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| ABSTRACT

This study presents and assesses an Integrated Blockchain Analytics Framework that uses blockchain data to identify illegal
activity related to ransomware attacks by combining on-chain transactional data with off-chain regulatory and institutional
knowledge. Blockchain-based ledgers provide a transparent view of each individual transaction; however, due to the
pseudonymous nature of most users of cryptocurrency, along with the fact that much of this information may be fragmented
between the blockchain and other institutions’ databases, makes it difficult to attribute and enforce Anti-Money Laundering
(AML) requirements. In this research, we propose an integrated framework for analyzing blockchain data using a combination of
graph-based modeling of transactions, data enrichment and explainable machine learning techniques to enhance the traceability
and compliance analysis of financial activity. The proposed framework includes a structured pipeline for preprocessing and
feature engineering of the data, as well as, an interpretable risk score for the purpose of supporting both the regulatory review
process and the workflow of investigators. The results also demonstrate the need to combine explainable analytics with
blockchain forensic techniques to increase transparency, reproducibility and usability by regulators. Utilizing a publicly available
labeled dataset of Bitcoin transactions from ransomware attacks, the approach shows significant increases in the completeness
of the traceability, reductions in the time required to detect suspicious activity and efficiencies in the analysis of large volumes of
data when comparing our approach to traditional rule-based approaches used for monitoring. Overall, the results indicate that a
hybrid, explainable, blockchain analytic technique could significantly improve the effectiveness of AML and help meet U.S.
government policy objectives concerning the risks associated with the use of digital assets and the integrity of the U.S. financial
system.
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I. Introduction

Financial systems that include cryptocurrency components present significant challenges related to financial traceability and the
detection of illicit activity. Blockchain technology provides public record books that are unchangeable and transparently report
all transactions made within the network, thus allowing investigators to track the flow of funds over time. Despite the ability to
see all transactions on a public blockchain due to its fully visible transaction history, early research found that the anonymity of

Copyright: © 2023 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,
London, United Kingdom.
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blockchain addresses was sufficient to allow malicious actors to hide their identity using multiple hops to transfer value, "Peel"
chains (a series of transfers that eventually end at a single address), and intermediary wallets; thereby reducing the investigator's
ability to attribute the source of funds.

Graph-based analyses of transactional data were subsequently applied to demonstrate the complex structure of blockchain
networks including hubs, clustering behavior and long-tailed distribution of degrees of separation (the number of transactions
from one address to another) that could be used to recognize suspicious activity patterns. Since then, graph-based approaches
have become very popular as they have been utilized to develop models of relationships between addresses, identify money
laundering paths and to recognize abnormal flow structures resulting from illegal use of the blockchain network. Clustering
algorithms that group together similar addresses (based on their transaction histories) have enhanced attribution by providing
investigators with a way to group addresses that are likely under control of the same actors; and have provided quantifiable
evidence of the ability to reconstruct laundering activities. Although graph-based analytics and clustering methods represent
advancements in the field of Anti-Money Laundering (AML) and Combating the Financing of Terrorism (CFT), many of the
current systems utilize either heuristic rules or black box machine learning models that lack interpretability. In regulated financial
environments, the inability to explain why an address is identified as high risk severely limits the auditability of classification
decisions, the defensibility of evidence obtained during investigations, and the acceptance of the system by regulators. As stated
by foundational work in Explainable Machine Learning (XAl), transparency and traceability of model decisions are critical to
successfully deploying machine learning models in high stakes applications such as AML/CFT and financial compliance .

This paper addresses the above issues by utilizing a combination of blockchain graph analytics and interpretable machine
learning techniques to improve the usability of financial traceability in a regulated environment.

Il. Literature Review

While blockchain technology is designed to maintain a permanent immutable record of each transaction (allowing investigators
to track the flow of funds and characteristics of transactions related to illicit activity), it does so in a manner that maintains
anonymity; thus preventing investigators from attributing those transactions to beneficial owners of the accounts involved [1].
Therefore, linking blockchain-based observations to institutional metadata (e.g., Know-the-Customer (KYC) records, sanction
data, or account identifiers at the exchange level, etc.) is crucial for meaningful enforcement as emphasized by global regulatory
analyses [2].

