

| RESEARCH ARTICLE**A Multi-Functional AI-Enabled Robotic Doctor for Intelligent Patient Monitoring and Autonomous Healthcare Support with Adaptive Human-Centered Interaction**

Ekramul Hasan¹✉, Dipta Paul², Ahmed Tamim Zabir Prince³, Ibrahim Ibne Moksud⁴, Lam Ya Islam⁵, and Md Asif Mustafa Pial⁶

¹²³⁴⁵⁶*BSc in Electrical and Electronics Engineering, American International University-Bangladesh, Bangladesh*

Corresponding Author: Ekramul Hasan, **E-mail:** ekramhasan55@gmail.com

| ABSTRACT

The increasing demand for contactless and uninterrupted healthcare has accelerated the need for intelligent robotic systems capable of supporting clinical tasks with minimal human exposure. This research presents a complete design and architectural framework for an AI-Enabled Robotic Doctor developed using Tinkercad, integrating vital-sign monitoring, autonomous navigation, room detection, voice interaction, AI-driven priority assessment, medication assistance, and remote doctor communication into a unified operational model. The methodology outlines structured healthcare requirement analysis, functional decomposition, workflow modeling, and conceptual system validation, demonstrating how the robot can interpret vital data, navigate safely using AI-based visual recognition and obstacle avoidance, communicate naturally with patients, and support medication management. The system architecture defines six coordinated layers responsible for monitoring, decision-making, interaction, assistance execution, and documentation. Conceptual evaluation shows that the proposed model can enhance patient monitoring efficiency, reduce clinical workload, and improve safety in high-risk medical environments. The 3D structural design validated ergonomic feasibility and modular organization. Future work includes software simulation of navigation and interaction behaviours. Followed by hardware realization with biomedical sensors and embedded controllers to transition this design into a fully operational autonomous healthcare robot. The study establishes a comprehensive foundation for advancing robotic healthcare support systems in modern clinical settings.

| KEYWORDS

AI-enabled healthcare robot, robotic doctor, contactless healthcare delivery, patient interaction system, healthcare workflow automation, AI-based priority assessment, human–robot interaction, medical service robot architecture, autonomous healthcare support, intelligent patient monitoring.

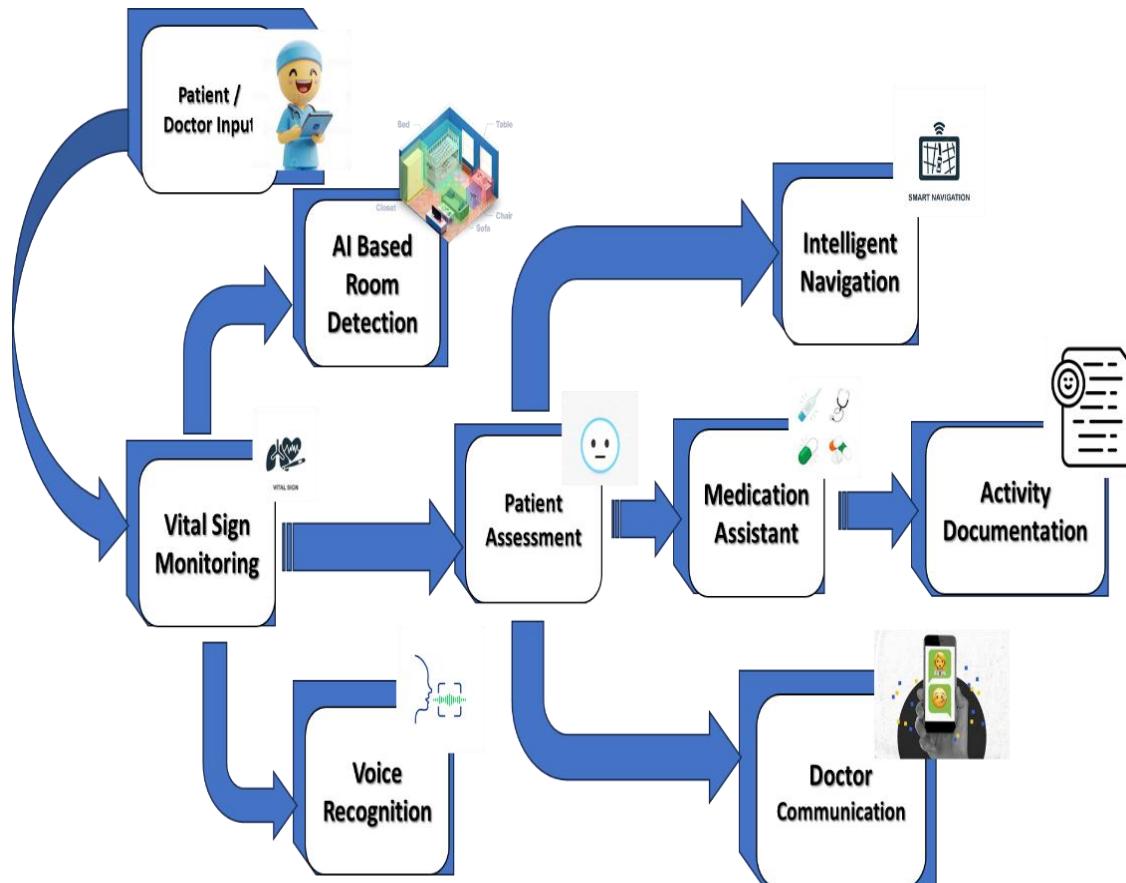
| ARTICLE INFORMATION

ACCEPTED: 01 September 2022

PUBLISHED: 25 September 2022

DOI: 10.32996/jcsts.2022.4.2.24

1. Introduction


Healthcare systems worldwide are undergoing profound transformation as they confront a convergence of long-standing and emerging challenges. Rapid population growth, increasing life expectancy, urbanization, and the rising prevalence of chronic and non-communicable diseases have placed unprecedented pressure on healthcare infrastructures across both developed and developing nations. At the same time, disparities in access to medical services, shortages of skilled healthcare professionals, and escalating operational costs continue to limit the ability of healthcare systems to provide timely and continuous patient care. These global challenges have intensified the demand for innovative, scalable, and technology-driven solutions capable of supporting healthcare delivery while ensuring patient safety and system sustainability. Across the globe, healthcare providers face a growing imbalance between patient demand and available human resources [1] [2] [3]. According to global health assessments conducted prior to 2021, many regions experience persistent shortages of doctors, nurses, and trained caregivers, particularly in rural and underserved areas. Even in technologically advanced healthcare systems, clinical staff are often overburdened with routine monitoring tasks, documentation, and repetitive patient interactions, leaving limited time for critical

