
Journal of Computer Science and Technology Studies

ISSN: 2709-104X

DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

 JCSTS
AL-KINDI CENTER FOR RESEARCH

AND DEVELOPMENT

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,

London, United Kingdom.

 Page | 287

| RESEARCH ARTICLE

Demystifying LLM Serving Pipeline: From Prompt to Response

Reeshav Kumar

Independent Researcher, USA

Corresponding Author: Reeshav Kumar, E-mail: reachreeshav@gmail.com

| ABSTRACT

Each response from an LLM application follows a carefully optimized sequence of steps designed to balance quality, latency, and

cost efficiency. This article outlines a typical LLM serving pipeline, beginning with user prompt capture, retrieval augmentation,

tokenization, request routing, followed by auto-regressive token generation and post-processing to produce the final response.

We evaluate critical system elements in the LLM serving pipeline, including client interfaces, policy verification mechanisms,

admission control systems, KV-cache management, speculative decoding techniques, and post-processing operations. The article

also examines the trade-offs among latency and throughput, memory and compute efficiency, and concurrency and response

time that system architects and product leaders must balance to develop robust LLM applications.

| KEYWORDS

Inference Optimization, Key-Value Cache, Speculative Decoding, Retrieval-Augmented Generation, Dynamic Batching

| ARTICLE INFORMATION

ACCEPTED: 12 November 2025 PUBLISHED: 02 December 2025 DOI: 10.32996/jcsts.2025.7.12.37

1. Introduction

Large Language Models (LLMs) may seem to operate instantaneously, but each response is meticulously guided through a multi-

stage pipeline. This pipeline, designed with utmost precision, ensures a delicate balance of quality, latency, and cost efficiency.

This article delves into the comprehensive system architecture that powers LLM inference, detailing each stage from initial

prompt capture to final token generation.

The complexity behind modern LLM serving systems is a testament to the strategic decisions made by system architects. It

represents a fascinating intersection of distributed systems engineering, hardware acceleration, and algorithmic optimization.

While users experience these systems as responsive conversational interfaces, the underlying infrastructure implements

sophisticated techniques to manage computational resources efficiently. Recent research reveals that web-based LLM

deployments face unique optimization challenges that require careful balancing of multiple competing factors across the entire

serving pipeline [1]. Similarly, a comprehensive analysis of distributed inference architectures demonstrates how system-level

design decisions significantly impact both performance and scalability characteristics in production environments [2].

This paper will discuss the entire journey of the LLM serving process, starting with the point at which a user enters a prompt and

ending with the point at which a response is displayed back on the user’s screen. Engineers and technical leaders can make

informed choices about deployment architectures, system optimization, and performance tuning due to their in-depth technical

knowledge of these systems. The serving pipeline is made up of multiple steps: client capture and prompt assembly, tokenization

and policy validation, request routing and hardware acceleration, retrieval augmentation, admission control and batch

processing, and, last but not least, the decoder loop, in which generation is performed. The system's designers will need to make

Demystifying LLM Serving Pipeline: From Prompt to Response

Page | 288

severe trade-offs among competing priorities at each stage, including throughput, latency, memory efficiency, and response

quality.

As the use of LLMs in organizations becomes an increasingly integral component of their technical infrastructure, understanding

these architectural patterns becomes vital. The LLM serving pipeline, with its significant impact on system performance, is a

crucial element in the process of creating systems that deliver predictable performance and effectively utilize available resources.

The following sections discuss each element of the LLM serving pipeline individually, considering the technical issues and

optimization opportunities at each level of the inference process.

Fig 1: LLM Inference [1, 2]

2. The Serving Path: A System-Level Overview

As a user makes a prompt to an LLM system, the prompt triggers a complex sequence of processes that have different

performance properties and optimization problems.

Fig 2: Typical LLM Serving Path: System-Level Overview [3, 4]

2.1 Client Capture and Prompt Assembly

The journey begins at the client interface, where user input is captured and assembled into a formal prompt. This crucial initial

stage establishes the foundation for all subsequent processing. Modern LLM systems employ a variety of prompt engineering

techniques that significantly impact both response quality and computational efficiency. Context window management

determines how much historical conversation data is included in each request, directly affecting memory requirements

throughout the pipeline. Instruction formatting organizes directives using model-specific patterns, based on empirical studies, to

LLM Application. Eg: ChatGPT, Gemini

User
pro
mpt

LLM
Outp

ut

Resp
onse

Input
Tokens

Output
Tokens

JCSTS 7(12): 287-293

Page | 289

enhance response quality. System prompts and role definitions establish behavioral parameters and operational boundaries,

while parameter specification configures generation settings such as temperature and sampling methods.