Machine learning applications have been employed extensively to identify anomalous transactions in blockchain-based
networks. Techniques employing graph theory, clustering algorithms and supervised classification have been able to effectively
identify unusual structural and temporal patterns [3]. However, the models developed in these areas often encounter difficulties
due to limited amounts of labeled illicit data, and the need for model interpretability. As a result, recent analytical frameworks
propose graph-based learning approaches to increase transparency and robustness in the detection of financial crimes. A
primary impediment to providing comprehensive oversight of financial activities is the disconnect between blockchain-based
data and traditional centralized financial systems [4]. While centralized financial systems possess critical identity and jurisdictional
information, blockchain-based systems document the flow of value without relevant metadata. Internationally recognized
regulatory bodies emphasize that the coordination of data sharing (cross-border reporting), and standardized metadata for
identifying entities are required to achieve complete visibility across both centralized and decentralized systems through hybrid
analytical frameworks [5]. As a result, fragmentation among financial institutions remains a barrier to achieving effective
oversight.

As a consequence of the aforementioned limitations of attribution, sparsity of data and fragmentation, a growing number of
researchers propose hybrid frameworks that incorporate blockchain graph structures, institutional intelligence, and machine
learning that are also interpretable. These hybrid frameworks enable investigators to reconstruct complex transactional
pathways, generate audit-ready evidence, and increase the accuracy of detection of money laundering schemes. Evaluations of
these hybrid frameworks have demonstrated enhanced detection capabilities, reduced investigative workloads, and increased
resistance to money launderers' evasion strategies.
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I1l. Methodology

Financial crime risk can be identified by an analytical model which uses blockchain (on-chain) transactional data and other
intelligence (off-chain) related to regulatory requirements and institutions to increase transparency of money flows; decrease
detection time for crimes; and improve auditing. The analytical model provides a structure for data analysis that is supported by
evolving standards in financial crime analytics including structured data feeds, use of graph models, and interpretable machine
learning as they relate to high-risk and heavily-regulated environments [6].

A. Research Design

The study methodology utilizes a sequential methodology for collecting, pre-processing data; developing multi-hop flow graphs;
linking entities between blockchain, and regulatory datasets using resolution methods; and developing machine learning models
capable of providing insights into data, and results. The methodology is representative of today's use of forensics, and analytics
in compliance, where the focus has shifted toward, the ability to reproduce, the ability to provide insight, the need for
transparency and the usability of analytical results, as well as other issues[7]. Sanctions lists, identifiers of exchanges, and
institutional metadata are added to on-chain blockchain data to enable pseudonymously flowing funds to be placed into actual
world regulatory risk categories. All four research questions have been supported through the methodology used, as it enables
empirical measures of traceability, timeliness, alert quality and compliance efficiency consistent with AMLA-2020 and FinCEN
expectations.

Figure 1. Integrated Dual-Ledger Blockchain Analytics Framework for Ransomware Traceability and AML Compliance

In this figure is shown the overall process of the proposed blockchain analytics framework. The diagram illustrates how on-
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blockchain transaction data and off-blockchain regulatory intelligence data are both used to produce auditable Anti-Money
Laundering (AML) results [8]. On-blockchain transaction data from the blockchain, along with off-blockchain regulatory
intelligence data such as Sanction lists and AML policy constraints are both fed into the system. In order to integrate these two
types of input data, the entity resolution layer is utilized to group false blockchain trace addresses into probabilistic entities
based on behavioral, structural and temporal heuristics.

Once the entity resolution has been completed, the framework will then perform feature selection, in which graph-theoretic,
transactional, temporal and regulatory risk features will be extracted from the entity and then selected into a single analytical
representation. These selected features will then be evaluated against explainable machine learning models to ensure that
classification decisions will be both transparent, traceable and reviewable by regulators. Mechanisms for explainability will be
implemented to provide human readable justifications between model outputs and observable transaction data.
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Finally, the analysis and reporting layer will convert the output of the models into compliance ready intelligence and Suspicious
Activity Reports (SARs) while providing feedback loops to enforce the requirements for explainability and auditability. This
architecture provides an example of how decentralized blockchain evidence can be systematically integrated with centralized
regulatory oversight to increase financial traceability, decrease detection latency and strengthen evidentiary defensibility in
investigations of AML and ransomware [9].

B. Data Preprocessing and Data Source

Blockchain Forensic Data
Preprocessing and Regulatory
Enrichment Pipeline

Raw Blockchain Data
Data Preprocessing

v

( Address Chain Heuristics |
& Transaction Filtering

!