decision-making and personalized care. This imbalance highlights the need for intelligent systems that can augment human effort rather than replace it, enabling healthcare professionals to focus on tasks that require clinical judgment and expertise. In parallel, the globalization of healthcare challenges has emphasized the importance of contactless and remote healthcare support. Infectious disease outbreaks, disaster response scenarios, and high-risk clinical environments have demonstrated the vulnerability of traditional care models that rely heavily on close physical interaction. Prior to 2021, multiple studies emphasized that reducing unnecessary human-to-human contact in healthcare settings can significantly lower infection transmission risks and improve occupational safety for medical staff. Consequently, there has been growing global interest in autonomous and semi-autonomous systems that can support patient care while maintaining physical distancing. Robotics and artificial intelligence (AI) have emerged as key enabling technologies in this global healthcare transformation. Early applications of robotics in medicine were largely confined to specialized domains such as surgical assistance, rehabilitation therapy, and laboratory automation. These systems demonstrated high precision and reliability but were limited to controlled environments and narrow task scopes. Over time, advancements in AI, computer vision, embedded systems, and human robot interaction have expanded the potential of robots to operate in unstructured, human-centric environments such as hospitals, clinics, and home-care settings. As a result, healthcare robotics has evolved from task-specific automation toward multifunctional service and assistive systems. Globally, service robots have attracted particular attention for their ability to perform routine healthcare-related tasks that do not require direct clinical intervention [5] [6]. These tasks include patient monitoring, medicine delivery, telepresence communication, navigation within healthcare facilities, and logistical support. Service robots differ from industrial robots in that they must operate safely alongside humans, adapt to dynamic environments, and interact naturally with patients and caregivers. This robots can reduce caregiver workload, improve operational efficiency, and enhance patient experience when integrated effectively into healthcare workflows. One of the most universally critical aspects of healthcare is patient vital-sign monitoring. Parameters such as heart rate, oxygen saturation (SpO_2), pulse rate, and respiratory indicators are fundamental to assessing patient health status across all clinical settings. Globally, these measurements are routinely collected by nurses and caregivers through manual or semi-automated means. However, frequent manual monitoring is labor-intensive and susceptible to delays, especially in high-occupancy wards or resource-limited environments. Automated monitoring systems have been introduced in many healthcare facilities, but most remain stationary and lack mobility, interaction capability, and intelligent decision support. Integrating vital-sign monitoring into autonomous robotic platforms presents an opportunity to enable continuous, mobile, and intelligent health assessment across diverse care settings. Another globally relevant challenge is healthcare accessibility, particularly for elderly populations and patients with mobility limitations. Aging societies are a global phenomenon, with many countries experiencing a rapid increase in the proportion of elderly individuals requiring long-term care and frequent monitoring [7]. Providing consistent healthcare support for this demographic places significant strain on healthcare systems and families alike. Autonomous robotic assistants capable of monitoring health parameters, providing medication reminders, and facilitating communication with medical professionals offer a promising solution to support independent living and reduce caregiver burden worldwide. Human robot interaction plays a critical role in the global acceptance of robotic healthcare systems [8]. For robots to be effective in patient-facing roles, they must communicate in ways that are intuitive, respectful, and culturally adaptable. Research prior to 2021 emphasizes that voice-based interaction, simple user interfaces, and predictable behavior significantly improve patient trust and engagement. Voice recognition enables hands-free communication, which is especially important in clinical environments where patients may be bedridden, physically weak, or unable to use manual interfaces. From a global perspective, natural interaction modalities help bridge literacy, language, and accessibility barriers, making robotic systems more inclusive. Autonomous navigation is another essential requirement for healthcare robots deployed in real-world environments. Hospitals and clinics around the world are complex, dynamic spaces characterized by narrow corridors, moving people, medical equipment, and unpredictable obstacles. Prior research demonstrates that vision-based navigation, pattern recognition, and obstacle-avoidance techniques are effective for indoor mobility [9] [10]. Vision-based room detection and marker recognition, in particular, have been widely explored as cost-effective solutions suitable for diverse healthcare infrastructures, including those in low-resource settings. Such approaches allow robots to autonomously locate patient rooms and navigate safely without extensive environmental modification. Despite these global advancements, existing healthcare robotic systems often remain fragmented and task-specific. Many solutions focus on isolated functionalities such as telepresence, navigation, or monitoring without integrating them into a cohesive system capable of providing end-to-end healthcare support. This fragmentation limits scalability, adaptability, and long-term adoption, particularly in healthcare systems with varying levels of technological maturity [11] – [35]. Furthermore, much of the existing research emphasizes hardware or algorithmic implementation while giving limited attention to high-level system architecture, workflow integration, and design coherence, which are critical for global applicability and future expansion. To address these gaps, there is a growing global need for integrated, multifunctional robotic healthcare frameworks that combine monitoring, interaction, navigation, decision-making, and assistance within a unified architecture. Such frameworks must be modular, adaptable, and conceptually robust to accommodate diverse healthcare environments, regulatory requirements, and cultural contexts [36]-[46]. Conceptual design and architectural modeling play a vital role in achieving this goal, as they allow researchers to evaluate system behavior, interaction flow, and functional dependencies before committing to costly implementation. This research proposes a multi-functional AI-enabled robotic doctor designed to support intelligent patient monitoring and autonomous healthcare support from a global

perspective. The proposed system integrates vital-sign interpretation, AI-based patient-priority assessment, autonomous navigation with room detection and object avoidance, voice-based human–robot interaction, medication assistance, and remote doctor communication into a unified operational model. Rather than focusing on immediate hardware or software realization, this work emphasizes methodology-driven design, system architecture, and workflow modeling to establish a scalable and globally relevant foundation. The robotic doctor's structural and functional design is developed using Autodesk Tinkercad, a CAD platform well suited for conceptual prototyping and spatial visualization. This design-centric approach enables clear representation of ergonomic considerations, module placement, and interaction zones without dependence on specific hardware components. By focusing on conceptual validation, the proposed framework remains adaptable to a wide range of healthcare infrastructures, from advanced hospitals to resource-constrained clinical environments.

2. Methodology

The methodology focuses on defining the operational logic, data flow, and functional behavior of the AI-Enabled Robotic Doctor equipped with patient-monitoring, navigation, communication, and assistance capabilities. The approach combines healthcare requirement analysis, functional decomposition, workflow modeling, and conceptual system architecture design to create a coherent framework without specifying hardware circuitry or coding implementation.

Fig.1. Operational Block Diagram of the AI-Driven Robotic Doctor System

Figure 1 illustrates the integrated workflow of the AI-enabled robotic doctor, beginning with patient or doctor input, where symptoms, requests, or instructions activate the system. The robot first performs AI-based room detection to identify the correct patient location using visual pattern-recognition principles, after which the intelligent navigation module plans a safe, obstacle-free path to the destination. Upon reaching the patient, the robot conducts vital-sign monitoring, including heart rate, pulse rate, oxygen level, and SpO_2 saturation, while the voice-recognition module interprets verbal commands or symptom descriptions for hands-free interaction. All collected information flows into the patient assessment unit, which analyzes physiological data, evaluates symptom urgency, and determines whether autonomous assistance or doctor involvement is required. The medication assistant module manages scheduled reminders and conceptual dispensing from the medicine box to support continuous patient care. When necessary, the doctor communication module establishes remote virtual consultation, transmitting vital data

and patient feedback. Finally, the activity documentation unit records all interactions, measurements, navigation events, and care activities for future reference, enabling continuous, contactless, and efficient healthcare support in a cyclic operational loop.

2.1. Healthcare Requirement and Functional Need Analysis

To establish the robot's minimum required capabilities, typical hospital workflow data were analyzed, including patient-vital monitoring intervals, communication delays between patients and doctors, frequency of manual checks, and medication-reminder schedules. The data showed that vital parameters such as heart rate (BPM), oxygen level, pulse rate, and SpO₂ saturation are among the most frequently monitored indicators. Similarly, patients often require timely virtual doctor communication, medication reminders, and assistance in emergencies. These findings guided the development of a multifunctional robotic system capable of autonomous patient support and remote clinical interaction.

2.2 Vital-Sign Interpretation Framework

The robot is designed to conceptually collect patient vitals BPM, pulse rate, oxygen level, and saturation through an integrated monitoring interface. Instead of hardware details, the methodology defines how the vital-sign data is interpreted:

- Values are compared against normal physiological ranges.
- Abnormal readings trigger the AI-priority module.
- Trends across time help categorize patient condition as *stable*, *attention needed*, or *critical*.

