Journal of Computer Science and Technology Studies
ISSN: 2709-104X]CSTS

DOI: 10.32996/jcsts AL-KINDI CENTER FOR RESEARCH
Journal Homepage: www.al-kindipublisher.com/index.php/jcsts AND DEVELOPMENT
| RESEARCH ARTICLE

Demystifying LLM Serving Pipeline: From Prompt to Response

Reeshav Kumar
Independent Researcher, USA
Corresponding Author: Reeshav Kumar, E-mail: reachreeshav@gmail.com

| ABSTRACT

Each response from an LLM application follows a carefully optimized sequence of steps designed to balance quality, latency, and
cost efficiency. This article outlines a typical LLM serving pipeline, beginning with user prompt capture, retrieval augmentation,
tokenization, request routing, followed by auto-regressive token generation and post-processing to produce the final response.
We evaluate critical system elements in the LLM serving pipeline, including client interfaces, policy verification mechanisms,
admission control systems, KV-cache management, speculative decoding techniques, and post-processing operations. The article
also examines the trade-offs among latency and throughput, memory and compute efficiency, and concurrency and response
time that system architects and product leaders must balance to develop robust LLM applications.

| KEYWORDS

Inference Optimization, Key-Value Cache, Speculative Decoding, Retrieval-Augmented Generation, Dynamic Batching

| ARTICLE INFORMATION

ACCEPTED: 12 November 2025 PUBLISHED: 02 December 2025 DOI: 10.32996/jcsts.2025.7.12.37

1. Introduction

Large Language Models (LLMs) may seem to operate instantaneously, but each response is meticulously guided through a multi-
stage pipeline. This pipeline, designed with utmost precision, ensures a delicate balance of quality, latency, and cost efficiency.
This article delves into the comprehensive system architecture that powers LLM inference, detailing each stage from initial
prompt capture to final token generation.

The complexity behind modern LLM serving systems is a testament to the strategic decisions made by system architects. It
represents a fascinating intersection of distributed systems engineering, hardware acceleration, and algorithmic optimization.
While users experience these systems as responsive conversational interfaces, the underlying infrastructure implements
sophisticated techniques to manage computational resources efficiently. Recent research reveals that web-based LLM
deployments face unique optimization challenges that require careful balancing of multiple competing factors across the entire
serving pipeline [1]. Similarly, a comprehensive analysis of distributed inference architectures demonstrates how system-level
design decisions significantly impact both performance and scalability characteristics in production environments [2].

This paper will discuss the entire journey of the LLM serving process, starting with the point at which a user enters a prompt and
ending with the point at which a response is displayed back on the user's screen. Engineers and technical leaders can make
informed choices about deployment architectures, system optimization, and performance tuning due to their in-depth technical
knowledge of these systems. The serving pipeline is made up of multiple steps: client capture and prompt assembly, tokenization
and policy validation, request routing and hardware acceleration, retrieval augmentation, admission control and batch
processing, and, last but not least, the decoder loop, in which generation is performed. The system's designers will need to make

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,
London, United Kingdom.

Page | 287

Demystifying LLM Serving Pipeline: From Prompt to Response

severe trade-offs among competing priorities at each stage, including throughput, latency, memory efficiency, and response
quality.

As the use of LLMs in organizations becomes an increasingly integral component of their technical infrastructure, understanding
these architectural patterns becomes vital. The LLM serving pipeline, with its significant impact on system performance, is a
crucial element in the process of creating systems that deliver predictable performance and effectively utilize available resources.
The following sections discuss each element of the LLM serving pipeline individually, considering the technical issues and
optimization opportunities at each level of the inference process.

User |:> Bl |:> Outp

LLM Applica PT, Gemini

Fig 1: LLM Inference [1, 2]

2. The Serving Path: A System-Level Overview

As a user makes a prompt to an LLM system, the prompt triggers a complex sequence of processes that have different
performance properties and optimization problems.

Client Capture & Prompt Assembly

N\

System prompt &
parameters i o - N
| Tokenization Request Routing
‘
User L| i] » BPEMWorcPisce o Model Famiy Selection
P t | Client Capture | ———+| Prompt Assembly algoithm * Quantization Tier Sefection
romp! | « Policy Verlication o SLAB Priority Management
\ - J » Safety & Content
1 policies
1
4 \ CPU Bound J \ System Bound J
Context window < o < ¥ A
management ‘ f

LLM Inference Core

/O Bound
* Admission Control
» Dynamic Balching
» Dacoder Loop & Token Ganaration
i \ Compute Bound /
Retrieval & b =