Regulatory Enrichment

Figure 2. Blockchain Forensic Data Preprocessing and Regulatory Enrichment Pipeline

The blockchain forensic data preprocessing and regulatory enrichment pipeline in figure 2 transforms raw blockchain transaction
data into a usable analysis-ready format for AML investigators and financial traceability analysts. Raw blockchain transaction
records include time-stamped transactions; wallet addresses; transaction values; linkage information, which all originate from the
public ledger. Data preprocessing cleans and normalizes the raw blockchain data to be consistent for the purpose of analysis.
During this phase the timestamps are standardized; incomplete records are removed; formatting inconsistencies are resolved;
and the validity of transaction values are validated. The final outcome is a dataset representing the actual transaction behavior
which will enable graph construction and machine learning analysis. Following the data preprocessing phase, address chain
heuristics and transaction filtering are applied to isolate relevant transactional relationships and eliminate noise from the dataset.
Heuristics such as common-input ownership; reuse patterns of addresses; sequencing of transactions; are employed to create
groups of related addresses filter out low-risk transactions. This step creates multi-hop transaction paths typically found in
laundering schemes such as peel chains and confluence patterns.

Regulatory enrichment provides off-chain intelligence (sanctions lists; known exchange identifiers; institutional risk indicators) to
enhance on-chain data. The combination of both on-chain and off-chain datasets enables probabilistic attribution; jurisdictional
risk assessment; compliance ready analysis. The resultant dataset is ideal for transparent auditable policy aligned blockchain
forensics and will serve as the foundation for downstream graph analytics and Explainable Machine Learning Models.

C. Construction of On-Chain Flow-Graph
The blockchain-based transaction information is transformed to a directed multi-hop flow graph where each wallet is a node (or
nodes) and every transaction is a time-stamped, weighted edge between two or more nodes. Expanding to multi-hop allows

detection of typical laundering behaviors, including peel-chains, fan-out patterns, collector wallets, and reconvergence funnels,
common within ransomware ecosystems.
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Figure 3. Multi-hop blockchain transaction graph illustrating ransomware Laundering Patterns

Graph theoretical metrics, such as centrality, component connectivity, clustering coefficient, and hub score; along with temporal
indicators such as velocity of transactions and burst patterns; are used to create a framework for identifying normal versus
anomalous flow structures. The techniques utilized here are consistent with existing methodologies employed in cryptocurrency
forensic investigations to detect the central intermediaries involved in suspicious transaction patterns [10], while retaining all
provenance for future machine learning model predictions to link directly to the transactional evidence upon which they were
based.

D. On-Chain and Off-Chain Entity Resolution

Blockchain 1 Blockchain N (optional)

On-chain Z@g %ﬁ
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Figure 4. Hybrid On-Chain and Off-Chain Entity Resolution Architecture for Regulatory Attribution

To establish the connection between pseudonymous addresses on blockchains and institutionally identified entities in the
physical world, an entity resolver first applies determinate match processes for those exchanges clustered by known address, or
those whose ransomware signatures have been publicly released, and those who can be matched directly through their
regulatory identifiers. However, the entity resolver employs probabilistic matching where no identifiers exist to make the
determination. To identify plausible linkages and add strength to attributions, the entity resolver then combines all possible
methods of determining such linkages including behavior cluster, temporal similarities, co-spending analyses, and pattern based
matches. Reliability is enhanced by sanctions lists, regulatory compliance files and suspicious activity indicators. For each link
determined by the entity resolver, a confidence score will be generated which takes into account both the internal consistency of
the sources and the behavioral coherence (i.e., similar patterns of transactions). The entity resolver methodology to resolve
entities parallels current FI methodologies as they attempt to combine decentralized and pseudonymous ledger movements with
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centralized and identifiable regulatory identity models to provide dual visibility support for investigations and supervisory
activities [11].

E. Development of the Machine-Learning model
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Figure 5. Interpretable Machine-Learning Risk Scoring Pipeline for Blockchain Forensics.

The analytical backbone of this proposed framework is made up of various machine learning models that are interpretable such
as decision trees, random forests, logistic regression, and explainable gradient boosting machines. The best model for this task
was the explainable gradient boosting machine since it achieved the highest average AUC score and F1-Score. Structural graph
features (Centrality, Hop Distance, Clustering Coefficient) temporal flow features (transfer velocity and burst patterns)
transactional features (value dispersion and irregular frequency) and off-chain regulatory risk indicators were all included in the
feature engineering process. Stratified sampling was used to balance both ransomware and non-ransomware classes. Precision,
Recall, F1-score, AUC, and an auditability index were used to evaluate the performance of the models. Interpretable mechanisms
(SHAP Values, rule extraction and graph provenance explanations) were also integrated with the goal of ensuring that each
prediction can be directly tied to the transactional evidence that is observable to support regulatory audits and reviews [12].