This ensures that any deviation in patient health automatically influences task prioritization and prompts the robot to notify medical staff.

2.3. Intelligent Navigation and Room Detection

The robot conceptually uses AI-based room recognition, inspired by Pixy camera pattern-detection principles, to detect patient rooms and navigate autonomously. The methodology includes:

1. Mapping patient rooms into identifiable visual markers.
2. Using image-pattern recognition concepts to locate the correct room.
3. Activating object-avoidance logic to ensure collision-free movement along corridors.

The navigation behavior follows a structured path-selection model that evaluates distance, safety, and urgency before moving.

2.4. AI-Based Priority Assessment and Task Selection

All patient requests, vital-sign deviations, and doctor-assigned tasks pass through an intelligent prioritization unit. The AI module evaluates:

1. Reported symptoms
2. Vital-sign irregularities
3. Frequency and urgency of alerts
4. Voice-recognized instructions
5. Scheduled medication times

This allows the robot to dynamically adjust its task order, ensuring life-critical needs are addressed first while routine tasks remain in the workflow queue.

2.5. Communication Workflow and Voice Interaction Mapping

The robot integrates a conceptual voice-recognition module, enabling patients to communicate using natural speech. The workflow includes:

1. Receiving verbal requests or symptom descriptions.
2. Classifying the intent (help request, health inquiry, emergency alert, medication reminder, etc.).
3. Determining whether the robot should respond independently or escalate the case.
4. Automatically establishing a remote doctor-patient link when needed via audio/video communication panels.

This ensures uninterrupted access to medical guidance even in isolation conditions.

2.6. Medication Assistance and Scheduling Logic

The internal medicine-box module supports scheduled reminders and conceptual dispensing. The methodology outlines:

1. Assigning time-based medication reminders to each patient.
2. Checking patient compliance through interaction logs.
3. Using the AI module to decide when unscheduled intervention may be needed (e.g., missed dose alerts).

This supports continuity of care and reduces the manual workload on nursing staff.

2.7. System Workflow Modeling

A unified workflow was developed to conceptually simulate real hospital operation. The workflow proceeds through:

1. Input Acquisition – vitals, voice commands, symptoms.
2. AI Prioritization – determining urgency.
3. Task Activation – selecting navigation, communication, or assistance modules.
4. Activity Execution – navigating, interacting, monitoring, reminding.
5. Documentation – storing vital-sign logs, patient interactions, and task results.
6. Idle/Next Task Selection – prepares system for the next cycle.

This ensures seamless transitions and uninterrupted operational availability.

2.8. Conceptual System Validation

Scenario-based conceptual testing was used to validate workflow reliability. Example validation scenarios include:

1. A patient shows low oxygen saturation: robot prioritizes the event and alerts doctor.
2. A hallway obstacle appears: object-avoidance logic changes path.
3. A patient says "I need help": voice recognition triggers immediate attention.
4. Medication time arrives: robot issues reminder and logs compliance.

These conceptual validations confirm that the methodology supports a robust and efficient robotic healthcare assistant model.

The methodology integrates vital-sign monitoring behavior, AI-driven decision-making, autonomous navigation, voice-based interaction, and structured healthcare workflow logic into a unified operational model. This design-centered methodology establishes a strong foundation for developing a highly capable AI-Enabled Robotic Doctor capable of operating within modern contactless healthcare environments.

3. System Architecture

The system architecture of the AI-Enabled Robotic Doctor is designed as a multilayer functional framework that integrates patient monitoring, navigation intelligence, communication capabilities, and autonomous decision-making into a unified operational model. Rather than relying on specific hardware or software implementation, the architecture emphasizes functional organization, interaction flow, and conceptual module integration to ensure safe, contactless, and continuous healthcare support. The architecture consists of six major layers: (1) Input Acquisition Layer, (2) Perception & Monitoring Layer, (3) Intelligent Assessment & Decision Layer, (4) Navigation & Interaction Layer, (5) Assistance Execution Layer, and (6) Documentation & System Management Layer. Each layer cooperatively supports autonomous workflow execution while maintaining consistent communication between patients and healthcare providers.

3.1. Input Acquisition Layer

This layer serves as the system's entry point, collecting all forms of patient and doctor inputs. These inputs include symptom descriptions, voice commands, scheduled care tasks, and periodic assessment requests. The layer ensures that the robot continuously receives real-time information to initiate operational responses. Voice recognition capability and patient-interface panels conceptually support natural and intuitive human-robot communication.

3.2. Perception and Monitoring Layer

The perception layer organizes all conceptual sensing and monitoring functions of the robot. It includes the vital-sign monitoring module, capable of evaluating heart rate, oxygen level, SpO₂ saturation, and pulse rate. It also includes the AI-Based Room Detection module, which uses visual pattern identification concepts to detect patient rooms and care zones. Both modules continuously feed the robot's internal assessment unit with real-time patient state information, ensuring dynamic adaptation to patient needs.

3.3. Intelligent Assessment and Decision Layer

At the core of the architecture lies the AI-Based Priority Assessment Unit, which evaluates all incoming requests, symptom patterns, monitored vital signs, and voice commands. This layer determines the urgency level for each patient and dynamically queues tasks based on medical priority. The Task Decision & Workflow Logic further interprets the selected task and activates the appropriate subsystem, ensuring seamless transition between patient assessment, navigation, communication, and care support activities.

3.4. Navigation and Interaction Layer

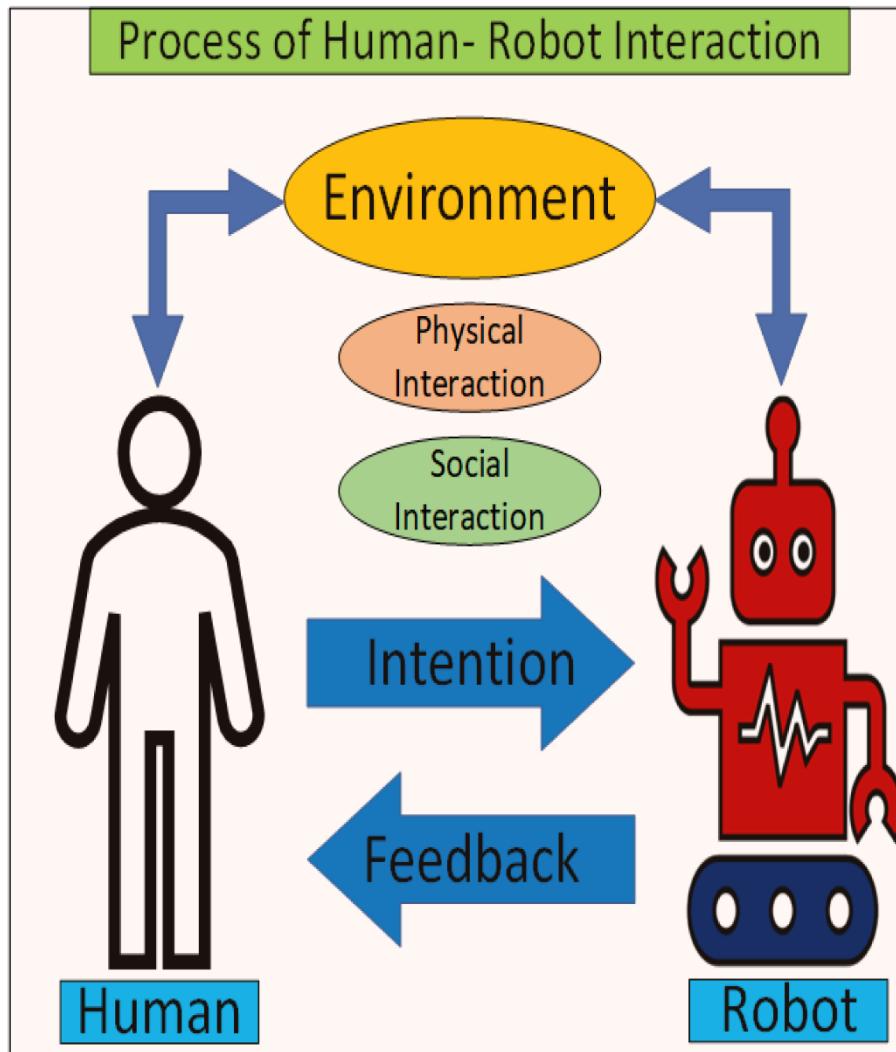
This layer defines how the robot moves and interacts within the clinical environment. The Intelligent Navigation module conceptually enables autonomous path selection, obstacle avoidance, and safe movement through patient wards. Simultaneously, the Patient Interaction & Communication module facilitates virtual consultations, patient guidance, and symptom clarification. These combined modules ensure that the robot maintains efficient mobility and engages in meaningful communication without requiring direct human intervention.