Augmentation

Post Processing

OQutput
Response

o Conversion to human readable text
o Response Formamng

110 Bound

CPU Bound

Fig 2: Typical LLM Serving Path: System-Level Overview [3, 4]
2.1 Client Capture and Prompt Assembly

The journey begins at the client interface, where user input is captured and assembled into a formal prompt. This crucial initial
stage establishes the foundation for all subsequent processing. Modern LLM systems employ a variety of prompt engineering
techniques that significantly impact both response quality and computational efficiency. Context window management
determines how much historical conversation data is included in each request, directly affecting memory requirements
throughout the pipeline. Instruction formatting organizes directives using model-specific patterns, based on empirical studies, to

Page | 288

JCSTS 7(12): 287-293

enhance response quality. System prompts and role definitions establish behavioral parameters and operational boundaries,
while parameter specification configures generation settings such as temperature and sampling methods.

Research indicates this stage is predominantly 10-bound, with network latency emerging as the primary constraint for remote
client connections. The implementation of effective prompt length discipline represents one of the most impactful optimization
strategies available to system designers. Each additional token included in the prompt creates multiplicative computational costs
that propagate throughout the entire serving pipeline. Analysis of production deployments demonstrates that enforcing
reasonable prompt length limits can reduce overall computational requirements by substantial margins without significantly
impacting response quality [3].

2.2 Retrieval and Augmentation

In the case of systems that employ Retrieval-Augmented Generation (RAG), the phase enhances the prompt with contextual
information provided by other knowledge sources. The queries to the vector database correspond to the semantic relevance
between the user's query and the stored data, and more complex embedding models are used to retrieve the most relevant
content. Cache policies determine whether to use previously retrieved information for similar queries, significantly reducing
latency for common request patterns. Freshness thresholds determine when cached data needs to be updated, striking a balance
between performance benefits and potential accuracy concerns.

This stage typically presents an |0-bound challenge, particularly when retrieving from remote databases distributed across
multiple data centers. A comprehensive analysis of production RAG systems reveals that retrieval latency often becomes the
dominant performance bottleneck in these architectures, particularly for requests that require specialized domain knowledge.
Sophisticated caching strategies become essential for maintaining responsive performance, especially for frequently asked
questions or domain-specific applications. Recent innovations in this area include predictive retrieval mechanisms that anticipate
information needs based on conversation context, preemptively caching relevant information before it's explicitly requested [4].

2.3 Tokenization and Policy Verification

Once assembled, the raw text undergoes tokenization—the conversion from human-readable characters to numeric token IDs
that the model can process. This transformation uses language-specific rules, such as Byte-Pair Encoding (BPE), which identifies
standard subword units. Additionally, it employs WordPiece or SentencePiece algorithms, which utilize slightly different
tokenization strategies based on other language properties, as well as vocabulary lookup systems that incorporate special tokens
and out-of-vocabulary elements.

Concurrent with tokenization, policy verification systems assess the prompt against safety guidelines, content policies, and usage
guotas. These verification processes have evolved from simple pattern matching to sophisticated embedding-based approaches
that can identify potentially problematic content with higher precision. Despite this increasing complexity, tokenization and
policy verification typically represent lightweight CPU-bound operations that rarely become system bottlenecks. Comprehensive
performance analysis demonstrates that even complex policy verification logic adds minimal overhead to overall request
processing time, typically measured in single-digit milliseconds even for elaborate verification pipelines [4].

2.4 Request Routing and Model Selection

The tokenized prompt then enters a sophisticated routing layer that makes critical decisions about resource allocation. This
component determines which model family handles each request based on specific capability requirements, selects the
appropriate quantization tier to balance performance against accuracy, and identifies the optimal hardware acceleration path
using GPUs, TPUs, or specialized inference chips. Modern routing systems implement increasingly sophisticated decision
algorithms that consider multiple factors simultaneously.

The routing decision-making process incorporates request priority levels, current system load across the entire inference fleet,
and service level agreements (SLAs) that may specify maximum acceptable latency for different request categories. Research
demonstrates that effective request routing optimizations have a significant impact on global system efficiency by intelligently
balancing workloads across heterogeneous compute resources. Production systems typically implement adaptive routing
strategies that continuously adjust allocation patterns based on changing load conditions and request characteristics, achieving
substantially higher resource utilization compared to static allocation approaches [3].