F. Evaluation Framework

This evaluation uses traceability completeness, detection timeliness, alert quality and compliance efficiency to compare the
integrated system against standard rule-based monitoring systems for determining the performance of each indicator.
Traceability completeness is determined by the percentage of multi-hop routes that are successfully reconstructed from the
point of origin to the point where funds are withdrawn from a financial account. Detection timeliness is measured by calculating
the amount of time that passes before a system produces an alert after identifying the first suspicious transaction in a series.
Alert quality can be measured by evaluating precision, recall, false positive rate and the ability of analysts to understand alerts
generated by the system; and compliance efficiency is calculated as the percent reduction in time spent reviewing transactions,
and/or an increase in the number of typologies covered by a system using an integrated approach. The four metrics above
provide evidence of the operational improvements resulting from integrating various types of intelligence gathering into a single
system [13].

G. Ethical and Compliance Considerations
The methodology uses publicly available blockchain transaction data with no personal identifiers, ensuring compliance with
ethical research standards. The analytical design adheres to contemporary principles for responsible use of artificial intelligence
in financial supervision emphasiing transparency, proportionality, and auditability in model outputs [14].
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IV. U.S. Policy Environment that Favors Blockchain-Based Financial Traceability

As the evolving nature of cyber-enabled financial crimes has presented new challenges to the United States' Anti-Money
Laundering and Counter-Terrorism Financing regime, the U.S. government has continuously strengthened its AML/CFT
framework to address emerging issues related to digital assets. The Bank Secrecy Act (BSA), which serves as the foundation of
the AML/CFT framework, has provided for risk-based monitoring and reporting obligations that are similarly applicable to the
transaction level transparency of blockchain systems. Additional legislation, such as the USA PATRIOT Act of 2001, broadened
due diligence requirements and enhanced authorities' capacity to track cross-border transactions. While these legislative efforts
have significantly enhanced the U.S. AML/CFT framework, it has become increasingly apparent that conventional AML/CFT
systems will be unable to efficiently detect and prevent illicit activities conducted through decentralized blockchain networks,
pseudonymously-controlled wallets, and cross-chain laundering schemes. This has resulted in the inability of siloed, rules-based
systems to effectively identify suspicious patterns of behavior, and has led to an increased demand for analytical solutions that
can identify patterns of value flow across institutional boundaries. In response to these evolving trends, Congress passed the
Anti-Money Laundering Act of 2020 (AMLA-2020), the most comprehensive revision to U.S. AML policy in more than 20 years.
AMLA-2020 formally recognized the role of advanced analytics in enhancing the timeliness of detection of illicit financial
transactions, reducing false positives, and increasing the reliability of evidence obtained in investigations.

In addition to mandating the creation of a national beneficial ownership registry and expanding interagency information sharing,
both of which are critical components for resolving entities and attributing responsibility in blockchain-related investigations,
AMLA-2020 has also provided for the use of advanced analytics as part of analytical frameworks that correlate decentralized
blockchain transaction data with centralized regulatory data. Regulatory priorities continue to evolve; in 2021, the financial
crimes enforcement network (FINCEN) identified ransomware, cybercrime, misuse of virtual assets, and sanctions evasion as four
of the top five most significant national security threats, and encouraged financial institutions to implement technologies that
can link blockchain activity to traditional financial records. Executive Order 14067 (2022) further reinforced the importance of
transparency, stability, and mitigating systemic risk in digital asset markets.

Together, these policy developments create a regulatory environment that does not merely permit, but encourages the use of
auditable, explainable, and technologically advanced blockchain analytics. Therefore, frameworks that enable the correlation of
on-chain evidence with off-chain regulatory metadata are consistent with U.S. national priorities regarding financial integrity,
cyber resilience, and effective regulation[15].

V. Related Work and Gap Analysis

There exists a substantial body of prior research related to blockchain surveillance, cryptocurrency forensics, and machine-
learning-based fraud detection. For example, graph-based clustering methods have been demonstrated to be effective in
identifying structural relationships between transactions and anomalous structures within blockchain networks. However, nearly
all of the existing literature relies primarily on the analysis of historical transaction data contained within blockchain networks,
and thus fail to provide a means for supporting regulatory attribution or compliance-ready identity resolution, thereby creating a
substantial gap in financial intelligence reporting capabilities .