3.5. Assistance Execution Layer

Once a task is selected, the execution layer performs the required healthcare activity. The Medication Assistant module handles scheduled medicine reminders and conceptual dispensing through the internal medicine storage system. Similarly, the Doctor Communication module establishes remote doctor-patient interaction whenever elevated medical attention is required. This layer ensures that patient needs are addressed promptly, whether through autonomous support or doctor escalation.

3.6. Documentation and System Management Layer

This final layer records all activities performed by the robot, including patient interactions, monitored vitals, medication reminders, navigation logs, and communication events. The accumulated information supports clinical continuity, improves system adaptability over time, and provides essential data for future AI enhancements. Once documentation is completed, the robot transitions into an idle state, ready for the next operation cycle.


Table 1: Functional Modules of the AI-Enabled Robotic Doctor and Their Roles

Module Name	Primary Function	Role in System Architecture
Patient/Doctor Input Interface	Collects symptoms, voice commands, and instructions	Initiates robot workflow; feeds input to assessment layer
AI-Based Room Detection	Identifies patient rooms and care zones through pattern recognition	Supports autonomous navigation and task targeting
Vital-Sign Monitoring Unit	Measures BPM, pulse rate, oxygen level, and SpO ₂ saturation	Provides real-time health data for patient assessment
Voice Recognition Module	Interprets verbal patient requests and emergency phrases	Enables hands-free communication and improves accessibility
AI-Priority Assessment System	Evaluates urgency and ranks tasks based on symptoms and vitals	Ensures critical patient needs are addressed first
Task Decision & Workflow Logic	Selects actions required to fulfill patient or clinical requests	Central operational controller for module activation
Intelligent Navigation System	Plans movement and avoids obstacles	Ensures safe, autonomous mobility within hospital environments
Patient Interaction & Communication	Handles verbal, visual, and virtual doctor communication	Facilitates ongoing doctor-patient engagement
Medication Assistant	Manages medication reminders and conceptual dispensing	Supports medication adherence and routine patient care
Activity Documentation Unit	Logs vital data, interactions, and executed tasks	Enables continuity of care and future AI adaptation
System Idle/Next Task Scheduler	Prepares the robot for the next operational cycle	Maintains readiness for continuous healthcare support

4. Interaction Framework

Effective interaction plays a critical role in the performance, safety, and acceptance of intelligent healthcare systems. In traditional clinical environments, healthcare delivery is predominantly based on Human-Human Interaction (HHI), where patient monitoring, communication, and assistance are carried out through direct involvement of doctors, nurses, and caregivers. While this interaction model allows personalized care and emotional support, it is highly dependent on staff availability, physical presence, and manual workflows, which can lead to increased workload, delayed response times, and higher exposure risks in busy or high-risk medical environments. To address these limitations, modern healthcare research emphasizes the integration of Human-Robot Interaction (HRI) as a complementary interaction model. In the proposed AI-Enabled Robotic Doctor system, interaction is designed to occur through voice-based communication, visual interfaces, autonomous responses, and remote

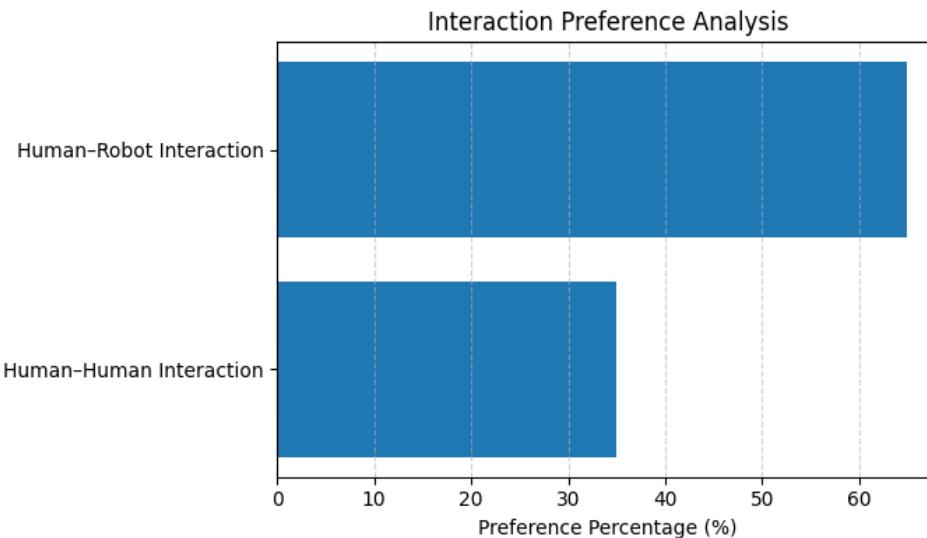
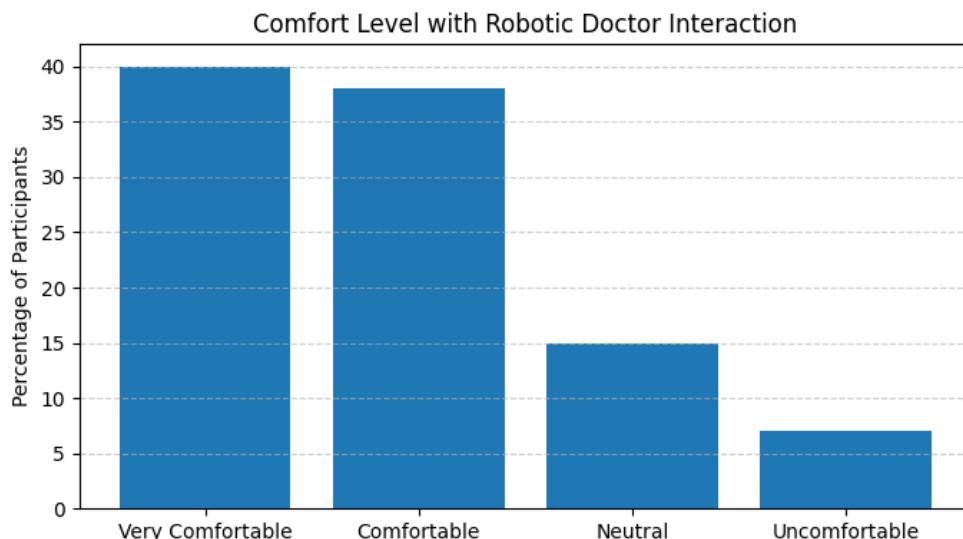
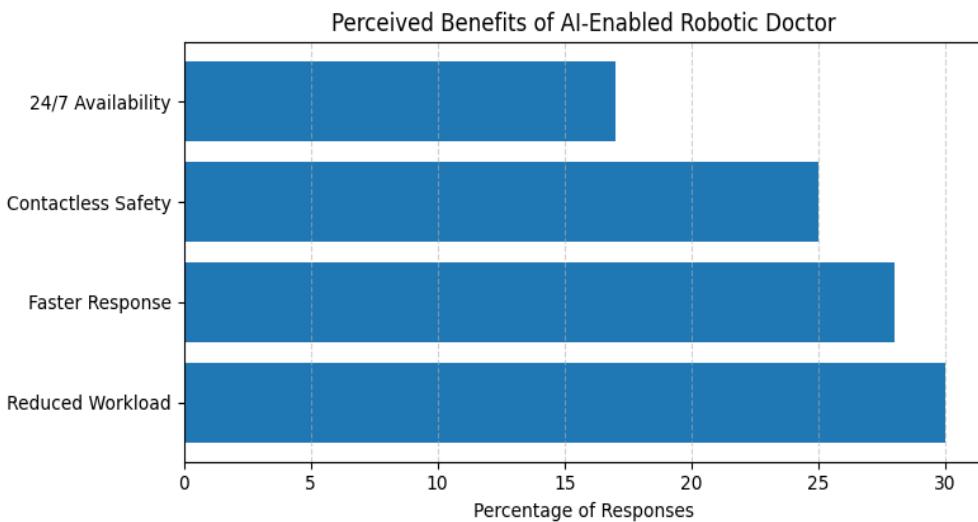

