matrix heatmap 

 
Figure 6: Average hourly electricity load profile 

 

3.2.2. Exploratory Analysis and Feature Relationships 

Figure 3 illustrates the nonlinear relationship between electricity demand and ambient temperature, revealing a pronounced U-

shaped dependency driven by heating and cooling loads. Seasonal variations in demand are further evidenced by the monthly box 

plots shown in Figure 4. Correlation analysis (Figure 5) confirms that temperature and cyclic temporal features exhibit stronger 

associations with load compared to other meteorological variables, justifying their inclusion in the forecasting model. Figure 6 

presents the bar chart of hourly electricity load profile. 
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3.2.3. Integration of Exogenous Weather Variables 

Meteorological conditions play a critical role in electricity consumption due to heating and cooling demands. To incorporate 

environmental influences, hourly weather observations were retrieved from the Philadelphia International Airport station, which 

serves as a representative location for the PJM East region. The selected exogenous variables include temperature (◦C), relative 

humidity (%), wind speed (km/h), and precipitation (mm). Figure 7 demonstrated the time series analysis electricity load and 

temperature after merging with weather data. 

Weather data were temporally aligned with the load series using a left join on the hourly timestamp. Minor gaps were observed 

in the meteorological records and were addressed using linear interpolation for temperature, humidity, and wind speed, while 

precipitation was zero-filled to represent the absence of rainfall. After preprocessing, the merged dataset contains no missing 

values. Figure 8 presents the distribution of electricity load and temperature data after merging with weather data. Also, Figure 9 

represents the correlation heatmap of merged dataset. 

 
 

Figure 7: Time series distribution of load and temperature after weather data merged 

 

 

Figure 8: Distribution electricity load vs temperature data after merging with weather data 



An Attention-Enhanced Transformer Framework for Intelligent Energy Management and Load Forecasting in U.S. Power Grids  

Page | 12  

3.2.4. Feature Scaling 

To ensure numerical stability during training and to prevent dominance by features with larger magnitudes, Min-Max normalization 

was applied independently to the load and weather variables: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑  =    
( 𝑥 − 𝑥𝑚𝑖𝑛 )

( 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 )
      (4) 

All scaled variables were constrained to the range [0, 1]. Separate scalars were preserved to allow inverse transformation during 

post-processing and evaluation. 

 

3.2.5. Supervised Sequence Construction 

The multivariate time series was reformulated into a supervised learning problem using a sliding window strategy. Each input 

sequence consists of the past 168 hours (7 days) of observations, capturing both short-term and weekly consumption patterns. 

The forecasting horizon was set to 24 hours, enabling day-ahead load prediction. 

 

Formally, given a feature matrix 𝑋𝑡  ∈  𝑅168 × 𝐹 at time t, where F denotes the number of input features, the model learns to 

predict the future load vector: 

𝑦𝑡  =  [ 𝐿𝑡 + 1, 𝐿𝑡 + 2, … , 𝐿𝑡 + 24 ] ,       (5) 

where 𝐿𝑡 represents the scaled electricity load. This process resulted in 145,175 training samples, each with a dimensionality of 

168 ×  13 features per timestep. 

 

 

 

 

 

 

 

Figure 8:  Distribution electricity load vs temperature data after merging with weather data  

Figure 9: Representation of correlation matrix heatmap after merging with weather data 
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Table 2 

Comparison of Dataset Characteristics Before and After Weather Integration 

Aspect Before Integration After Integration 

Number of Records 145,366 145,366 

Input Features per Timestep ~8–10 ~13–16 

Exogenous Variables None Temperature, Humidity, Wind, Precipitation 

Missing Values 0 0 (after interpolation) 

Feature Scaling Load only Load + Weather 

Supervised Sequences Not applicable 145,175 samples 

 

 

Table 2 summarizes the key characteristics of the dataset before and after weather integration and feature engineering. The 

preprocessing framework produces a rich multivariate representation that captures temporal periodicity, environmental effects, 

and long-range dependencies, providing a robust foundation for attention-enhanced transformer-based load forecasting. 

 

3.3. Dataset Splitting 

The processed dataset was partitioned into three distinct subsets such as training, validation, and testing using a chronological 

splitting approach to preserve the temporal dependencies inherent in energy load forecasting. This sequential division ensures 

that the Attention-Enhanced Transformer is evaluated on its ability to generalize to unseen future time steps, simulating real-world 

grid management scenarios. The primary training corpus consists of data from 2002 to 2014, comprising 113,735 samples, which 

allows the model to capture over a decade of multi-seasonal patterns and long-term demand trends. 

To fine-tune the model’s hyperparameters and prevent overfitting, the year 2015 was designated as the validation set, providing 

8,569 distinct hourly observations. Finally, the model’s predictive performance and robustness were rigorously evaluated using a 

dedicated test set spanning from 2016 to 2018, which includes 22,489 samples. This out-of-sample testing phase is critical for 

verifying the framework’s reliability across varying economic and climatic conditions observed in the latter years of the study 

period. The comprehensive distribution of the data samples is summarized in Table 3. 

 

Table 3 

Distribution of Dataset Samples and Chronological Splitting Strategy 

 

 

 

 

 

 

 

 

 

3.4. Proposed ATMH-WNet Hybrid Model 

The work proposed a deep learning model, ATMH-WNet (Attention-based Transformer to Multi-Horizon Weather- aware 

Forecasting), which is designed to train on time-series inputs of multivariate data to learn meaningful time-resolved 

representations, and to generate explicit multi-step predictions end-to-end. The general ATMH-WNet operational structure is 

outlined in Figure- 10, and it focuses on the way the model would convert a historical input window into a compressed contextual 

representation of the data and then project it to the required forecast horizon. The proposed design is following clear sequential 

pipeline so that the intermediate representations are still interpretable and the data flow is clearly traceable from the input to the 

output. 

The work proposed a deep learning model, ATMH-WNet (Attention-based Transformer to Multi-Horizon Weather- aware 

Forecasting), which is designed to train on time-series inputs of multivariate data to learn meaningful time-resolved 

representations, and to generate explicit multi-step predictions end-to-end. The general ATMH-WNet operational structure is 

outlined in Figure- 10, and it focuses on the way the model would convert a historical input window into a compressed contextual 

representation of the data and then project it to the required forecast horizon. The proposed design is following clear sequential 

pipeline so that the intermediate representations are still interpretable and the data flow is clearly traceable from the input to the 

output. 

  

Partition Year Range Number of Samples Percentage (%) 

Training Set 2002 – 2014 113,735 78.55% 

Validation Set 2015 – 2015 8,569 5.92% 

Test Set 2016 – 2018 22,489 15.53% 

Total 2002 – 2018 144,793 100.00% 
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Figure 10: Overview of the proposed ATMH-WNet architecture for attention-based multi-horizon weather-aware forecasting, 

showing the sequential pipeline from input embedding and positional encoding to Transformer-based temporal representation 

learning and the final multi-horizon prediction head. 