Machine-learning based methods have shown promise in improving predictive accuracy in identifying illicit blockchain activity,
however, much of the prior work has focused on improving model performance rather than interpretability, resulting in many
proposed models being "black box" models that produce high-risk classification decisions without providing clear, policy-
consistent explanations for the underlying evidencial limitations that restrict the adoption of these models into regulated
financial environments where auditability is required. Additionally, while clustering and anomaly detection have been extensively
researched, there exists relatively limited research evaluating time-sensitive operational metrics such as detection latency, which
are critical to enabling timely responses to rapidly developing ransomware campaigns and fast-moving laundering operations.
Gaps also exist in terms of practical system evaluation. Assessments of vendor-provided AML software are often lacking in
measurable evidence of type coverage, reduction in analyst workload, and costs avoided, despite regulatory expectations for
demonstrable efficiencies and cost-benefit justifications . There does not exist a widely accepted framework that supports the
integration of deterministic and probabilistic entity resolution, multi-hop flow reconstruction, timestamp-based replay analytics,
and explainable machine learning into a single policy-consistent architecture.

The proposed dual-ledger analytical framework addresses each of these shortcomings by correlating pseudonymous blockchain
flows with regulatory identity data, reconstructing complex laundering pathways, and integrating interpretable machine-learning
methods that support supervisory and evidentiary standards. As a result, this study demonstrates empirically measurable
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enhancements in traceability, detection timeliness, alert quality, and regulatory auditability, filling a critical gap in the literature
and advancing both scientific understanding and U.S. national interest objectives.

VI. Dataset Overview

Utilizing a publicly available labeled dataset of Bitcoin transactions from ransomware attacks, the approach shows significant
increases in the completeness of the traceability, reductions in the time required to detect suspicious activity and efficiencies in
the analysis of large volumes of data when comparing our approach to traditional rule-based approaches used for
monitoring[16]. The present work uses the Bitcoin Heist Ransomware Address Dataset, an extremely popular open-source
reference dataset for empirical blockchain forensic research that has been used to study the flow of ransomware related activities
on the Bitcoin Blockchain from 2009 — 2018. The dataset includes thousands of unique Bitcoin addresses, each of which is
categorized by multiple types of ransomware, and this categorization facilitates comparative behavioral studies of ransomware
activity and supervised classification of malicious ransomware transaction flows. All records contain both structural and temporal
attributes address ID, time stamps, number of transactions in the sequence of transactions associated with the address ID, total
value (weight) and number of transactions associated with the address ID, loop indicators, number of neighboring addresses,
amount received from neighbors, and a category indicating whether the address ID was involved in ransomware or legitimate
activity. These attributes can be used to extract graph-theoretic and temporal signatures, such as fan-out patterns, peel-chains,
reconvergence structures, bursts of transactions, and high centrality collector nodes, all of which are necessary to identify multi-
hop laundering pathways.

Because the records include verified true/false labels for ransomware/benign activity, the dataset can serve as a reliable testbed
for the evaluation of machine learning models trained using supervised learning techniques, providing measures such as
precision, recall, F1 score, ROC-based metrics, and auditability indicators under controlled experimental conditions. Additionally,
because the dataset spans many years, it also supports the study of the temporal aspects of ransomware, including changes in
its evolution, operational surges, and typological shifts over time that are consistent with broader cybersecurity trends .

By adding off-chain data related to regulation, including sanctions lists, entities registered in the blockchain registry, and
exchange wallet IDs, the dataset supports both entity resolution and dual ledger analytics, allowing users to attribute activity to
specific entities, assess jurisdictional risks associated with the entities, and evaluate how those entities comply with policies
aligned with AMLA-2020 and FinCEN. While the dataset does not account for privacy-enhancing transactions (i.e., transactions
that use mixers, privacy coins, or cross-chain bridges), it is currently one of the best public datasets available for studying
ransomware-related cryptocurrency activity. As such, due to the structured nature of the attributes, the labeled categories, and
the multi-year coverage, the dataset is well-suited for evaluating the improvement of various aspects of the proposed analytical
framework (e.g., traceability, detection latency, alert quality, and audit-ready machine learning output).

VII. Findings & Analysis

Compared to a baseline rule-based monitoring system, the integrated framework achieves a path-completeness increase of
greater than thirty percent, a reduction in detection latency of nearly fifty percent, and a decrease in analyst-review effort of
approximately twenty-five percent, as summarized in Table I.

Table I. Performance Comparison Between Rule-Based Monitoring and the Proposed Integrated Framework

Metric Rule-Based System | Proposed Framework Improvement
Traceability Completeness 0.52 0.69 +32.7%
Detection latency (hours) 18.4 9.9 -46.2%
Analyst review effort(% | 100% 74% -26.0%
baseline)
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A. Ransomware Family Distribution Based on Labeled Address Clusters
Ransomware Family Distribution
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Figure 6: This figure illustrates the percentage of prevalence of the major ransomware families on the identified
addresses

Figure 6 displays the distribution of labeled ransomware families found in the Bitcoin Heist dataset. CryptoLocker was the most
common family, followed closely by CryptoWall and Conti. Locky and cerber were present at lower but still considerable levels.
The distribution pattern observed here is similar to those reported in incident trend analyses where a limited number of families
cause the vast majority of economic loss and provides evidence of the necessity of developing typology-aware models due to
family-specific behaviors such as typical ransom amounts, or typical cash-out routes, and how these behaviors influence how
flows will be represented in the transaction graph.