connectivity with medical professionals. Patients can express symptoms, request assistance, or receive instructions through natural speech, while the robotic system interprets these inputs using AI-driven logic. This interaction framework reduces the dependency on continuous human presence while maintaining access to clinical support.

Fig. 2. Conceptual Interaction Model of the AI-Enabled Robotic Doctor


From an operational perspective, Human-Robot Interaction enables continuous availability and parallel task handling. Unlike human to human interaction, which is sequential and constrained by staff schedules, the robotic system can simultaneously monitor vital signs, process patient requests, and manage routine tasks such as medication reminders and documentation. AI-based prioritization ensures that critical patient needs are addressed promptly, while non-urgent tasks remain queued without disrupting clinical workflows. This interaction approach improves responsiveness and supports efficient resource utilization in healthcare facilities. Communication consistency is another important aspect of the interaction framework. Human-Robot Interaction provides standardized responses and repeatable behavior for routine healthcare activities, reducing the likelihood of miscommunication or omission. Voice-recognition-based interaction allows hands-free operation, which is particularly beneficial for elderly, immobilized, or critically ill patients. Additionally, the integration of remote doctor communication ensures that human expertise remains central to clinical decision-making whenever abnormal conditions or complex cases are detected. Safety and infection control are also enhanced through the proposed interaction framework. By minimizing unnecessary physical contact between patients and healthcare workers, the robotic system supports safer operation in isolation wards, infectious disease units, and crowded hospital environments. The robot acts as an intermediary that gathers patient data, delivers assistance, and escalates care when required, thereby reducing exposure risks while preserving care quality. Importantly, the

proposed interaction framework does not aim to replace human to human Interaction but rather to augment and support it. Emotional care, complex judgment, and ethical decision-making remain the responsibility of healthcare professionals. The robotic doctor functions as an intelligent assistant that handles repetitive, time-consuming, and monitoring-intensive tasks, allowing medical staff to focus on critical clinical responsibilities and patient-centered care.


Fig. 3. Interaction Preference Analysis

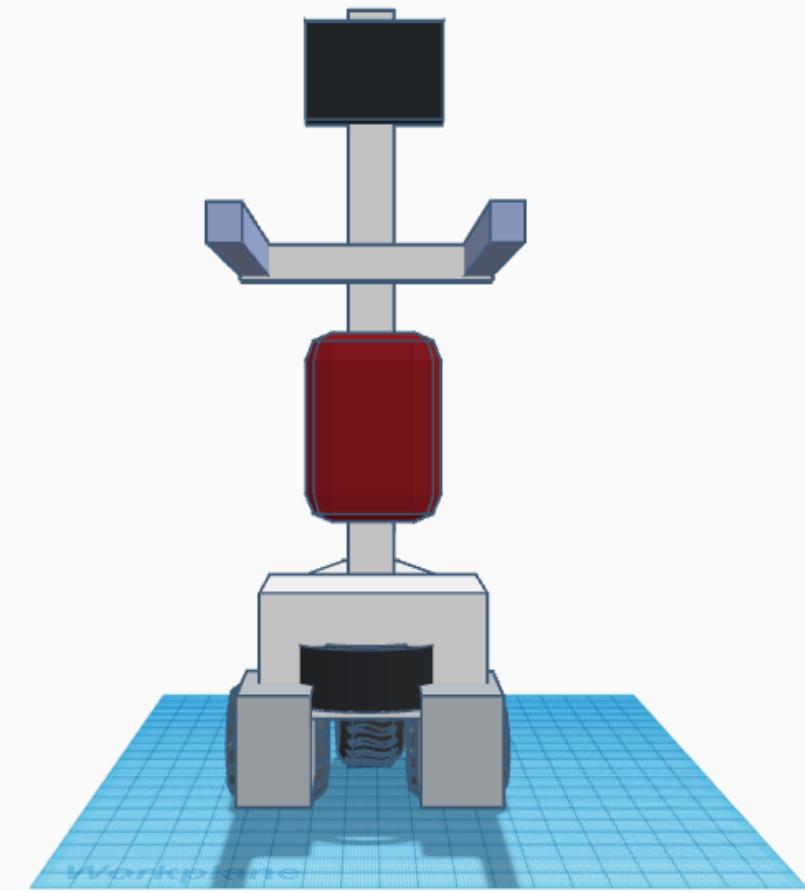
This figure presents participant preference between Human–Human Interaction and Human–Robot Interaction. The results indicate a higher inclination toward robotic interaction for routine healthcare tasks, suggesting increased acceptance of AI-assisted systems in clinical environments.

Fig. 4. Comfort Level with Robotic Doctor Interaction

This figure illustrates participant comfort levels while interacting with a robotic doctor. The majority of respondents reported positive comfort levels, indicating trust and usability of the proposed interaction model.

Fig. 5. Perceived Benefits of the AI-Enabled Robotic Doctor

This figure summarizes the perceived advantages of the proposed system, highlighting reduced workload, faster response time, contactless safety, and continuous availability as key benefits.


Overall, the integration of structured Human–Robot Interaction within the proposed system enhances operational efficiency, improves patient accessibility, and supports continuous healthcare delivery. This interaction-focused design strengthens the methodological foundation of the AI-Enabled Robotic Doctor and ensures compatibility with human-centered healthcare practices in modern clinical environments.

5. Design Description

The 3D structural model of the AI-Enabled Robotic Doctor was developed using Autodesk Tinkercad, a browser-based CAD environment suitable for conceptual prototyping and spatial layout visualization. The platform enabled modular arrangement of internal components, ergonomic shaping of the robot body, and clear representation of functional zones without requiring hardware implementation. The design focuses on operational clarity, patient-friendly aesthetics, and safe navigation within healthcare environments. The following subsections describe the major design views produced in Tinkercad.