Research indicates this stage is predominantly IO-bound, with network latency emerging as the primary constraint for remote

client connections. The implementation of effective prompt length discipline represents one of the most impactful optimization

strategies available to system designers. Each additional token included in the prompt creates multiplicative computational costs

that propagate throughout the entire serving pipeline. Analysis of production deployments demonstrates that enforcing

reasonable prompt length limits can reduce overall computational requirements by substantial margins without significantly

impacting response quality [3].

2.2 Retrieval and Augmentation

In the case of systems that employ Retrieval-Augmented Generation (RAG), the phase enhances the prompt with contextual

information provided by other knowledge sources. The queries to the vector database correspond to the semantic relevance

between the user's query and the stored data, and more complex embedding models are used to retrieve the most relevant

content. Cache policies determine whether to use previously retrieved information for similar queries, significantly reducing

latency for common request patterns. Freshness thresholds determine when cached data needs to be updated, striking a balance

between performance benefits and potential accuracy concerns.

This stage typically presents an IO-bound challenge, particularly when retrieving from remote databases distributed across

multiple data centers. A comprehensive analysis of production RAG systems reveals that retrieval latency often becomes the

dominant performance bottleneck in these architectures, particularly for requests that require specialized domain knowledge.

Sophisticated caching strategies become essential for maintaining responsive performance, especially for frequently asked

questions or domain-specific applications. Recent innovations in this area include predictive retrieval mechanisms that anticipate

information needs based on conversation context, preemptively caching relevant information before it's explicitly requested [4].

2.3 Tokenization and Policy Verification

Once assembled, the raw text undergoes tokenization—the conversion from human-readable characters to numeric token IDs

that the model can process. This transformation uses language-specific rules, such as Byte-Pair Encoding (BPE), which identifies

standard subword units. Additionally, it employs WordPiece or SentencePiece algorithms, which utilize slightly different

tokenization strategies based on other language properties, as well as vocabulary lookup systems that incorporate special tokens

and out-of-vocabulary elements.

Concurrent with tokenization, policy verification systems assess the prompt against safety guidelines, content policies, and usage

quotas. These verification processes have evolved from simple pattern matching to sophisticated embedding-based approaches

that can identify potentially problematic content with higher precision. Despite this increasing complexity, tokenization and

policy verification typically represent lightweight CPU-bound operations that rarely become system bottlenecks. Comprehensive

performance analysis demonstrates that even complex policy verification logic adds minimal overhead to overall request

processing time, typically measured in single-digit milliseconds even for elaborate verification pipelines [4].

2.4 Request Routing and Model Selection

The tokenized prompt then enters a sophisticated routing layer that makes critical decisions about resource allocation. This

component determines which model family handles each request based on specific capability requirements, selects the

appropriate quantization tier to balance performance against accuracy, and identifies the optimal hardware acceleration path

using GPUs, TPUs, or specialized inference chips. Modern routing systems implement increasingly sophisticated decision

algorithms that consider multiple factors simultaneously.

The routing decision-making process incorporates request priority levels, current system load across the entire inference fleet,

and service level agreements (SLAs) that may specify maximum acceptable latency for different request categories. Research

demonstrates that effective request routing optimizations have a significant impact on global system efficiency by intelligently

balancing workloads across heterogeneous compute resources. Production systems typically implement adaptive routing

strategies that continuously adjust allocation patterns based on changing load conditions and request characteristics, achieving

substantially higher resource utilization compared to static allocation approaches [3].