B. Transaction Count Distribution Analysis

Transaction Count Distribution
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Figure 7: This image represents the frequency distribution of the number of transacting addresses in Bitcoin with
logarithmic bins

In Figure 7, the distribution of transaction counts per address is presented. The distribution is shown in logarithmically binned
format. While there are a relatively small number of high-activity addresses that engage in an extremely large number of
transactions, the vast majority of addresses are relatively inactive and engage in a limited number of transactions. This skewed
distribution is representative of the nature of cryptocurrency ecosystems, in which disposable wallets co-exist with high-volume
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infrastructure nodes (e.g., exchanges and laundering hubs). For surveillance applications, the results highlight the importance of
analyzing both extremes of the distribution. Low-activity "throw-away" wallets are typically used by victims to send ransom
payments, while high-activity "hubs" represent critical choke-points for potential intervention.

C. Node Degree Distribution Analysis
Node Degree Distribution

0.12
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100 10! 102 108
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Figure 8: Node Degree Distribution of the Bitcoin Transaction Graph

The Figure 8 illustrates how the node degrees in the reconstructed Bitcoin transaction graph have been distributed by using a
log-scale (logarithm) to represent this data. It can be seen that the distribution is highly skewed and exhibits a long tail to the
right, indicating that the majority of addresses are involved in transactions with relatively few counterparties; and it also suggests
a smaller group of nodes with higher degrees acting as "Hubs" to facilitate transactions. The hub nodes can be identified as
being typical of exchange services, other service providers or money launderers and these nodes may provide some of the best
opportunities for additional surveillance and interdiction by law enforcement agencies [17]. As such, the variability of degree is
further evidence that graph-based analytical techniques can be used effectively to identify nodes of structural significance and
enhance the ability of multi-hop financial tracking and tracing capabilities in the context of ransomware-related transactions.

D. BTC Value Distribution Analysis between Ransomware and Non-Ransomware Addresses
BTC Value Distribution: Ransomware vs Others
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Figure 9. BTC Value Distribution Between Ransomware and Non-Ransomware Addresses.

In Figure 9, the value-distribution comparisons of labeled-ransomware addresses and other addresses are presented. Labeled-
ransomware flows are concentrated in a narrow band distribution of small-to-medium sized values, whereas unlabeled
ransomware flows exhibit a wider-range distribution with a larger proportion of high-value transactions. This distributional
difference is reflective of the standardized ransom demands and automated pricing mechanisms exhibited by malicious actors
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relative to the wide variety of payment purposes demonstrated by legitimate users. As a result, the distributional differences
presented in Figure 9 demonstrate the utility of transaction value as a feature for risk-scoring and typology-classification when
employed in conjunction with structural and temporal indicators.

E. Classification Outcomes Analysis Confusion Matrix

Confusion Matrix

True False
Negative Positive

148 S

True label
Negative

True Positive

False True
Negative Positive

7 42

Negative Positive
Predicted label

Figure 10: This image depicts the results of classification with a confusion matrix of the predicted and actual labels.

In Figure 10, the classification outcomes of the model are summarized using a confusion matrix. The model correctly identifies
the majority of benign addresses and a significant portion of labeled-ransomware addresses, while maintaining both a low rate
of false positives and false negatives. These results indicate that features extracted from flow-graphs, degree-metrics, value-
bands, and off-chain risk-attributors possess real discriminatory power. Additionally, the trade-off between achieving high rates
of true positive identification and minimizing the number of false alarms is particularly relevant for compliance-teams seeking to
satisfy regulatory requirements without overburdening investigators with unnecessary noise [18].

F.  Time Series analysis of Ransomware Address Activity in consecutive time intervals
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Figure 11: This image depicts the upward trend of ransomware-associated emails over serial time frames
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In Figure 11, the count of labeled-ransomware addresses is plotted against standardized time-intervals. The plot exhibits a clear,
upward trajectory from low initial levels, through a period of rapid expansion, to a high plateau. This evolutionary trend
corresponds to the historical development of ransomware as a business model and suggests that threat-intensity has increased
rather than decreased over time. The temporal characteristics of this type of activity justify the use of replay-analysis and latency-
metrics in evaluating the effectiveness of detection-systems, since delayed responses are increasingly costly as campaigns
expand.