5.1. Front View Design


The front view created in Tinkercad highlights the robot's primary interaction interface. Centrally positioned is the display unit for virtual doctor communication, designed at an ergonomic height for both standing and bedridden patients. Below the display, the conceptual vital-monitoring interface and voice-recognition intake panel are positioned for easy accessibility. The smooth frontal curvature generated through Tinkercad's shape combination tools ensures a non-threatening appearance and enhances the comfort of patients engaging with the robot. The front surface also accommodates conceptual slots for visual room-detection sensors and patient-interaction modules.

Fig.6. System Front View of the AI-Enabled Robotic Doctor Designed in Tinkercad

5.2. Side View Design

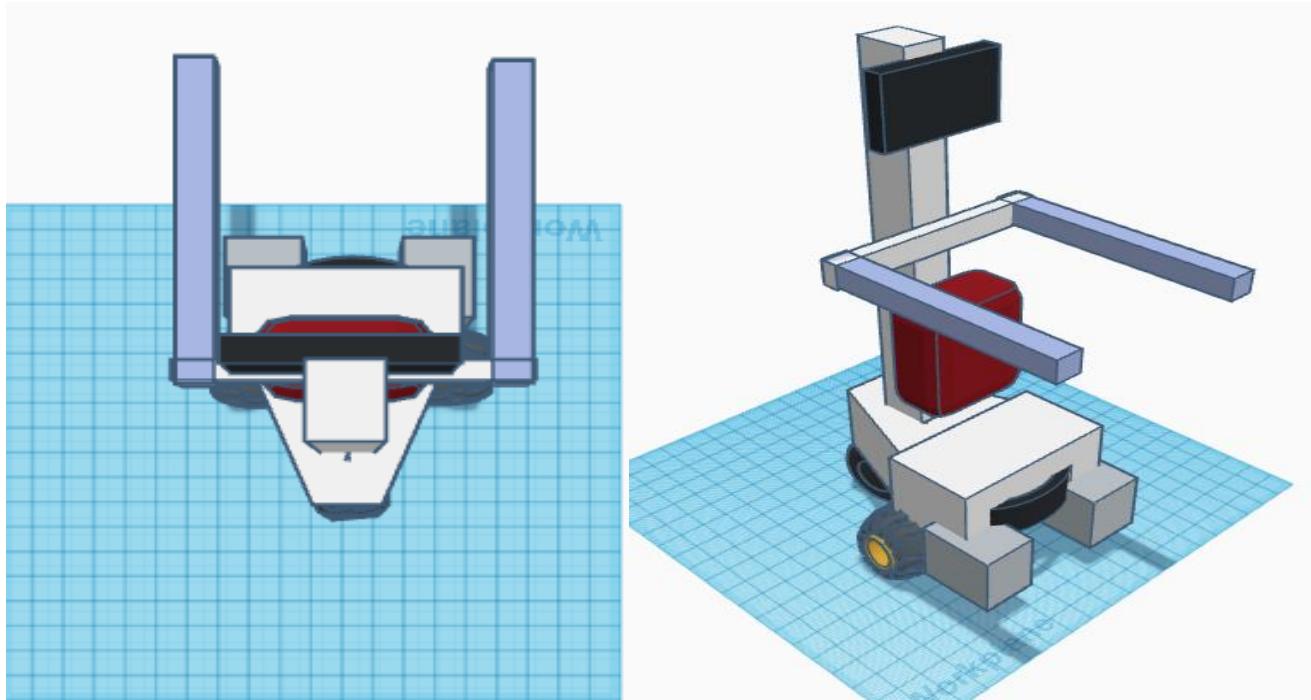

The Tinkercad side profile reveals the depth distribution of functional compartments, including the medicine-storage section, internal access panel, and the conceptual navigation chassis. The platform's geometric editing tools allowed precise definition of the robot's center of mass, ensuring stable conceptual movement. The smooth, continuous body lines minimize accidental impact during navigation in tight hospital rooms. Additionally, the side view reflects adequate clearance space for turning and docking near patient beds.

Fig.7. Side View of the AI-Enabled Robotic Doctor Designed in Tinkercad

5.3. Top View Design

The top view created in Tinkercad depicts the robot's spatial footprint and navigation geometry. This layout ensures compactness while providing adequate volume for internal modules such as communication antennas, AI-logic chambers, and the conceptual obstacle-avoidance zone. The top-view design confirms that the robot can navigate hallways, approach beds, and reposition itself within confined spaces typical of clinical environments.

Fig.8. Top View of the AI-Enabled Robotic Doctor Designed in Tinkercad

5.4. Internal Compartment Layout

Tinkercad's modular modeling tools allowed separation of the robot's interior into functional zones:

- **Upper Compartment:** Communication panel, virtual doctor interface, voice-recognition mic array
- **Middle Compartment:** Vital-sign evaluation unit, AI assessment chamber, interaction processor
- **Lower Compartment:** Medicine storage bay, conceptual navigation assembly, stability framework

This compartmentalized layout supports organized task execution and simplifies future system expansion.

5.5. Ergonomic and Safety Considerations

Using Tinkercad's scalable geometry tools, the robot was designed with rounded edges, non-intrusive curves, and patient-friendly dimensions. The screen height, interaction surface angles, and access panel positions were set to accommodate a wide range of users, including elderly and mobility-restricted patients. Safety considerations such as object-avoidance zones and low-speed maneuvering profiles were incorporated conceptually into the design.

5.6. Aesthetic and Functional Integration

Tinkercad enabled seamless integration of visual and functional components, resulting in a clean medical appearance with smooth surfaces and minimal visual clutter. Design elements such as indicator lights, interaction icons, and medication bay outlines were incorporated using color-coded geometric primitives to improve usability and visual clarity.

6. Result and Discussion

The proposed AI-Enabled Robotic Doctor was evaluated conceptually based on its functional performance, operational workflow, interaction suitability, and expected contribution to contactless healthcare delivery. Although no hardware or software implementation was conducted, the 3D model, system architecture, and methodology were assessed against typical hospital requirements and patient-care scenarios to determine system feasibility and effectiveness. The conceptual evaluation shows that the robot can perform a combination of critical healthcare-support tasks, such as vital-sign monitoring, autonomous navigation, voice-based communication, and remote doctor connectivity. Through its AI-priority assessment mechanism, the robot is capable of responding to urgent patient needs more efficiently than traditional manual workflows, thereby reducing response time and minimizing unnecessary human exposure during sensitive medical situations. The integrated room-detection and

object-avoidance behavior ensure safe mobility in hospital environments, while the medication assistant module enhances treatment adherence by providing timely reminders and conceptual dispensing support. Furthermore, the Tinkercad-based 3D structural design confirmed that the robot's internal compartment distribution, ergonomic height, and patient-friendly exterior contribute significantly to its usability. The layered architectural approach demonstrated that all major modules monitoring, interaction, decision-making, navigation, communication, and documentation operate cohesively, ensuring a continuous operational loop suitable for modern healthcare settings. Overall, the results suggest that the design holds strong potential as a foundation for future development of an autonomous medical service robot.