Demystifying LLM Serving Pipeline: From Prompt to Response

Page | 290

Stage Process Bottleneck Type
Key Optimization

Strategy
Impact

Client Capture Prompt assembly IO-bound
Prompt length

discipline

Reduces

computational

costs

Retrieval (RAG)
Knowledge

integration
IO-bound Caching strategies

Reduced latency

for common

queries

Tokenization Text to token IDs CPU-bound Efficient algorithms Minimal overhead

Policy Verification
Safety & content

checks
CPU-bound

Embedding-based

approaches

Single-digit ms

overhead

Request Routing Resource allocation System-bound Adaptive routing

Improved

resource

utilization

 Table 1: LLM Inference Pipeline: Performance Characteristics and Bottlenecks [3, 4]

3. The Inference Core: Processing and Generation

3.1 Admission Control and Dynamic Batching

Before reaching the model itself, requests navigate through sophisticated admission control systems that implement multiple

critical functions. Priority ordering and queue management ensure that high-priority tasks are given a higher priority compared

to workloads with lower priorities, thereby avoiding starvation of the lower-priority workloads. Organizing similar requests into

active batches ensures a high level of computational efficiency as the fixed costs of processing a request are amortized over

several similar requests executed at a given time. These systems, during peak loads, utilize backpressure mechanisms that

gracefully degrade service instead of allowing system overload to lead to cascading failures or unpredictable performance

properties.

The research demonstrates that the optimal batch size is contingent upon a complex interaction of variables, including the

particular model architecture, inherent hardware capabilities, and specified latency requirements. Advanced production systems

dynamically adjust batch composition to maximize hardware utilization while meeting response time targets across different

priority tiers. Analysis of high-throughput LLM serving environments reveals that adaptive batching strategies can significantly

improve overall throughput compared to static approaches, particularly under variable load conditions. Performance studies

indicate that implementing sophisticated admission control mechanisms becomes increasingly crucial as model scale increases,

with larger models showing greater sensitivity to batch size optimization [5].

3.2 The Decoder Loop: Where Tokens Emerge

The decoder loop is the central part of the system, carrying out the actual computations of the neural network that converts

input tokens into output tokens. This step is the most computationally intensive part of the entire pipeline, where hardware ease

of use and algorithm optimization have the most significant impact on the system's overall performance. The decoder loop uses

various sophisticated methods that enable a substantial enhancement of effectiveness and response compared to naive

implementation strategies.

3.2.1 KV-Cache Management

Key-Value (KV) caches retain intermediate attention states, eliminating redundant calculations when generating sequences

through autoregressive processes. This optimization significantly reduces the computational requirements for token generation,

particularly for more extended output sequences. Paged attention mechanisms optimize memory utilization by implementing

efficient memory management strategies that maximize effective context length while minimizing resource requirements. Cache

eviction policies maintain optimal working sets based on sophisticated relevance metrics, vital for extended conversations or

complex document processing tasks. Hardware-specific memory hierarchies significantly influence caching strategies, with

different approaches optimal for various accelerator architectures.

JCSTS 7(12): 287-293

Page | 291

This component represents one of the most memory-intensive operations in the entire serving pipeline, often becoming the

limiting factor for concurrent request handling as models scale to larger parameter counts and longer context windows.

Comprehensive analysis demonstrates that inefficient KV-cache implementations can reduce effective throughput by an order of

magnitude or more in production environments. Recent innovations in this area focus on more efficient memory utilization

patterns and novel data structures specifically optimized for transformer attention mechanisms [6].

Aspect Description Technical Impact Optimization Approach

Function
Retains intermediate

attention states

Eliminates redundant

calculations

Autoregressive

optimization

Memory Usage Highly memory-intensive
Limiting factor for

concurrent requests

Paged attention

mechanisms

Context Length
Affects working memory

requirements

Crucial for long

conversations
Efficient eviction policies

Hardware Dependency
Varies by accelerator

architecture

Different approaches for

different hardware

Architecture-specific

implementations

Performance Impact Critical for throughput
Poor implementation

reduces performance

Memory utilization

patterns

Recent Innovations Memory efficiency focus Novel data structures
Transformer-specific

optimizations

Table 2: KV-Cache: The Memory Bottleneck in LLM Inference [5, 6]

3.2.2 Speculative and Assisted Decoding

To accelerate generation, modern systems implement sophisticated acceleration strategies that fundamentally change the

traditional autoregressive generation paradigm. Speculative decoding leverages smaller, more efficient models to predict likely

token sequences, which the primary model then verifies and refines. This approach effectively trades additional computation for

reduced latency, particularly valuable in interactive applications. Verification through larger models ensures quality while

maintaining the responsiveness advantages of smaller models. Parallel candidate evaluation improves throughput by considering

multiple potential completions simultaneously rather than generating tokens strictly sequentially.