The ATMH-WNet consists of three major parts which are working in series. First, the raw input sequence is first transformed into a 

Transformer-compatible latent representation using a linear feature embedding layer and the temporal order information is added 

using sinusoidal positional encoding. This phase is to make sure that the model is able to handle heterogeneous sets of features 

as well as maintain time-step sequence required in the temporal modeling. Second, the embeddings with the encoded temporal 

information are fed through an attention-enhanced Transformer encoder, a stack of overlaid encoder layers, in which multi-head 

self-attention records relationship between various time steps and position-wise feed-forward sublayers generalize the results of 

the learned representations. This means, the encoder attends different of the parts of the historical window and builds 

contextualized sequence features that reflect both the short-term variations as well as the longer-range dependency on the input. 

Lastly, ATMH-WNet uses a small temporal aggregation mechanism by choosing the last time-step encoding of the coded sequence 

as a summative context vector, uses dropout regularization, and enters the ensuing vector into a small output head. The output 

head is a linear projection that can produce the direct multi-horizon forecast using a single forward pass and thus efficient inference 

without being required to undergo recursive prediction processes. 

 

3.4.1. Input Embedding and Positional Encoding 

The initial phase of ATMH-WNet, as shown in Figure- 11, will be aimed at transforming the raw multivariate time- series 

observations into a format that is temporal in nature and can be highly processed by an attention-based encoder. Since the 

behavior of the proposed model is implemented in the space of latent features-non-rational spaces that are of fixed dimension-

that feature space, this stage has two complementary functions, projecting in a fixed-dimensional space the heterogeneous input 

variables, and explicitly encoding the temporal order of observations. Together, these operations can ensure that the next-stage 

attention mechanism can jointly reason about the interaction of features without any handcrafted temporal assumptions and 

temporal patterns. 

 

Let the historical input sequence be represented as 

𝑋 ∈  ℝ𝐵 × 𝑇 × 𝐹 ,      (1) 

where 𝐵 denotes the batch size, 𝑇 the length of the input window, and 𝐹 the number of observed variables. To align the input with 

the Transformer architecture, each feature vector is first mapped into a higher-dimensional embedding space using a linear 

projection. This embedding operation is formulated as, 

 

𝐸 =  𝑋𝑊𝑒 +  𝑏𝑒,                                                             (2) 
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where 𝑊𝑒  ∈  ℝ𝐹 ×𝑑𝑚𝑜𝑑𝑒𝑙 and 𝑏𝑒  ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙 are learnable parameters, and 𝑑model denotes the embedding dimension. This 

transformation enables the model to represent all input variables within a unified latent space while preserving the original 

temporal resolution. 

 

However, linear embedding alone does not convey any information about the ordering of time steps. To address this limitation, 

ATMH-WNet incorporates sinusoidal positional encoding, which injects deterministic temporal information into the embedded 

sequence. For a given time index 𝑡 and embedding dimension 𝑖, the positional encoding is defined as, 

 

𝑃𝐸𝑡,2𝑖 = sin (
𝑡

10000
2𝑖

𝑑𝑚𝑜𝑑𝑎𝑙

) ,  𝑃𝐸𝑡,2𝑖+1 = cos (
𝑡

10000
2𝑖

𝑑𝑚𝑜𝑑𝑎𝑙

) ,    (3) 

 

The positional encoding is then combined with the embedded features through element-wise addition, 

 

𝑍 =  𝐸 +  𝑃𝐸,      (4) 

 

resulting in a temporally aware representation 𝑍 ∈  ℝ𝐵×𝑇 ×𝑑𝑚𝑜𝑑𝑒𝑙 . This representation preserves both feature-level information and 

temporal ordering, allowing the attention-based encoder to model dependencies across the entire input window. The encoded 

sequence 𝑍 thus forms the input to the Transformer encoder and provides the foundation for learning contextual temporal 

representations in the subsequent stage of ATMH-WNet. 

 

 
Figure 11: Input embedding and sinusoidal positional encoding module of ATMH-WNet, where multivariate time- series inputs 

are projected into a 𝑑𝑚𝑜𝑑𝑒𝑙 dimensional latent space and augmented with temporal position information to form Transformer-

ready representations. 

3.4.2. Attention-Enhanced Transformer Encoder 

Following the input embedding and positional encoding phase, ATMH-WNet uses an attention-enhanced Trans- former encoder 

to acquire the contextualized temporal representations on the input sequence encoded during the input embedding and positional 

encoding phase. As shown in Figure- 12, this component serves as the building blocks of fitting (temporal modeling) within the 

proposed architecture as it helps the model to capture the short term dynamics and also the long range dependencies inside the 

historical window. Whereas from recurrent structures, the Encoder of Transformer will simply take the entire sequence as inputs to 

build the model so that each time step can selectively attend to every other position in the sequence to build up a globally informed 

temporal representation. 

Let the temporally encoded input sequence obtained from the previous stage be denoted as, 

𝑍 ∈  ℝ𝐵×𝑇 ×𝑑𝑚𝑜𝑑𝑒𝑙  ,      (5) 

which is fed into a stack of 𝐿 Transformer encoder layers. Within each encoder layer, the input is first projected into query, key, 

and value spaces as 

𝑄 =  𝑍𝑊𝑄 , 𝐾 = 𝑍𝑊𝐾  ,   𝑉 = 𝑍𝑊𝑉 ,   (6) 

where 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 are learnable projection matrices. The scaled dot-product self-attention mechanism is then computed as 

𝑆𝐴(𝑍) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)  𝑉,       (7) 

giving the model the freedom to give a contribution to any time step depending on its relevance to others. In order to increase 

the representational capacity, ATMH-WNet uses a multi-head attention formulation, in which several self- attention heads are 

calculated simultaneously and stacked together as, 

𝑀𝐻𝑆𝐴(𝑍) =  𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝐻 )𝑊𝑂,                             (8) 

with 𝑊𝑂 denoting the output projection matrix. 
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The result of the multi-head self-attention block is then optimized by a position-wise feed forward-network as specified below 

𝐹𝐹𝑁(ℎ) =  𝐺𝐸𝐿𝑈(ℎ𝑊1  +  𝑏1)𝑊2  +  𝑏2,                                         (9) 

where GELU is used as the activation function. By adding several such encoder layers, the model performs successive refinements 

on the part of the temporal representation - leading to an encoded sequence 

𝐻 ∈  ℝ𝐵×𝑇 ×𝑑𝑚𝑜𝑑𝑒𝑙 ,      (10) 

that captures contextual information across the entire input window. 

ATMH-WNet uses temporal aggregation to have a compact summary to predict the future, which is to choose the representation 

at the last time step, 

ℎ𝑇  =  𝐻[∶, −1, ∶],      (11) 

where ℎ𝑇  ∈  ℝ𝐵×𝑑𝑚𝑜𝑑𝑒𝑙 . This vector contains the contextual building up of time values till last observation, which finally is fed to 

the next output head for direct multi-horizon forecasts generation. 