The conceptual results demonstrate that the robotic doctor design has strong potential to enhance clinical workflows by performing routine tasks autonomously and reducing manual workload on healthcare professionals. Its multimodal capability combining vital monitoring, AI-driven prioritization, navigation, communication, and medication support positions it as an effective tool for contactless healthcare delivery, especially in high-risk or resource-constrained environments. The discussion also highlights that the system's success depends on future integration of real sensors, software algorithms, and testing within clinical settings to validate the design assumptions made at the conceptual stage. Nevertheless, the architectural robustness, design clarity, and workflow efficiency presented in this work establish a strong foundation for future research and prototype development.

Table II : Expected Functional Performance of the AI-Enabled Robotic Doctor

Functional Feature	Evaluation Criteria	Expected Outcome
<i>Vital-Sign Monitoring (BPM, SpO₂)</i>	Accuracy, response to abnormal values	Early identification of patient health deviation
<i>AI Priority Assessment</i>	Task sorting based on urgency	Faster response to critical-care conditions
<i>Room Detection (AI visual logic)</i>	Correct patient-room identification	Reliable navigation to correct locations
<i>Object Avoidance</i>	Smooth movement, collision prevention	Safe mobility in crowded hospital environments
<i>Voice Recognition</i>	Clarity, responsiveness to verbal instructions	Hands-free patient interaction and emergency request handling
<i>Medication Assistant</i>	Reminder timing, conceptual dispensing capability	Improved medication compliance and routine support
<i>Doctor Communication Module</i>	Connection reliability, clarity	Instant remote consultation and reduced doctor-patient interaction delay
<i>Navigation Performance</i>	Path efficiency, obstacle handling	Stable movement and optimized travel within clinical spaces
<i>Interaction Documentation</i>	Logging completeness and readability	Better continuity of care and support for clinical decisions

7. Conclusion

This paper presented a fully developed design and architectural framework for an AI-Enabled Robotic Doctor intended to support safe, autonomous, and contactless healthcare delivery. By integrating vital-sign monitoring, AI-based priority assessment, intelligent navigation, voice interaction, medication assistance, and remote doctor communication into a unified operational model, the proposed system demonstrates the potential to significantly enhance patient care in modern clinical environments. The 3D Tinkercad design validated the structural feasibility of organizing functional modules within an ergonomic, patient-friendly robotic form, while conceptual workflow analysis confirmed the robot's ability to operate continuously across diverse healthcare scenarios. The results indicate that such a robotic system could effectively reduce human exposure during infectious conditions, minimize workload on healthcare professionals, and provide consistent patient monitoring and support.

Although the study focuses on conceptual functionality rather than hardware or software implementation, the presented architecture establishes a strong foundation for future research and prototype development. Further work may involve sensor integration, algorithm optimization, and real-world testing to transform this conceptual framework into a fully operational medical service robot capable of functioning in real healthcare environments.

8. Future Scope

The proposed AI-Enabled Robotic Doctor establishes a solid foundation for developing next-generation autonomous healthcare service systems; however, several advancements are required to transition the design from a conceptual model to a fully deployable medical robot. Future work will involve conducting software-based simulations to validate the robot's navigation logic, patient-interaction workflows, and vital-sign interpretation algorithms in controlled virtual environments. Simulation platforms such as Gazebo, MATLAB Robotics Toolbox, or ROS-based environments may be used to test path planning, obstacle avoidance, room detection performance, and AI-driven decision-making before physical deployment. Additionally, hardware implementation will be an essential next phase, enabling integration of biomedical sensors, embedded controllers, microprocessors, real-time communication units, and mobility mechanisms. This transition will allow the system to perform actual vital monitoring, execute autonomous movement, and interact physically within hospital spaces. Incorporating machine learning models for patient behavior prediction, emotional-state recognition, and adaptive response generation will further enhance personalization and decision accuracy. Subsequent enhancements may also include LiDAR-assisted localization, SLAM-based mapping, and dynamic route optimization to improve navigation efficiency in complex clinical environments. Future development could integrate cloud-based medical data storage, secure communication protocols, and electronic health record (EHR) connectivity to support continuous monitoring and seamless documentation. Large-scale usability studies, hospital-based trials, and detailed human robot interaction assessments will be required to refine system performance, ensure patient acceptance, and comply with clinical safety regulations. Ultimately, the combination of software simulation, hardware realization, and AI-driven optimization will advance this robotic doctor from a conceptual design to a fully functional, intelligent healthcare companion capable of transforming contactless medical service delivery.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers.

References

- [1] Yasnitsky, L. N., Dumler, A. A., & Cherepanov, F. M. (2020). Robot-doctor: what can it be?. In Advanced Technologies in Robotics and Intelligent Systems: Proceedings of ITR 2019 (pp. 163-169). Cham: Springer International Publishing.
- [2] Haase, C. B., Bearman, M., Brodersen, J., Hoeyer, K., & Risør, T. (2021). 'You should see a doctor', said the robot: Reflections on a digital diagnostic device in a pandemic age. Scandinavian Journal of Public Health, 49(1), 33-36.
- [3] Sutherland, C. J., Ahn, B. K., Brown, B., Lim, J., Johanson, D. L., Broadbent, E., ... & Ahn, H. S. (2019, May). The doctor will see you now: Could a robot be a medical receptionist?. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 4310-4316). IEEE.
- [4] Shuaib, A., Arian, H., & Shuaib, A. (2020). The increasing role of artificial intelligence in health care: will robots replace doctors in the future?. International journal of general medicine, 891-896.
- [5] Tröbinger, M., Costinescu, A., Xing, H., Elsner, J., Hu, T., Naceri, A., ... & Haddadin, S. (2021, September). A dual doctor-patient twin paradigm for transparent remote examination, diagnosis, and rehabilitation. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2933-2940). IEEE.
- [6] O'Sullivan, S., Nevejans, N., Allen, C., Blyth, A., Leonard, S., Pagallo, U., ... & Ashrafian, H. (2019). Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. The international journal of medical robotics and computer assisted surgery, 15(1), e1968.
- [7] Khan, Z. H., Siddique, A., & Lee, C. W. (2020). Robotics utilization for healthcare digitization in global COVID-19 management. International journal of environmental research and public health, 17(11), 3819.
- [8] Zhang, J., Zhang, H., Dong, C., Huang, F., Liu, Q., & Song, A. (2019). Architecture and design of a wearable robotic system for body posture monitoring, correction, and rehabilitation assist. International Journal of Social Robotics, 11(3), 423-436.
- [9] Farkh, R., Marouani, H., Al Jaloud, K., Alhuwaimel, S., Quasim, M. T., & Fouad, Y. (2021). Intelligent autonomous-robot control for medical applications. Computers, Materials and Continua, 68(2), 2189-2203.
- [10] Paul, D. An Autonomous Firefighting Robot for Industrial Safety Applications.

[11] Karabegović, I., Husak, E., Isić, S., Karabegović, E., & Mahmić, M. (2021, May). Service robots and artificial intelligence for faster diagnostics and treatment in medicine. In International Conference "New Technologies, Development and Applications" (pp. 3-20). Cham: Springer International Publishing.

[12] D. Paul, "Single Phase to Single Phase Cycloconverter," ResearchGate, 2018.

[13] Khatib, M. M. E., & Ahmed, G. (2020). Robotic pharmacies potential and limitations of artificial intelligence: A case study. *International Journal of Business Innovation and Research*, 23(3), 298-312.

[14] Paul, D. Optimized Simulation of Maximum Power Point Tracking for Enhanced Photovoltaic System Efficiency.

[15] Farhud, D. D., & Zokaei, S. (2021). Ethical issues of artificial intelligence in medicine and healthcare. *Iranian journal of public health*, 50(11), i.