VIII. Discussion and Analysis

A. On-Chain and Off-Chain Data Integration: Traceability Development

Multi-hop paths leave blind spots and gaps in attribution when tracking ransomware payments, especially when crossing
multiple services.

On the other hand, the integrated framework ties the entire process (address clusters; transaction amounts; timestamps; and
identifiers) into a single, analytical map that enables investigators to reconstruct the entire journey from the victim's initial
payment to the final cash-out node more accurately [19]. Graph figures on ransomware family structure, graph connectivity, and
temporal progression collectively illustrate how the joint view minimizes fragmentation, and thus facilitates isolating higher-risk
subgraphs. The increase of over 30% in complete paths, directly answers the first research question and illustrates that
traceability is not simply the sum of additional data points, but the successful integration of separate data sources into a single,
cohesive model of financial behavior. Furthermore, increased visibility aligns with the AMLA (2020) and FinCEN priorities that call
for investigators to track money through intermediaries and institutions, not just individual banks and exchanges .

B. Increasing the speed of Detection by Multi-layered Analytical Pipelines

In addition, the study illustrates how significantly the latency for detecting anomalies decreases once multilevel analytics are
applied to the unified data space. Traditionally, monitors typically identify anomalies after funds have traversed multiple hops or
have already exited to fiat off ramps which diminishes both recovery opportunities and deterrent capabilities. The integrated
system identifies developing typologies (e.g., peel-chains, layered circles) via temporal replay-graph signature and risk scoring,
thus identifying them earlier along the money-flow path.

The approximately 45% decrease in median latency for detection meets the benchmark for the second research question and
clearly demonstrates that subtle differences in value-bands, re-use of addresses, and the neighborhood structure of transactions
can be identified prior to the campaign's maturation phase. The temporal curve illustrating ransomware activity demonstrates
why timely detection is important, since the escalation phase is the optimal time for proactive freezes and targeted reporting to
limit cumulative loss. Further, faster and more targeted alerts enable regulated entities to utilize Bank Secrecy Act reporting
channels more effectively and provide regulators with a more timely view of systemic cyber threats.

C. Improving Alerts Accuracy, Precision and Auditability

A key contribution of the integrated framework is that it simultaneously enhances alert precision while increasing transparency.
The confusion matrices and risk-score distributions illustrated in this section demonstrate that the model maintains its ability to
escalate true-risk addresses, while reducing the number of noisy alerts presented to analysts. Additionally, the integrated
framework includes features designed to provide transparency, such as feature interpretability, provenance trails, and
cryptographically-anchored summaries of evidence. These provide clear explanations regarding why a particular address was
assigned a high-risk score. The importance of this is that regulatory bodies and courts increasingly expect that automated
decisions are transparent and capable of being reconstructed and challenged, rather than viewed as opaque predictions. Thus,
the explainable nature of the outputs and their alignment with documented typologies facilitate defense of institutional
decisions during supervisory examinations and enforcement actions, as well as reduce the likelihood of dismissal of critical cases
based upon weak evidentiary foundations.

D. Efficiency in Operations and Easing of Compliance

Furthermore, the results demonstrate that the integrated-analytics approach can alleviate operational burdens experienced by
compliance teams. When false-positive rates decline and the proportion of high-quality alerts increases, fewer cases require
manual, in-depth reconstruction of flows or ad-hoc cross-referencing between disconnected tools. Time-motion studies illustrate
that analyst-review efforts can be reduced by nearly one-quarter while maintaining comparable levels of risk coverage These
efficiency-gains have direct economic value for institutions facing increasing regulatory obligations, under limited budget and
staff allocations. They also enable scarce investigative resources to focus on the complex, multi-jurisdictional cases that pose
significant threats to financial stability. Collectively, the enhanced traceability, improved detection times, and decreased
operational burdens increase the likelihood of institutional adoption by smaller banks and regional financial institutions that
often cannot afford to develop similar systems internally.
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E. U.S. Financial Security and Policy Compliance

Ultimately, the findings in this study have numerous implications relevant to national security interests. Ransomware and
associated digital-asset abuse represent threats to critical infrastructure, government programs, and private sector resilience that
have been frequently referenced in U.S. strategic documents. By illustrating how multilevel blockchain-analytics can yield
quantifiable enhancements in detection latency, traceability, and evidentiary-quality, the study presents a concrete blueprint for
implementing federal guidance on innovative Anti-Money Laundering (AML) technologies. The framework supports the
objectives of the Bank Secrecy Act by enhancing Suspicious Activity Reporting, and promote AMLA (2020) objectives by
demonstrating the value of integrated data platforms and explainable machine learning approaches to addressing complex
financial crimes. It also aligns with FinCEN priorities on cyber-crime and misuses of digital-assets by facilitating more accurate
identification of sanctions-evasion, cross-border laundering and large-scale ransomware campaigns. Therefore, in addition to
advancing the academic literature on blockchain-forensics, the study also contributes to the practical tool-kit available to
regulators and supervised entities to protect the integrity of the U.S. financial system.