 

 

Figure 12: Attention-enhanced Transformer encoder module of ATMH-WNet, where the temporally encoded input se- quence is 

processed by a stack of multi-head self-attention encoder layers to learn contextual temporal representations; the final time-step 

embedding is selected as a compact context vector for subsequent multi-horizon forecasting. 

3.4.3. Multi-Horizon Output Head 

Following the process of temporal representation learning, ATMH-WNet is able to produce multi-horizon forecasts on the basis 

of a lightweight output head that project the learned context into the target prediction space. Unlike recursive forecasting methods, 

the suggested design computes all future actions in one forward step, making the inference process simple and eliminating the 

multi-horizon compounding errors. The output head works directly on the regularized context vector that is generated at the end 

of the Transformer encoder stage. 

Let the context vector after dropout be denoted as, 

ℎ̃𝑇  =  𝐷𝑟𝑜𝑝𝑜𝑢𝑡(ℎ𝑇) ,     (12) 

whereℎ̃𝑇  ∈  ℝ𝐵×𝑑𝑚𝑜𝑑𝑒𝑙 . The model then applies a linear projection to produce horizon-wise predictions. This mapping is defined 

as,  

𝑦̂  = ℎ̃𝑇  𝑊𝑜  +  𝑏𝑜,      (13) 

where 𝑊𝑜  ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝐻 , 𝑏𝑜  ∈  ℝ𝐻 , and 𝐻 denotes the forecast horizon. Accordingly, the predicted output satisfies 

𝑌̂  ∈  ℝ𝐵×𝐻 ,       (14) 

which in this work corresponds to a 24-step forecast. To make the horizon-wise structure explicit, the prediction vector for the 𝑏-

th sample can be written as 

𝑦̂(𝑏)  =  [𝑦̂1
(𝑏)

, 𝑦̂2
(𝑏)

, … , 𝑦̂(𝑏)𝐻] ,     (15) 
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where 𝑦̂ℎ
(𝑏)

 denotes the prediction at horizon ℎ. During training, ATMH-WNet learns the output head parameters jointly with the 

encoder by minimizing the discrepancy between the predicted and ground-truth multi-horizon targets. Let 𝑌 ∈  ℝ𝐵×𝐻 denote the 

ground truth; the objective used in this work is the mean squared error loss, 

𝐿𝑀𝑆𝐸 =
1

𝐵𝐻
 ∑ ∑ (𝑌̂𝑏,ℎ − 𝑌𝑏,ℎ)

2𝐻
ℎ=1

𝐵
𝑏=1      (16) 

This expression motivates the model to train one, unified, temporal context representation, which can be used to make accurate 

predictions on all horizons simultaneously, but is nonetheless simple enough to be easily deployed as a linear output prediction. 

To conclude, the proposed ATMH-WNet was introduced in this section as a stepwise attention-based method of multi-horizon 

weather-aware forecasting. The model first transforms the raw multivariate inputs from a latent sequence into a Transformers 

compatible form using linear feature embedding and sinusoidal positional encoding to make sure to explicitly preserve the feature 

interactions as well as the temporal order. The temporally encoded sequence is thus processed using a stack of Transformer 

encoder layers, whereby multi-head self-attention discovers contextual representations through selective aggregation of 

information within the window of the historical sequence. In order to support this efficiently whilst forecasting, ATMH-WNet takes 

the last encoded time step as the compact context vector and maps it to future time steps through linear output head to exert 

direct multi-step predictable forecasts with just one forward pass. These parts are collectively an end-to-end differentiable chain 

with a distinct contribution at each stage towards representation building and prediction. The following section is the description 

of the training methodology and the experimental protocol for testing ATMH-WNet under multi-horizon forecasts condition. 

Table 4 

Algorithmic description of the proposed ATMH-WNet for direct multi-horizon forecasting 

 

Step Operation 

Input Receive a historical multivariate window 𝑋 ∈  ℝ𝐵×𝑇 ×𝐹 and target 𝑌 ∈  ℝ𝐵×𝐻 . 

1 Feature embedding: project input features into the model latent space using a linear map 𝐸 =  𝑋𝑊𝑒  +  𝑏𝑒 , 

where 𝑊𝑒  ∈  ℝ𝐹 ×𝑑𝑚𝑜𝑑𝑒𝑙 . 

2 Positional encoding: construct sinusoidal 𝑃𝐸 ∈  ℝ𝑇 ×𝑑𝑚𝑜𝑑𝑒𝑙 and inject temporal order by element-wise addition 

𝑍 =  𝐸 +  𝑃𝐸. 

3 Temporal representation learning: apply a Transformer encoder stack (depth 𝐿) to obtain contextual sequence 

features 𝐻 =  𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐(𝑍), where 𝐻 ∈  ℝ𝐵×𝑇 ×𝑑𝑚𝑜𝑑𝑒𝑙 . 

4 Temporal aggregation: select the last time-step representation as a compact context vector ℎ𝑇  =  𝐻[∶, −1, ∶]  ∈

 ℝ𝐵×𝑑𝑚𝑜𝑑𝑒𝑙 . 

5 Regularization: apply dropout ℎ̃𝑇  =  𝐷𝑟𝑜𝑝𝑜𝑢𝑡(ℎ𝑇 ). 

6 Multi-horizon output: generate direct forecasts using a linear output head 𝑌̂  = 

ℎ̃𝑇 𝑊𝑜  +  𝑏𝑜 , yielding 𝑌̂  ∈  ℝ𝐵×𝐻 . 

Objective Optimize parameters by minimizing the mean squared error 𝐿𝑀𝑆𝐸 =
1

𝐵𝐻
 ∑ ∑ (𝑌̂𝑏,ℎ − 𝑌𝑏,ℎ)

2𝐻
ℎ=1

𝐵
𝑏=1 . 

 

Table 5 

Hyperparameter configuration used for ATMH-WNet training and inference. 

Category Value Notes 

Model architecture   

Embedding dimension (𝑑𝑚𝑜𝑑𝑒𝑙) 128 Linear feature embedding 𝐹 →  𝑑𝑚𝑜𝑑𝑒𝑙. 

Number of heads (𝑛head) 8 Multi-head self-attention. 

Encoder layers (𝐿) 4 Transformer encoder depth. 

FFN hidden size 512 dim_feedforward = 512 with GELU. 

Activation GELU Used inside encoder feed-forward block. 

Dropout rate 0.1 Applied within encoder layers and before output head. 

Forecast horizon (𝐻) 24 Direct multi-horizon output dimension. 

Positional encoding max length 5000 Sinusoidal encoding buffer length. 

Optimization and training   
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Optimizer RAdam From torch-optimizer. 

Learning rate 0.001 Fixed initial learning rate. 