[16] Ma, X., Zhou, J., Zhang, X., & Zhou, Q. (2020). Development of a robotic catheter manipulation system based on BP neural network PID controller. *Applied Bionics and Biomechanics*, 2020(1), 8870106.

[17] Huang, Q., & Lan, J. (2019). Remote control of a robotic prosthesis arm with six-degree-of-freedom for ultrasonic scanning and three-dimensional imaging. *Biomedical signal processing and control*, 54, 101606.

[18] Naik, R., & Mandal, I. (2020). Robotic simulation experience in undergraduate medical education: a perspective. *Journal of robotic surgery*, 14(5), 793-794.

[19] Kavidha, V., Gayathri, N., & Kumar, S. R. (2021). AI, IoT and robotics in the medical and healthcare field. *AI and IoT-Based Intelligent Automation in Robotics*, 165-187.

[20] Wang, H., Chang, J., Yu, H., Liu, H., Hou, C., & Lu, H. (2021). Research on a novel vascular interventional surgery robot and control method based on precise delivery. *IEEE Access*, 9, 26568-26582.

[21] Liu, Y., & Yang, R. (2021, January). Federated learning application on depression treatment robots (DTbot). In 2021 IEEE 13th International Conference on Computer Research and Development (ICCRD) (pp. 121-124). IEEE.

[22] Wu, S., Wu, D., Ye, R., Li, K., Lu, Y., Xu, J., ... & Lv, F. (2020). Pilot study of robot-assisted teleultrasound based on 5G network: A new feasible strategy for early imaging assessment during COVID-19 pandemic. *IEEE transactions on ultrasonics, ferroelectrics, and frequency control*, 67(11), 2241-2248.

[23] Bai, S. Z., Ren, N., Feng, Z. H., Xie, R., Dong, Y., Li, Z. W., & Zhao, Y. M. (2021). Animal experiment on the accuracy of the Autonomous Dental Implant Robotic System. *Zhonghua Kou Qiang Yi Xue Za Zhi= Zhonghua Kouqiang Yixue Zazhi= Chinese Journal of Stomatology*, 56(2), 170-174.

[24] Yang, C., Jiang, M., Chen, M., Fu, M., Li, J., & Huang, Q. (2021). Automatic 3-D imaging and measurement of human spines with a robotic ultrasound system. *IEEE Transactions on Instrumentation and Measurement*, 70, 1-13.

[25] Pradhan, B., Bharti, D., Chakravarty, S., Ray, S. S., Voinova, V. V., Bonartsev, A. P., & Pal, K. (2021). Internet of Things and Robotics in Transforming Current-Day Healthcare Services. *Journal of healthcare engineering*, 2021(1), 9999504.

[26] Jang, S. M., Hong, Y. J., Lee, K., Kim, S., Chién, B. V., & Kim, J. (2021). Assessment of user needs for telemedicine robots in a developing nation hospital setting. *Telemedicine and e-Health*, 27(6), 670-678.

[27] Fang, B., Mei, G., Yuan, X., Wang, L., Wang, Z., & Wang, J. (2021). Visual SLAM for robot navigation in healthcare facility. *Pattern recognition*, 113, 107822.

[28] Raje, S., Reddy, N., Jerbi, H., Randhawa, P., Tsaramiris, G., Shrivastava, N. V., ... & Piromalis, D. (2021). [Retracted] Applications of Healthcare Robots in Combating the COVID-19 Pandemic. *Applied bionics and biomechanics*, 2021(1), 7099510.

[29] Maris, B., Tenga, C., Vicario, R., Palladino, L., Murr, N., De Piccoli, M., ... & Fiorini, P. (2021). Toward autonomous robotic prostate biopsy: a pilot study. *International Journal of Computer Assisted Radiology and Surgery*, 16(8), 1393-1401.

[30] Wei, W., Wang, J., Ma, J., Cheng, N., & Xiao, J. (2020). A real-time robot-based auxiliary system for risk evaluation of COVID-19 infection. *arXiv preprint arXiv:2008.07695*.

[31] Boškoski, I., & Costamagna, G. (2019). Endoscopy robotics: current and future applications. *Digestive Endoscopy*, 31(2), 119-124.

[32] Chauhan, A. (2021). Robotics and automation: the rescuers of COVID era. In Artificial intelligence for COVID-19 (pp. 119-151). Cham: Springer International Publishing.

[33] Hai, N. D. X., Nam, L. H. T., & Thinh, N. T. (2019, July). Remote healthcare for the elderly, patients by tele-presence robot. In 2019 International Conference on System Science and Engineering (ICSSE) (pp. 506-510). IEEE.

[34] Bakshi, G., Kumar, A., & Puranik, A. N. (2021). Adoption of robotics technology in healthcare sector. In *Advances in Communication, Devices and Networking: Proceedings of ICCDN 2020* (pp. 405-414). Singapore: Springer Singapore.

[35] Griffin, F. (2021). Artificial intelligence and liability in health care. *Health Matrix*, 31, 65.

[36] Sehume, O. L., & Markus, E. D. (2020). A critical analysis of medical robotic assistive systems for early diagnosis of common ailments in South Africa. *International Journal of Mechanical Engineering and Robotics Research*, 9(10), 1451-1456.

[37] Lin, K., Li, Y., Sun, J., Zhou, D., & Zhang, Q. (2020). Multi-sensor fusion for body sensor network in medical human-robot interaction scenario. *Information Fusion*, 57, 15-26.

[38] Onyeulo, E. B., & Gandhi, V. (2020). What makes a social robot good at interacting with humans?. *Information*, 11(1), 43.

[39] Cooper, S., Di Fava, A., Vivas, C., Marchionni, L., & Ferro, F. (2020, August). ARI: The social assistive robot and companion. In 2020 29th IEEE International conference on robot and human interactive communication (RO-MAN) (pp. 745-751). IEEE.

- [40] Zhong, Y., Hu, L., & Xu, Y. (2020, December). Recent advances in design and actuation of continuum robots for medical applications. In *Actuators* (Vol. 9, No. 4, p. 142). MDPI.
- [41] Li, P., Hou, X., Duan, X., Yip, H., Song, G., & Liu, Y. (2019). Appearance-based gaze estimator for natural interaction control of surgical robots. *IEEE Access*, 7, 25095-25110.
- [42] Manikandan, P., Ramesh, G., Likith, G., Sreekanth, D., & Prasad, G. D. (2021, March). Smart nursing robot for COVID-19 patients. In *2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE)* (pp. 839-842). IEEE.
- [43] Stollnberger, G., Moser, C., Giuliani, M., Stadler, S., Tscheligi, M., Szczesniak-Stanczyk, D., & Stanczyk, B. (2016, August). User requirements for a medical robotic system: enabling doctors to remotely conduct ultrasonography and physical examination. In *2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)* (pp. 1156-1161). IEEE.
- [44] Jeelani, S., Dany, A., Anand, B., Vandana, S., Maheswaran, T., & Rajkumar, E. (2015). Robotics and medicine: A scientific rainbow in hospital. *Journal of pharmacy and bioallied sciences*, 7(Suppl 2), S381-S383.
- [45] Kuznetsov, D. N., & Syryamkin, V. I. (2015, November). Robotics in medicine. In *AIP Conference Proceedings* (Vol. 1688, No. 1, p. 040004). AIP Publishing LLC.
- [46] Stańczyk, B., Kurnicki, A., & Arent, K. (2016, August). Logical architecture of medical telediagnostic robotic system. In *2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR)* (pp. 200-205). IEEE.