These techniques substantially reduce apparent latency, particularly for predictable outputs such as common phrases or

standard responses, where smaller models can effectively anticipate the behavior of larger models. Research indicates that well-

implemented speculative decoding can reduce perceived generation latency by substantial margins while maintaining output

quality nearly identical to traditional generation approaches. The effectiveness of these techniques varies across content types

and application domains, with more predictable outputs showing greater improvements compared to highly creative or

specialized generations [5].

3.3 Post-Processing and Response Formatting

Finally, generated tokens undergo essential post-processing steps to prepare them for delivery to the end user. Conversion from

token IDs back to human-readable text reverses the initial tokenization process, handling special tokens, whitespace

normalization, and other language-specific formatting requirements. Application of safety filters to generated content provides

an additional layer of policy enforcement, crucial for preventing harmful outputs that might not have been anticipated during

initial prompt verification. Formatting according to client expectations ensures that the response meets specific integration

requirements, particularly important for applications that consume structured outputs.

This stage concludes the journey from prompt to response, completing the inference pipeline. While typically less

computationally intensive than the decoder loop itself, efficient post-processing implementation remains essential for

maintaining overall system responsiveness, particularly for streaming delivery models where perceived latency depends on

minimizing processing time for each generated token. Research indicates that post-processing optimizations can measurably

improve end-to-end response times, particularly for multi-modal outputs or specialized formatting requirements [6].

Demystifying LLM Serving Pipeline: From Prompt to Response

Page | 292

Component Process Primary Challenge Key Technique
Performance

Impact

Admission Control
Request

management
Load balancing Dynamic batching

Improved

throughput

Decoder Loop Token generation
Computational

intensity

Algorithm

optimization

Overall system

performance

KV-Cache State retention
Memory

consumption
Paged attention

Reduced redundant

calculations

Speculative

Decoding

Generation

acceleration
Latency reduction

Small model

prediction

Faster perceived

response time

Post-Processing Output preparation Format conversion Safety filtering
End-to-end

response time

Table 3: Inference Core Components: Technical Challenges and Solutions [5, 6]

4. Performance Optimization: The Critical Balancing Act

The serving systems that operate adequately and efficiently bring into play a balancing effect on conflicting priorities within

multiple dimensions, resulting in the need for high levels of monitoring and constant realignment to ensure optimal

performance. The trade-offs inherent in these systems are intrinsic engineering issues that require thoughtful system design and

ongoing operational fine-tuning, rather than relying on single-point optimization activities.

The performance trade-off present in the tension between throughput and latency is one of the most observable performance

trade-offs in a production setting. Streaming responses may begin faster, creating an improved perceived responsiveness for

end users, but potentially reduce overall system efficiency compared to hold-and-release approaches, which can better utilize

computational resources through more effective batching. Research demonstrates that the optimal approach varies significantly

based on specific application requirements and usage patterns. Interactive applications typically benefit more from streaming

delivery despite the potential throughput reduction, while batch processing workloads may achieve substantially higher

efficiency through hold-and-release mechanisms. Performance analysis reveals that hybrid approaches can sometimes achieve

the benefits of both paradigms by implementing token buffering with dynamic release thresholds adjusted based on current

system load [7].

Memory versus compute trade-offs emerge most prominently in quantization decisions, where higher precision representations

improve output quality but significantly increase both memory requirements and computational demands. This relationship

becomes particularly critical when deploying models at scale, where memory efficiency often determines the practical limits of

concurrent request handling. Advanced quantization techniques aim to minimize quality degradation while maximizing efficiency

gains, with methods such as mixed-precision quantization showing promising results across diverse workloads. Production

deployments increasingly implement dynamic precision selection based on request characteristics, applying more aggressive

quantization for less sensitive workloads while maintaining higher precision for applications where output quality is paramount

[8].

Another fundamental trade-off for system architecture is concurrency versus response time. Latency increases for larger batches,

whereas a larger batch size yields better overall throughput, as the value of available computational resources is better utilized,

at the cost of higher average and tail response times. Complex batching algorithms aim to mitigate this effect through

techniques such as priority-based batching and dynamic timeouts, although the underlying trade-off is an inherent property of

such systems. According to performance studies, the optimal batch size depends significantly on hardware capabilities, model

architecture, and service-level objectives [7].