Betas (𝛽1, 𝛽2) (0.9, 0.999) RAdam momentum coefficients. 

Epsilon (𝜖) 1 × 10−8 Numerical stability. 

Weight decay 0.01 𝐿2 regularization. 

Loss function MSE 𝐺𝑀𝑆𝐸 for multi-horizon regression. 

Batch size 64 Mini-batch size for train- 

ing/validation/testing. 

Max epochs 50 Upper bound on training epochs. 

Early stopping patience 10 Stop if validation loss does not improve. 

Gradient clipping 1.0 𝓁2-norm clipping to stabilize updates. 

LR scheduler ReduceLROnPl

ateau 

Monitors validation loss. 

Scheduler factor 0.5 Multiply LR by 0.5 on plateau. 

Scheduler patience 5 Plateau patience before LR reduction. 

 

3.5 Baseline Models 

To ensure a robust evaluation of any proposed forecasting methodology, we implement five canonical baseline models that 

represent distinct methodological paradigms. These models provide a comprehensive benchmark against which performance 

improvements can be meaningfully assessed. 

 

 

3.5.1. Persistence Model 

The Persistence model, or naive forecast, serves as the simplest possible benchmark. It assumes the future value will be identical 

to the last observed value, formalized as: 

𝑦̂𝑡+ℎ = 𝑦𝑡      (17) 

 

Where 𝑦̂𝑡+ℎ   is the ℎ-step ahead forecast. This model requires no parameter estimation and establishes the absolute minimum 

performance threshold any serious forecasting model must exceed. 

It’s inclusion is critical for calculating skill scores and testing whether a proposed model captures any meaningful temporal pattern 

beyond simple autocorrelation. While simplistic, it remains a surprisingly strong benchmark for very short-term forecasts in systems 

with high inertia, such as meteorology and energy load forecasting. 

 

3.5.2. SARIMA Model 

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model represents the classical linear approach to time series 

analysis. Denoted as ARIMA(𝑝, 𝑑, 𝑞)(𝑃 , 𝐷, 𝑄) 𝑠 , it extends the Box-Jenkins methodology to explicitly capture seasonal patterns 

through the equation: 

 

𝜙𝑝 (𝐵)𝛷𝑝 (𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠 )𝐷 𝑦𝑡 =   𝜃𝑞 (𝐵)Θ𝑄 (𝐵𝑠 )𝜖𝑡                           (18) 

 

where 𝜙_𝑝,  𝜃_𝑞 are non-seasonal ARMA components, 𝜙_𝑝, Θ_𝑄 are seasonal components, and 𝜖_1 is white noise. 

SARIMA provides a rigorous, interpretable framework for modeling trend, seasonality, and serial correlation in stationary series. Its 

systematic identification-estimation-diagnostic procedure offers a principled benchmark against which more complex, data-driven 

models must justify their additional complexity, particularly in economic and demand forecasting applications. 

 

3.5.3. XGBoost Model 

XGBoost (eXtreme Gradient Boosting) serves as a state-of-the-art machine learning benchmark that utilizes gradient-boosted 

decision trees. It minimizes a regularized objective function during training:  

                                                                

ℒ(𝜙) = ∑ 𝑙(𝑦𝑖
𝑛
𝑖=1 , 𝑦̂𝑖) + ∑ Ω𝑘

𝑘=1 (𝑓𝑘)                               (19) 

                                                                                                                                 

 

where 𝑙 is a differentiable loss function and Ω penalizes model complexity. This formulation provides built-in regularization to 

prevent overfitting. 
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For time series applications, XGBoost requires feature engineering including lagged variables, rolling statistics, and seasonal 

indicators. Its strengths as a benchmark include excellent handling of non-linear relationships, robustness to outliers, 

computational efficiency, and provision of feature importance scores, making it a dominant performer in forecasting competitions 

and industrial applications. 

 

3.5.4. LSTM Model 

The Long Short-Term Memory (LSTM) network represents the deep learning paradigm for sequential data. Its gated architecture 

addresses the vanishing gradient problem through memory cells that regulate information flow via: 

                                                        𝐶𝑡  =  𝑓𝑡  ⊙  𝐶𝑡−1  +  𝑖𝑡  ⊙  𝐶𝑡̃                                                (20) 

                                                                      ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝐶𝑡) 

 

where𝑓𝑡 , 𝑖𝑡, 𝑜𝑡 are forget, input, and output gates, 𝐶𝑡 is the cell state, and ℎ𝑡 is the hidden state. This structure enables learning of 

long-range temporal dependencies. 

As a baseline, LSTM captures complex non-linear patterns directly from sequential data without extensive feature engineering. It 

has become the standard deep learning benchmark in domains requiring modeling of temporal dynamics, such as energy load 

forecasting, financial volatility prediction, and any application where long-term dependencies are crucial. 

 

3.5.5. Prophet Model 

Prophet is an additive decomposition model designed for practical forecasting with strong seasonality. It models time series as: 

𝑦(𝑡) =  𝑔(𝑡) +  𝑠(𝑡) +  ℎ(𝑡) + 𝜖𝑡                                            (21)   

                                                                                    

where 𝑔(𝑡) represents trend (modeled as piecewise linear or logistic growth), 𝑠(𝑡) captures seasonality using Fourier series, ℎ(𝑡) 

accounts for holiday effects, and 𝜖𝑡 is normally distributed error. 

Developed by Facebook, Prophet automates many aspects of forecasting including changepoint detection, missing data handling, 

and uncertainty quantification. It serves as an excellent benchmark for business-oriented time series with multiple seasonal 

patterns, known calendar events, and occasional structural breaks, requiring minimal configuration while providing interpretable 

components. 

 

4. Result and Discussion 

This section presents a comprehensive evaluation and discussion of the experimental results obtained using the proposed ATMH-

WNet for multi-horizon load forecasting of power grid systems. The analysis includes the performance metrics that are quantitative 

and also the qualitative and assessing the camps and quality of correctness, to try and get a complete perspective on the 

forecasting capability of the model or the practical application of complete reliability. Comparative experiments are performed 

against benchmark models from well-known statistics, machine learning, and deep learning approaches under controlled 

experimental conditions. The results are interpreted with several accuracy measures such as MAE, RMSE, MAPE, and the coefficient 

of determination (𝑅2), in order to ensure a fair and transparent comparison from different evaluation points of view. In addition, 

the visual inspections of the predicted versus the actual load profiles, convergence behaviour during training, and the analysis of 

detailed errors are used to check the temporal consistency, generalization, and robustness. Through this multi-level evaluation, 

the pros and cons of the proposed approach are critically examined and its effectiveness in terms of intelligent energy management 

and real-world power system application is highlighted. 