Page | 289

Demystifying LLM Serving Pipeline: From Prompt to Response

Key Optimization
P Bottl kT |
Stage rocess ottleneck Type Strategy mpact
Prompt length Reduces
Client Capture Prompt assembly 0-bound rompt 'eng computational
discipline
costs
Knowledae Reduced latency
Retrieval (RAG) . .g |O-bound Caching strategies for common
integration .
queries
Tokenization Text to token IDs CPU-bound Efficient algorithms Minimal overhead
Policy Verification Safety & content CPU-bound Embedding-based Single-digit ms
checks approaches overhead
Improved
Request Routing Resource allocation System-bound Adaptive routing resource
utilization

Table 1: LLM Inference Pipeline: Performance Characteristics and Bottlenecks [3, 4]
3. The Inference Core: Processing and Generation
3.1 Admission Control and Dynamic Batching

Before reaching the model itself, requests navigate through sophisticated admission control systems that implement multiple
critical functions. Priority ordering and queue management ensure that high-priority tasks are given a higher priority compared
to workloads with lower priorities, thereby avoiding starvation of the lower-priority workloads. Organizing similar requests into
active batches ensures a high level of computational efficiency as the fixed costs of processing a request are amortized over
several similar requests executed at a given time. These systems, during peak loads, utilize backpressure mechanisms that
gracefully degrade service instead of allowing system overload to lead to cascading failures or unpredictable performance
properties.

The research demonstrates that the optimal batch size is contingent upon a complex interaction of variables, including the
particular model architecture, inherent hardware capabilities, and specified latency requirements. Advanced production systems
dynamically adjust batch composition to maximize hardware utilization while meeting response time targets across different
priority tiers. Analysis of high-throughput LLM serving environments reveals that adaptive batching strategies can significantly
improve overall throughput compared to static approaches, particularly under variable load conditions. Performance studies
indicate that implementing sophisticated admission control mechanisms becomes increasingly crucial as model scale increases,
with larger models showing greater sensitivity to batch size optimization [5].

3.2 The Decoder Loop: Where Tokens Emerge

The decoder loop is the central part of the system, carrying out the actual computations of the neural network that converts
input tokens into output tokens. This step is the most computationally intensive part of the entire pipeline, where hardware ease
of use and algorithm optimization have the most significant impact on the system's overall performance. The decoder loop uses
various sophisticated methods that enable a substantial enhancement of effectiveness and response compared to naive
implementation strategies.

3.2.1 KV-Cache Management

Key-Value (KV) caches retain intermediate attention states, eliminating redundant calculations when generating sequences
through autoregressive processes. This optimization significantly reduces the computational requirements for token generation,
particularly for more extended output sequences. Paged attention mechanisms optimize memory utilization by implementing
efficient memory management strategies that maximize effective context length while minimizing resource requirements. Cache
eviction policies maintain optimal working sets based on sophisticated relevance metrics, vital for extended conversations or
complex document processing tasks. Hardware-specific memory hierarchies significantly influence caching strategies, with
different approaches optimal for various accelerator architectures.

Page | 290

JCSTS 7(12): 287-293

This component represents one of the most memory-intensive operations in the entire serving pipeline, often becoming the
limiting factor for concurrent request handling as models scale to larger parameter counts and longer context windows.
Comprehensive analysis demonstrates that inefficient KV-cache implementations can reduce effective throughput by an order of
magnitude or more in production environments. Recent innovations in this area focus on more efficient memory utilization

patterns and novel data structures specifically optimized for transformer attention mechanisms [6].

Aspect

Description

Technical Impact

Optimization Approach

Function

Retains intermediate
attention states

Eliminates redundant
calculations

Autoregressive
optimization

Memory Usage

Highly memory-intensive

Limiting factor for
concurrent requests

Paged attention
mechanisms

Context Length

Affects working memory
requirements

Crucial for long
conversations

Efficient eviction policies

Varies by accelerator

Different approaches for

Architecture-specific

Hardware Dependency

architecture different hardware implementations

Poor implementation
reduces performance

Memory utilization

Performance Impact
P patterns

Critical for throughput

Transformer-specific

Novel data structures .
optimizations

Recent Innovations Memory efficiency focus

Table 2: KV-Cache: The Memory Bottleneck in LLM Inference [5, 6]
3.2.2 Speculative and Assisted Decoding

To accelerate generation, modern systems implement sophisticated acceleration strategies that fundamentally change the
traditional autoregressive generation paradigm. Speculative decoding leverages smaller, more efficient models to predict likely
token sequences, which the primary model then verifies and refines. This approach effectively trades additional computation for
reduced latency, particularly valuable in interactive applications. Verification through larger models ensures quality while
maintaining the responsiveness advantages of smaller models. Parallel candidate evaluation improves throughput by considering
multiple potential completions simultaneously rather than generating tokens strictly sequentially.