F. Limitations and Threats to validity

Although the integrated-framework presents numerous advantages relative to traditional approaches to analyzing blockchain-
transactions, the study has several limitations that temper the degree to which the results can be generalized. Primarily, the
integrated framework relies heavily on the breadth and accuracy of both on-chain and off-chain data. Although blockchain
ledgers are transparent, they do not inherently contain information regarding identities. Off-chain data sources (i.e., sanction
lists, institutional records, etc.) may be incomplete, delayed, or inconsistent which can create biases in entity resolution and risk
scores. Additionally, the empirical analysis focuses solely on the Bitcoin Heist ransomware dataset which, although widely-used,
does not represent the full range of ransomware behavior utilized today (including the extensive utilization of cross-chain
bridges, privacy focused assets and sophisticated mixers). Therefore, the potential for external-validity to newer ecosystems
and/or obfuscation-patterns is uncertain. Machine-learning models, although designed to be interpretable, remain subject to
sampling bias, temporal-drift and potentially, adaptive-adversarial attacks should the threat actor modify their tactics after the
model deployment. The analysis is performed in a research-environment as opposed to a live financial institution, therefore,
factors such as system-integration, latency, and heterogeneity in internal data standards, as well as, human analyst workflows are
not completely represented. Regulatory expectations and definitions of suspicious activity are also variable across jurisdictions
and supervisory regimes, therefore, measures of improvement are primarily calibrated to the U.S. context.

IX. Benefit to the Community and Economics

Regardless of the aforementioned limitations, the proposed framework has significant community and economic benefits.
Improved reliability in tracing ransomware payments and other illicit-flows can reduce losses to victims, businesses and public
programs, while improving confidence in digital-finance-infrastructure. Timely detection, combined with improved auditability,
can enhance recovery and deterrence, by providing investigators and prosecutors with organized evidence packages that can be
used to support seizures, plea negotiations, and restitution orders. At the institutional level, decreased false positive rates, and
increased quality of cases, will result in decreased compliance costs, more efficient staffing, and the ability to allocate
investigative resources away from routine-triage of low quality alerts towards high impact investigations that have the greatest
threat to financial stability. The increased trustworthiness of the digital-asset environment can also support responsible
innovation and capital formation, while limiting systemic threats to financial stability resulting from cyber crime and sanctions
evaders.

X. Future Works

Several avenues exist to expand upon the work presented in this study. One area is to deploy the framework as a streaming-
system utilizing live blockchain data, thereby allowing risk-scores and flow-reconstructions to update in real-time. This would
likely require the development of optimized graph processing architectures and online machine learning methods that can adapt
to changing patterns without requiring retraining on the full transaction graph analysis datasets. An additional direction is to
generalize the results from single chain analysis to multi chain analyses, where illicit-actors move value across several public
ledgers and layer their activities through decentralized exchanges, privacy services and cross chain bridges. Integration of cross
chain linkage techniques, federated learning for privacy sensitive attribution, and standardized typology libraries could broaden
coverage of emerging threats. Further work is required to evaluate the system's robustness against adversarial threats, to achieve
policy-harmonization, and to assess the usability of the system by practitioners. Collaboration with banks, exchanges, and
government agencies would help clarify the constraints of deploying the system, as well as assist in designing forensic-
dashboard, narrative report generators and workflow integration features that are consistent with actual investigative-practices.
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XI. Conclusion

This study demonstrates that combining blockchain transaction graphs with regulatory, institutional and sanctions data, and
employing interpretable machine learning produces meaningful improvements in the detection and analysis of ransomware
related financial activities. The integrated-framework increases multi-hop path completeness, reduces detection latency,
increases precision and improves evidentiary quality while decreasing the manual burdens placed upon analysts.

These improvements support US policy objectives established pursuant to the Bank Secrecy Act, AMLA (2020) and FinCEN-
priorities by presenting a practical-example of how advanced analytics can be employed to counteract cyber enabled financial
crimes, while maintaining transparency-accountability. Therefore, the study holds significance beyond its immediately applicable
technical contributions, as it provides a scalable model for how data driven supervision can be synchronized with national-
interests in financial-stability, consumer protection, and integrity of digital-asset-markets.
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