 

4.1. Experimental Setup and Software Configuration 

All of the experiments were run in Google Colab Premium, which is a cloud-based high-performance computing environment that 

can be used to train deep learning models. In order to speed up the training process and ensure computational efficiency, an 

Nvidia Tesla T4 GPU was used throughout the experimental process. This configuration allowed us to train the proposed deep 

Transformer-based architecture in a stable and efficient way, especially for tasks in short-horizon inferiority tasks on large-scale 

time-series data. The proposed model of ATMH- Net was implemented with a deep learning framework called PyTorch, which was 

chosen for its flexibility and ability to run Transformer architectures effectively. Standard functionalities of PyTorch were used to 

create the attention-based encoder mechanism of Transformer, the positional encoding mechanism, and the multi-horizon output 

layers. The training pipeline was also backed up by widely used scientific computing libraries that included NumPy’s numerical 

operations, Matplotlib’s visualization and Scikit-learn’s evaluation metrics of performance. 

To enable stable convergence in the training process, the RAdam optimizer was adopted, which incorporates the advantages of 

dynamic learning rates and also variance rectification. This optimizer proved to be particularly helpful in taking away early-stage 

training instability that is typical in deep Transformer models. The learning rate was initially set at 1 × 10−3. ReduceLROnPlateau 

learning rate Scheduler is used dynamically to adjust the learning rate by observing the trends of the validation loss. In addition, 

we employed gradient clipping to prevent gradient explosion as well as further increase training stability. The loss function was 

specified within the mean squared error (MSE), which is very suitable for the multi-step load forecasting problems with continuous 
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values. Early stopping was implemented based on the validation performance, to prevent the model from overfitting and to keep 

the best-performing model parameters. The last model checkpoint with minimum validation loss was then used to evaluate the 

tests. All data sets were preprocessed and normalized before being used to train models and inverse scaling was applied during 

the evaluation stage to ensure that results were reported in their original physical units. In this study, when considering edge 

prediction models, overall, it was ensured to be reproducible, computationally efficient, and fairly evaluated the proposed ATMH-

WNet framework under the realistic energy forecasting condition. 

 

4.2. Comparative Performance Analysis with Benchmark Models 

A rigorous comparison with established models of forecasting is important to establish the effectiveness and relevance and 

practicability of a newly proposed framework. Accordingly, the performance of the proposed ATMH-WNet is compared to an 

extensive set of benchmark models corresponding to different methodological categories, which comprises naive persistence 

approaches and classical statistical time series models, machine learning methodologies and deep learning based architectures. 

Such as diverse benchmarking strategy allows the benchmarking to be fair and unbiased under identical experimental conditions. 

The evaluation is performed on the held-out test set and standard accuracy measures, i.e., mean absolute error (MAE), root mean 

squared error (RMSE), mean absolute percentage error (MAPE), and the coefficient of determination 𝑅2.) These metrics provide a 

collective measure of forecasting accuracy, error spread and goodness of fit, which can be used to comprehensively understand 

the ability of each model to capture complex temporal patterns and variations in demand and load on power.  

 

Table 6 

Comparative performance of ATMH-WNet against benchmark forecasting models on the test set using MAE, RMSE, MAPE, and 𝑅2 

metrics            

Model MAE RMSE MAPE R² 

Persistence 4500 6200 10.5 0.75 

SARIMA 3100 4300 7.2 0.88 

Prophet 2600 3800 6.0 0.91 

XGBoost 1900 2700 4.3 0.94 

LSTM 1700 2400 3.8 0.95 

ATMH-WNet (Proposed) 1325 1873 2.9 0.97 

 

The comparative results given in Table 6 give a detailed evaluation of the proposed ATMH-WNet against a diverse set of 

benchmark forecasting models on the test data set. The persistence model, assuming that load will remain the same in the future 

as it was measured most recently, has the worst performance on all metrics. Its high values of MAE and RMSE can be seen as an 

indicator of low ability of its implementation to capture temporal dynamics, since the low value of 𝑅2 can be considered as the 

confirmation of the poor explanatory power of naive approaches for complex load forecasting tasks.  

The classical SARIMA model shows noticeable improvements over persistence by modeling the linear temporal dependencies and 

modeling of seasonal patterns. However, its relatively higher values of errors indicate the limitations in handling of nonlinear 

relationships and external factors such as weather variability. Similarly, Prophet further attempts to reduce the forecasting errors 

by including the trend and seasonality elements, which, as a result, gives better accuracy and goodness-of-fit. Being based on 

additive components and predefined assumptions, however, its performance is limited in the scope of capturing complex demand 

fluctuations. Among machine learning approaches, XGBoost achieves huge gains, which is a reflection of its strength in modeling 

nonlinear relationships using the approach of ensemble learning. The lower MAE value, RMSE value, and MAPE value are the 

indicators of the effective pattern learning process compared with the statistical models. The LSTM model provides further benefits 

to forecast more precisely, as it explicitly models sequential dependencies to prove the advantage of deep learning architectures 

for time series data. Despite this, its recurrent structure can limit itself to parallelization and the modeling of long-range 

dependencies. 

In comparison, the proposed ATMH-WNet performs better than the state-of-the-art models in all evaluation measures. It yields 

the lowest MAE and RMSE, the smallest MAPE value, 𝑅2 score is the highest and pointing to superior accuracy, robustness and 

good explaining capability. These improvements could be attributed to the attentionenhanced Transformer architecture which 

quite effectively captures long-term temporal dependencies, as well as the inclusion of weather-aware inputs which are 

multivariate. The multi-horizon forecasting design also allows ATMHWNet to jointly learn interdependencies across the future time 

steps, to make load predictions in a more reliable and accurate way. Overall, the results confirm the efficacy of ATMH-WNet as a 

powerful and high-performance framework for intelligent load forecasting for power grid applications. 
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4.3 Training Dynamics and Convergence Analysis 

An analysis of the training behavior has been highly important in order to understand the stability, convergence, and the ability of 

generalization of the deep learning models. Accordingly, the learning dynamics of the proposed ATMH-WNet are explored in 

terms of training and validation loss value changes over the number of epochs. Monitoring these trajectory manifold loss helps us 

gain some insights into how well something termed as an optimal strategy is working, as well as how well the model was learning 

anything about meaningful representations without overfitting. In particular, the interaction between the Transformer architecture 

that relies on the attention mechanism and the adopted optimization scheme plays a key role in achieving stable convergence. 

The strategy of using a validation-based learning rate scheduler and early stopping aids in controlled training behaviour even 

further. By analyzing the loss curves, this subsection points out the joint optimization between the convergence speed and the 

generalization performance of ATMH-WNet, and can therefore guarantee the stable multi-horizon load forecasting under the real-

world operating conditions. 

 

There is a small gap between the training and validation loss curves in every epoch, showing that it is a good balance between 

bias and variance. This controlled separation is desirable for practical applications of forecasting, so it is shown that ATMH-WNet 

is able to learn meaningful temporal and weather-dependent patterns, without memorizing noise contained in training data. 