These techniques substantially reduce apparent latency, particularly for predictable outputs such as common phrases or
standard responses, where smaller models can effectively anticipate the behavior of larger models. Research indicates that well-
implemented speculative decoding can reduce perceived generation latency by substantial margins while maintaining output
quality nearly identical to traditional generation approaches. The effectiveness of these techniques varies across content types
and application domains, with more predictable outputs showing greater improvements compared to highly creative or
specialized generations [5].

3.3 Post-Processing and Response Formatting

Finally, generated tokens undergo essential post-processing steps to prepare them for delivery to the end user. Conversion from
token IDs back to human-readable text reverses the initial tokenization process, handling special tokens, whitespace
normalization, and other language-specific formatting requirements. Application of safety filters to generated content provides
an additional layer of policy enforcement, crucial for preventing harmful outputs that might not have been anticipated during
initial prompt verification. Formatting according to client expectations ensures that the response meets specific integration
requirements, particularly important for applications that consume structured outputs.

This stage concludes the journey from prompt to response, completing the inference pipeline. While typically less
computationally intensive than the decoder loop itself, efficient post-processing implementation remains essential for
maintaining overall system responsiveness, particularly for streaming delivery models where perceived latency depends on
minimizing processing time for each generated token. Research indicates that post-processing optimizations can measurably
improve end-to-end response times, particularly for multi-modal outputs or specialized formatting requirements [6].

Page | 291

Demystifying LLM Serving Pipeline: From Prompt to Response

. . Performance
Component Process Primary Challenge Key Technique
Impact
. Request . . . Improved
Admission Control Load balancing Dynamic batching
management throughput
. Computational Algorithm Overall system
Decoder Loop Token generation . py ! g. thm v y
intensity optimization performance
. Memo . Reduced redundant
KV-Cache State retention v . Paged attention veee !
consumption calculations
Speculative Generation . Small model Faster perceived
. . Latency reduction - .
Decoding acceleration prediction response time
. . . . End-to-end
Post-Processing Output preparation | Format conversion Safety filtering .
response time

Table 3: Inference Core Components: Technical Challenges and Solutions [5, 6]
4. Performance Optimization: The Critical Balancing Act

The serving systems that operate adequately and efficiently bring into play a balancing effect on conflicting priorities within
multiple dimensions, resulting in the need for high levels of monitoring and constant realignment to ensure optimal
performance. The trade-offs inherent in these systems are intrinsic engineering issues that require thoughtful system design and
ongoing operational fine-tuning, rather than relying on single-point optimization activities.

The performance trade-off present in the tension between throughput and latency is one of the most observable performance
trade-offs in a production setting. Streaming responses may begin faster, creating an improved perceived responsiveness for
end users, but potentially reduce overall system efficiency compared to hold-and-release approaches, which can better utilize
computational resources through more effective batching. Research demonstrates that the optimal approach varies significantly
based on specific application requirements and usage patterns. Interactive applications typically benefit more from streaming
delivery despite the potential throughput reduction, while batch processing workloads may achieve substantially higher
efficiency through hold-and-release mechanisms. Performance analysis reveals that hybrid approaches can sometimes achieve
the benefits of both paradigms by implementing token buffering with dynamic release thresholds adjusted based on current
system load [7].

Memory versus compute trade-offs emerge most prominently in quantization decisions, where higher precision representations
improve output quality but significantly increase both memory requirements and computational demands. This relationship
becomes particularly critical when deploying models at scale, where memory efficiency often determines the practical limits of
concurrent request handling. Advanced quantization techniques aim to minimize quality degradation while maximizing efficiency
gains, with methods such as mixed-precision quantization showing promising results across diverse workloads. Production
deployments increasingly implement dynamic precision selection based on request characteristics, applying more aggressive
quantization for less sensitive workloads while maintaining higher precision for applications where output quality is paramount
[8].

Another fundamental trade-off for system architecture is concurrency versus response time. Latency increases for larger batches,
whereas a larger batch size yields better overall throughput, as the value of available computational resources is better utilized,
at the cost of higher average and tail response times. Complex batching algorithms aim to mitigate this effect through
techniques such as priority-based batching and dynamic timeouts, although the underlying trade-off is an inherent property of
such systems. According to performance studies, the optimal batch size depends significantly on hardware capabilities, model
architecture, and service-level objectives [7].

Engineers continuously monitor these and other performance characteristics, adjusting system parameters based on observed
usage patterns, available hardware capabilities, and defined business priorities. Modern LLM serving infrastructures implement
increasingly sophisticated observability mechanisms that provide detailed visibility into system behavior across multiple
dimensions. This monitoring enables both automated adjustments through feedback-driven control systems and human-guided
optimization based on comprehensive performance data. The most effective approaches combine deep technical understanding
of the underlying systems with precise alignment to business objectives, ensuring that performance optimization efforts focus on
the metrics that most directly impact user experience and operational efficiency [8].