Furthermore, that the validation loss stabilized after several epochs, suggests that the early stopping mechanism managed to 

determine early a point of optimal training, avoiding unnecessary over-optimization as well. 

 
Figure 73: Training and validation loss curves of ATMH-WNet using the RAdam optimizer (MSE loss) across epochs. 

Overall, the observed loss trajectories prove that ATMH-WNet has stable convergence and good generalization performance. The 

synergy of the Transformer-based attention mechanism and RAdam optimizer allows for efficient learn the long-term 

dependencies while maintaining robustness across unseen data. These characteristics are especially important in multi-horizon 

load forecast tasks, where faithfulness of generalization has a direct effect on the efficiency of intelligent energy management and 

decision-making operation in power grid systems. 

3.2 Qualitative Evaluation of Load Forecasting Performance 

Beyond quantitative measures of numerical errors, qualitative evaluation is very important for developing insight into the practical 

forecast behavior and reliability of deep learning models. Accordingly, visual inspection of predicted and actual load profiles 

provides valuable information about a model's capacity to capture temporal patterns, demand variability, and also the 

generalization characteristics. Such is the importance of such analysis for multi-horizon load forecasting, where proper tracking of 

the peak-valley dynamics and their temporal matching has direct implications in the power systems operational decision-making 

process. By studying time-series predictions against the distributional relationships attaching predicted to observed values, it 

becomes possible to study both local temporal accuracy and global consistency. This assessment is quite qualitative and 

complements the quantitative performance measures that offer more knowledge about the learning capabilities of the proposed 

ATMH-WNet regarding the solution of complex demand patterns under actual testing conditions. 

 

Figure 14 shows a comparative visualization of the actual and the predicted load profiles on the test set over an example sample 

period, which provides an interesting insight into the temporal forecasting behavior of the proposed ATMH-WNet. The predicted 
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load curve shows a good agreement with the actual load trajectory, indicating the effectiveness of the model to faithfully monitor 

the short-term fluctuations of the load in addition to longer time variations of the demand. In particular, the model is good at 

capturing the elevated peak-valley cycles that are typical of electricity demand patterns and evidence robust learning of temporal 

periodic dependencies. 

 

 
Figure 14: Actual versus predicted load profiles on the test set over a representative sample period using the proposed ATMH-

WNet. 

 

 

Throughout our sample period, ATMH-WNet is in close phase with the actual load, with only a noticeable time lag between the 

prediction and the actual load peaks and troughs. This temporal consistency is of immense importance for Multi-Horizon 

Forecasting, for example, for power system applications, for which even small shifts in their phases are highly detrimental to optimal 

operational decision-making. The fact the proposed model can maintain temporal alignment indicates that the attention-based 

model architecture, the Transformer, is successful at modeling long-range dependencies in the input sequence. 

Furthermore, the values of the predicted loads are stable during periods of high demand variability, when fluctuations would be 

over-smoothed or over-amplified. This behavior is a balanced bias-variance tradeoff, and also an indication of a model that 

generalizes well beyond the training data. Interestingly, even in the event of sudden changes in load levels, ATMH-WNet exhibits 

adaptive forecasting behavior adjusting the predictions in a smooth way without susceptibility to spurious oscillations. 

 

The close correspondence between actual and predicted profiles over a larger span of time underlines the success of having 

weather-aware multivariate inputs integrated in the Transformer framework. By combining the load patterns according to historical 

data together with exogenous meteorological influences, ATMH-WNet provides reliable and consistent forecast results under 

different operation conditions. Overall, this qualitative evaluation process proves that the proposed model not only has high 

numerical accuracy performance but also strong temporal coherence and generalization ability, which further confirms its 

suitability for intelligent energy management and the short-term load prediction process of the power grid's actual environment. 
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Figure 15: Scatter plot of predicted versus actual load on the test set using the proposed ATMH-WNet. The dashed diagonal line 

represents the ideal prediction (𝑦 = 𝑥). 

 

Figure 15 presents the scatter plot of predicted and actual load values on the test set to give an overall distributional analysis of 

the forecasting performance of the proposed ATMH-WNet. Each point indicates an individual prediction-observation relationship 

and the dashed diagonal line indicates the ideal prediction scenario in which the predicted load is exactly the same as the actual 

load. The clustering of data points closely around this ideal line over the range of loads is a good indication that there is a good 

agreement between predicted and observed values. 

 

Notably, the motive may be said to be of the same alignment for the low, medium, and high load regimes dirtiness showing 

embedded a conceivable fixedness of predictive accuracy in the change in demand. This behavior is especially important in power 

system applications, as forecast errors in the peak demand periods could have great operational and economic effects. The lack 

of systematic deviation, on either side of the diagonal, implies that the proposed model does not show persistent overprediction 

or underprediction bias, that is, the model has a well-calibrated forecasting behavior. 

Although moderate dispersion of points can be seen around the diagonal line, the amount of spread is rather symmetric and 

bounded, which is an indication of stabilized error characteristics, rather than outliers occurring sporadically. This dispersion can 

be explained by endogenous factors involved in the variation of electricity demand and exogenous factors, but the linear structure 

of the overall behavior confirms that ATMH-WNet can capture the prevailing demand patterns well. The large number of points 

close to the diagonal provides further support for the large coefficient of determination from the quantitative evaluation, and 

aesthetic support for the large value of R^2 from the model. 

 

Overall, the scatter plot shows that ATMH-WNet is a generalized model for unseen data that has consistent predictive capability 

against the full spectrum of the operating loads. By sealing collaboration between the attention-based uniqueness of Transformer 

representations and weather-aware multivariate inputs, the proposed affiliate is able to provide dependable and unbiased load 

forecasts. These characteristics highlight its potential for real-world deployment in intelligent energy management systems, where 

robustness and accuracy under a variety of operating conditions are of prime importance. 

 

3.3 Error Analysis 

A thorough analysis of the error is crucial to better understand the reliability, robustness and limitations of forecasting models in 

addition to aggregate performance measures. While we can measure overall accuracy measures giving a summary of predictive 

performance, we cannot fully get an idea of how errors are distributed over time, operating conditions, or demand regimes. 
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Accordingly, investigating prediction errors from a variety of different perspectives permits a more rigorous evaluation of model 

behaviour with realistic scenarios. Such analysis is especially important in power load forecasting, where the demand is variable 

and the peak hour dynamics and extreme events may have a significant impact on forecasting reliability. By examining the 

temporal patterns of errors, the distributional nature of errors, and errors related to different regimes, it is intended in this 

subsection to quantify the extent of consistency of this proposed ATMH-WNet under different circumstances. This error-oriented 

investigation complements the quantitative results and supports the identification of the capacities for improvement, in addition 

to the strengths of the proposed forecasting framework. 

Figure 16 illustrates the distribution of prediction errors for the proposed ATMH-WNet on the test set, where the error is defined 

as the difference between actual and predicted load values. The error distribution exhibits a pronounced central peak closely 

aligned with the zero-error reference line, indicating that the majority of predictions are associated with small residuals. This 

concentration around zero reflects a low systematic bias and demonstrates that ATMH-WNet produces well-calibrated forecasts 

across diverse operating conditions. 

The distribution is approximately symmetric around the mean, suggesting that overestimation and underestimation errors occur 

with comparable frequency. Such balanced error behavior is a desirable characteristic in load forecasting applications, as it implies 

the absence of persistent directional bias that could otherwise compromise operational decision-making. Furthermore, the 

relatively narrow spread of the central mass highlights the model’s strong predictive consistency, reinforcing its ability to generate 

stable forecasts over a wide range of demand levels. 

 

While the distribution exhibits extended tails on both sides, these correspond to infrequent extreme error events, which are 

commonly associated with abrupt demand changes, rare weather anomalies, or sudden operational disruptions in real-world power 

systems. Importantly, the low density of such extreme errors indicates that ATMH-WNet effectively mitigates large deviations for 

the majority of time steps. This behavior underscores the robustness of the proposed attention-based Transformer architecture in 

capturing complex temporal and weather-driven demand patterns. 

 
Figure 16: Distribution of prediction errors on the test set for ATMH-WNet, where the error is defined as (Actual − Predicted) in 

MW. 

 

 

Overall, the error distribution provides strong empirical evidence that ATMH-WNet achieves high forecasting accuracy with 

minimal residual variability. The dominance of low-magnitude errors, combined with a near-zero mean and balanced dispersion, 

confirms that the proposed model outperforms competing approaches not only in aggregate performance metrics but also in 

terms of error stability and reliability. These characteristics are particularly critical for intelligent energy management systems, 

where consistently low and unbiased forecasting errors directly contribute to improved operational efficiency and system resilience. 

test set, which is defined as the difference between actual and prediction loads values. The error distribution has a strong peak 

around the line of zero error, indicating that the majority of the predictions are associated with small residuals. This concentration 
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around zero is an indication of a low systematic error and shows that ATMH-WNet results in well-calibrated forecasts in a wide 

range of operating conditions. 

 

The Distribution is about symmetric around the mean, so there is a similar number of overestimation and underestimation errors. 

Such balanced behavior of errors is a desired property of load forecasting applications, since it suggests the lack of persistent 

directional bias, which might otherwise lead to a compromise in the formulation of operational decisions. Furthermore, the 

relatively narrow distribution of the central mass points to the strong predictive consistency of the model, which provides even 

more strength for it to generate stable forecasts across a wide spectrum of demand conditions. 

 

 
Figure 17: Residual plot of prediction errors over time for ATMH-WNet on the test set, where the error is defined as (Actual − 

Predicted) in MW. 

 

Figure 17 shows the distribution of the prediction error for the proposed ATMH-WNet on the  

While the distribution shows prolonged tails on either side, these reflect rare extreme error events (which are often found for 

abrupt changes in demand, for rare weather anomalies, or for unexpected banked operator is taken out in real power systems). 

Importantly, the low frequency of such abnormal errors suggests the effective control of the large deviations for the majority of 

time steps by ATMH-WNet. This behaviour highlights the robustness of the proposed Transformer architecture based on attention 

in capturing complex temporal weather-driven demand patterns. 

 

In summary, the error distribution is good evidence in practice that ATMH-WNet has high forecasting accuracy with low residual 

variability. The predominance of low magnitude errors coupled with a near-zero mean and balanced dispersion substantiates the 

fact that the proposed model fares better as compared to competing approaches, not only in aggregate performance parameters 

but also in terms of error stability and reliability. These characteristics are especially vital for intelligent energy management 

systems, where reliably low and unbiased results of forecasting errors make a direct contribution to the operational efficiency of 

energy systems and their resilience. 

 

Figure 19 shows the average absolute error heatmap of the proposed ATMH-WNet, which is divided by day of the week and hour 

of the day, giving a fine-grained view of the temporal distribution of forecasting errors on the test set. This visualization shows the 

accuracy of a prediction in a range of time periods, which is a great insight into how the model performs under a variety of different 

demand regimes. Lighter color areas represent average lower errors, while darker color has the larger magnitude of errors. 
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Figure 18: Q–Q plot of prediction errors for ATMH-WNet on the test set. The red reference line indicates the theoretical normal 

quantiles; deviations from the line reflect non-Gaussian error behavior and tail effects. 

 

 

 
Figure 19: Average absolute error heatmap (day of week versus hour of day) for ATMH-WNet on the test set, highlighting time-

dependent variations in forecasting error magnitude. 

 

 

The heatmap indicates that the forecasting errors are generally lower during early morning hours on any of the days of the week, 

a time period usually associated with relatively stable and predictable electricity demand. As the day proceeds, the magnitudes of 

errors gradually rise, especially in the afternoon and evening periods, because demand variability is more severe at this time of 

day due to commercial activities, consumption requirements of residences reaching the highest point and enhanced sensitivity to 

weather conditions. This pattern is consistently seen throughout the weekdays and weekends, thus indicating the high impact of 

intraday demand dynamics on the understanding of the forecasting challenge. 
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Importantly, no abrupt error spikes nor blips from irregularities during certain days suggest that ATMH-WNet performs stable 

operations all the way through the weekly cycle. The smoothness of the change in the intensity of the error as a function of hour 

of day implies that the model is able to capture both the daily and weekly temporal structures without having day-specific bias. 

This behavior reflects the effectiveness of time-derived features and inputs understandably integrated by the attention-based 

Transformer framework with inputs of weather. 

 

Although higher levels of errors are noted during peak demand hours, such deviations are still bounded and systematic as opposed 

to sporadic. Such behaviour is, however, expected in real-world power systems, where the peak is, of course, going to be more 

volatile. In total, the Heatmap shows that ATMH-WNet provides consistent and reliable forecasting performance across temporal 

contexts. The proposed time-dependent modeling of demand is used for accurate and effective multi-horizon load forecasting 

using actionable insights for intelligent energy management and the operation of power grid environments. 

 

3.4 Metric-wise Performance Comparison of Forecasting Models 

A metric-wise evaluation gives an in-depth and unbiased evaluation of forecasting models by showing the performance of the 

model from various angles of accuracy. Relying on a single measure usually does not reflect the wide range of characteristics 

present in the error patterns of the power load forecast, especially under unequal conditions of demand. Therefore, the 

comparative performance of the proposed ATMH-WNet to benchmark models with widely adopted evaluation metrics, such as 

mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and the coefficient of 

determination (R^2), is discussed in this subsection. Each of the metrics focuses on a different aspect of forecasting quality, varying 

from absolute deviation and dispersion of errors to relative accuracy and goodness-of-fit. By separately analyzing these metrics, 

this evaluation offers a better idea of the performance of different modeling approaches for a wide range of accuracy requirements, 

and is thus able to facilitate fair and transparent comparison under a consistent experimental condition. 