Page | 292

JCSTS 7(12): 287-293

Optimization Application
T -off A A h A A h B
rade-off Area pproac pproac Strategy Context
Latency vs. . Tgken buffe'rlng Interactive vs. batch
Throughout Streaming responses | Hold-and-release with dynamic rocessin
gnhp thresholds P 9
Memory vs. . . Aggressive Mixed-precision Quality-critical vs.
Compute Higher precision quantization quantization standard tasks
. Throughput-
Concurrency Ve Large batch size Small batch size PI’IOI’It.y based focused vs. latency-
Response Time batching -
sensitive
- Automated Human-guided Sophisticated Resource utilization
System Monitoring . . . o
adjustments tuning observability optimization

Table 4: Critical Trade-offs in LLM Serving Systems [7, 8]
Conclusion

Any communication with a large language model (LLM) is based on a well-organized chain of steps in the serving pipeline,
including the assembly of instructions, tokenization, resource distribution, admission control, and token production. The trade-
offs and optimization opportunities at each stage of this pipeline are different. The conflicting priorities require ongoing
monitoring and adjustment to ensure that the system remains capable of meeting the application's requirements. Finally, the
user experience is based on the trade-offs that are practical at every stage of the serving pipeline, considering both contextual
and operational requirements. The development of further applications of LLMs in pipelines will necessitate a more innovative
architecture that can assess trade-off effects and efficiently avoid them to provide the best user experiences in limited operating
environments.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher, the editors and the reviewers.

References

[1] Shanmugasundaram Sivakumar, "Performance Optimization of Large Language Models (LLMs) in Web Applications,” International Journal of
Trend in Scientific Research and Development (IJTSRD), Volume 8, Issue 1, 2024. [Online]. Available:
https://www.researchgate.net/profile/Shanmugasundaram-Sivakumar/publication/386342544

[2] Joyjit Kundu et al., "Performance Modeling and Workload Analysis of Distributed Large Language Model Training and Inference,”
arXiv:2407.14645, 2024. [Online]. Available: https://arxiv.org/abs/2407.14645

[3]1 Amey Agrawal et al., "On Evaluating Performance of LLM Inference Serving Systems," arXiv:2507.09019, 2025. [Online]. Available:
https://arxiv.org/abs/2507.09019

[4] Shailja Gupta et al.,, "A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future
Directions,". [Online]. Available: https://arxiv.org/pdf/2410.12837

[5] Sahin Ahmed, "LLM Inference Optimization Techniques: A Comprehensive Analysis," Medium, 2025. [Online]. Available:
https://medium.com/@sahin.samia/llm-inference-optimization-technigues-a-comprehensive-analysis-1c434e85ba7c

[6] Towards Al, "KV Cache: The Key to Efficient LLM Inference,". [Online]. Available: https://pub.towardsai.net/kv-cache-the-key-to-efficient-llm-
inference-7260a504efed

[7] Tobiloba Kollawole Adenekan, "Optimizing LLM Latency and Throughput for Interactive Web Interfaces," ResearchGate, 2023. [Online].
Available: https://www.researchgate.net/publication/387223217 Optimizing LLM Latency and Throughput for Interactive Web Interfaces

[8] Renren Jin et al.,, "A Comprehensive Evaluation of Quantization Strategies for Large Language Models," arXiv:2402.16775v1, 2024. [Online].
Available: https://arxiv.org/html/2402.16775v1

Page | 293

https://www.researchgate.net/profile/Shanmugasundaram-Sivakumar/publication/386342544_Performance_Optimization_of_Large_Language_Models_LLMs_in_Web_Applications/links/674e2f5aa7fbc259f1a654b1/Performance-Optimization-of-Large-Language-Models-LLMs-in-Web-Applications.pdf
https://arxiv.org/abs/2407.14645
https://arxiv.org/abs/2507.09019
https://arxiv.org/pdf/2410.12837
https://medium.com/@sahin.samia/llm-inference-optimization-techniques-a-comprehensive-analysis-1c434e85ba7c
https://pub.towardsai.net/kv-cache-the-key-to-efficient-llm-inference-7260a504efed
https://pub.towardsai.net/kv-cache-the-key-to-efficient-llm-inference-7260a504efed
https://www.researchgate.net/publication/387223217_Optimizing_LLM_Latency_and_Throughput_for_Interactive_Web_Interfaces
https://arxiv.org/html/2402.16775v1