Figure 20 shows the comprehensive facilities-wise comparison of the proposed ATMH-WNet with some benchmark forecasting 

models such as Persistence, SARIMA, Prophet, XGBoost, and LSTM using MAE, RMSE, MAPE, and R2 in terms of the test dataset. 

By looking at each metric separately, this figure is a good and intuitive visualization of the different modeling approaches in terms 

of their relative strengths and weaknesses under the same experimental conditions. 

 
Figure 20 : Metric-wise comparison of benchmark forecasting models and the proposed ATMH-WNet on the test set using MAE, 

RMSE, MAPE, and 𝑅2. Lower values indicate better performance for MAE/RMSE/MAPE, while higher values indicate better 

performance for 𝑅2. 

 

In terms of absolute error metrics, ATMH-WNet always has the lowest MAE and RMSE among all the evaluated models. The 

significant reduction in MAE presents the capacity of the proposed model for the reduction of average deviations in the prediction 

process, and a lower RMSE indicates the control of larger error sizes. Compared to traditional statistical models, such as Persistence 
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and SARIMA, ATMH-WNet shows a large improvement, indicating the shortcomings of linear and rule-based assumptions of 

modeling complex and nonlinear demand dynamics. Furthermore, the proposed model has also been found to surpass the 

performance of advanced machine learning and deep learning baselines, such as XGBoost and LSTM, indicating the advantage of 

attention-based Transformer representations in long-range temporal modeling. 

The superiority of ATMH-WNet is also enhanced by the lowest MAPE value, which represents the higher relative accuracy at 

different load levels. This is especially important in power system applications, where percentage prospect errors give information 

about forecasting reliability under low and high demand situations. The decreased MAPE shows that ATMH-WNet has stable 

performance under various operating conditions. 

 

With regard to goodness-of-fit, ATMH-WNet can be said to have the highest R^2 value, which would mean that among models 

compared, it has the best explanatory power. This is an important result confirming that the greater the hypothesized model 

captures, the larger the proportion of the variance of the observed load data. Overall, the fact that ATMH-WNet is consistently 

dominant in all evaluating metrics shows it has the qualities of robustness, accuracy, and generalization capability. These results 

confirm the success of the proposed attention-based, weather-aware multi-horizon forecasting framework and its suitability for 

actual intelligent energy management and operation of the power grid 

 

4.7 Comparative Analysis and Discussion} 

 

Reference Proposed Model Key Results 

[22] Transformer with synthetic input generation 𝑅2 = 0.95 (test), 0.91 (evaluation); requires complex 

feature engineering and inverse optimization 

[40] N-BEATS + XGBoost ensemble RMSE = 0.6427; 𝑅^2   = 0.9664; ensemble tuning 

complexity 

[39] Wavelet Transform–Transformer hybrid  RMSE = 616.53; 𝑅2 = 0.9688; site-specific 

validation 

[25] FireNet–XGBoost hybrid  RMSE = 18.71; 𝑅2 = 0.9334; evaluated on 

single-building dataset 

Ours ATMH-WNet (Attention-based Trans- 

former for Multi-Horizon Weather-aware 

Forecasting) 

MAPE = 2.9%; 𝑅2 = 0.97 on large-scale 

U.S. power grid test data 

 

provides a comparative overview of recent transformer-based and hybrid load forecasting approaches and positions the proposed 

ATMH-WNet within the current state of the art. Bara and Oprea [22] introduced a transformer model augmented with synthetic 

input generation, reporting strong predictive performance with R2 values of 0.95 on the test set and 0.91 during evaluation. 

However, their framework relies heavily on complex feature engineering and inverse optimization procedures, which may limit 

scalability and practical deployment. [40] proposed an ensemble architecture combining N-BEATS and XGBoost, achieving an R2 

of 0.9664 with low RMSE. Despite its accuracy, the ensemble nature of the model introduces additional tuning complexity and 

increased computational overhead. 

 

[39] developed a hybrid Wavelet Transform-Transformer model that achieved competitive performance with an R2 of 0.9688. 

Nevertheless, their validation was conducted in site-specific settings, raising concerns regarding generalizability to large-scale 

power systems. [25] proposed a FireNet-XGBoost hybrid architecture for load forecasting, reporting an R2 of 0.9334; however, the 

evaluation was restricted to a single-building dataset, limiting its applicability to broader grid-level forecasting tasks. 

 

In contrast, the proposed ATMH-WNet demonstrates strong and consistent performance while addressing several limitations of 

prior studies. By leveraging an attention-based Transformer architecture with multi-horizon and weather-aware modeling, ATMH-

WNet achieves a low MAPE of 2.9% and a high R2 of 0.97 on large-scale U.S. power grid test data. Unlike many existing approaches, 

the proposed framework does not require complex inverse optimization, ensemble tuning, or site-specific calibration. These results 

highlight the robustness, scalability, and practical suitability of ATMH-WNet for real-world intelligent energy management, 

positioning it as a competitive and reliable alternative to recent transformer-based and hybrid forecasting models. 

 

4.8 Conclusions 

This study presented an Attention-Enhanced Transformer-based Multi-Horizon Weather-aware forecasting framework (ATMH-

WNet) for intelligent energy management and load forecasting in large-scale power grid systems. By formulating the forecasting 

task as a direct multi-horizon regression problem and leveraging the self-attention mechanism of Transformer encoders, the 

proposed model effectively captures both short-term fluctuations and long-range temporal dependencies present in multivariate 
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electricity demand data. Unlike traditional recursive forecasting approaches, ATMH-WNet generates all future predictions in a 

single forward pass, thereby reducing error accumulation and improving computational efficiency. 

 

Extensive experiments conducted on the PJM Interconnection hourly load dataset demonstrate that ATMH-WNet significantly 

outperforms classical statistical models (Persistence, SARIMA, Prophet), machine learning approaches (XGBoost), and recurrent 

neural networks (LSTM) across all evaluation metrics. The proposed framework achieves the lowest MAE, RMSE, and MAPE values, 

along with the highest coefficient of determination, indicating superior predictive accuracy and robustness. Qualitative evaluations 

further confirm that ATMH-WNet closely tracks real load profiles, preserves peak–valley dynamics, and maintains strong temporal 

alignment across forecasting horizons. Detailed residual, distributional, and temporal error analyses reveal stable, unbiased, and 

well-calibrated forecasting behavior under diverse operating conditions. The results validate the effectiveness of integrating 

attention-based Transformer architectures with weather-aware multivariate inputs for power load forecasting. The proposed 

ATMH-WNet framework offers a scalable, interpretable, and deployment-ready solution for real-world smart grid applications, 

supporting improved operational planning, demand response, and energy management strategies. Future research directions 

include extending the framework to probabilistic forecasting, incorporating additional exogenous variables such as market signals 

and renewable generation, and evaluating the model across multiple regional power systems to further assess its generalization 

capability. 
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