Engineers continuously monitor these and other performance characteristics, adjusting system parameters based on observed

usage patterns, available hardware capabilities, and defined business priorities. Modern LLM serving infrastructures implement

increasingly sophisticated observability mechanisms that provide detailed visibility into system behavior across multiple

dimensions. This monitoring enables both automated adjustments through feedback-driven control systems and human-guided

optimization based on comprehensive performance data. The most effective approaches combine deep technical understanding

of the underlying systems with precise alignment to business objectives, ensuring that performance optimization efforts focus on

the metrics that most directly impact user experience and operational efficiency [8].

JCSTS 7(12): 287-293

Page | 293

Trade-off Area Approach A Approach B
Optimization

Strategy

Application

Context

Latency vs.

Throughput
Streaming responses Hold-and-release

Token buffering

with dynamic

thresholds

Interactive vs. batch

processing

Memory vs.

Compute
Higher precision

Aggressive

quantization

Mixed-precision

quantization

Quality-critical vs.

standard tasks

Concurrency vs.

Response Time
Large batch size Small batch size

Priority-based

batching

Throughput-

focused vs. latency-

sensitive

System Monitoring
Automated

adjustments

Human-guided

tuning

Sophisticated

observability

Resource utilization

optimization

Table 4: Critical Trade-offs in LLM Serving Systems [7, 8]

Conclusion

Any communication with a large language model (LLM) is based on a well-organized chain of steps in the serving pipeline,

including the assembly of instructions, tokenization, resource distribution, admission control, and token production. The trade-

offs and optimization opportunities at each stage of this pipeline are different. The conflicting priorities require ongoing

monitoring and adjustment to ensure that the system remains capable of meeting the application's requirements. Finally, the

user experience is based on the trade-offs that are practical at every stage of the serving pipeline, considering both contextual

and operational requirements. The development of further applications of LLMs in pipelines will necessitate a more innovative

architecture that can assess trade-off effects and efficiently avoid them to provide the best user experiences in limited operating

environments.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.
Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher, the editors and the reviewers.

References

[1] Shanmugasundaram Sivakumar, "Performance Optimization of Large Language Models (LLMs) in Web Applications," International Journal of

Trend in Scientific Research and Development (IJTSRD), Volume 8, Issue 1, 2024. [Online]. Available:

https://www.researchgate.net/profile/Shanmugasundaram-Sivakumar/publication/386342544

[2] Joyjit Kundu et al., "Performance Modeling and Workload Analysis of Distributed Large Language Model Training and Inference,"

arXiv:2407.14645, 2024. [Online]. Available: https://arxiv.org/abs/2407.14645

[3] Amey Agrawal et al., "On Evaluating Performance of LLM Inference Serving Systems," arXiv:2507.09019, 2025. [Online]. Available:

https://arxiv.org/abs/2507.09019

[4] Shailja Gupta et al., "A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future

Directions,". [Online]. Available: https://arxiv.org/pdf/2410.12837

[5] Sahin Ahmed, "LLM Inference Optimization Techniques: A Comprehensive Analysis," Medium, 2025. [Online]. Available:

https://medium.com/@sahin.samia/llm-inference-optimization-techniques-a-comprehensive-analysis-1c434e85ba7c

[6] Towards AI, "KV Cache: The Key to Efficient LLM Inference,". [Online]. Available: https://pub.towardsai.net/kv-cache-the-key-to-efficient-llm-

inference-7260a504efed

[7] Tobiloba Kollawole Adenekan, "Optimizing LLM Latency and Throughput for Interactive Web Interfaces," ResearchGate, 2023. [Online].

Available: https://www.researchgate.net/publication/387223217_Optimizing_LLM_Latency_and_Throughput_for_Interactive_Web_Interfaces

[8] Renren Jin et al., "A Comprehensive Evaluation of Quantization Strategies for Large Language Models," arXiv:2402.16775v1, 2024. [Online].

Available: https://arxiv.org/html/2402.16775v1

https://www.researchgate.net/profile/Shanmugasundaram-Sivakumar/publication/386342544_Performance_Optimization_of_Large_Language_Models_LLMs_in_Web_Applications/links/674e2f5aa7fbc259f1a654b1/Performance-Optimization-of-Large-Language-Models-LLMs-in-Web-Applications.pdf
https://arxiv.org/abs/2407.14645
https://arxiv.org/abs/2507.09019
https://arxiv.org/pdf/2410.12837
https://medium.com/@sahin.samia/llm-inference-optimization-techniques-a-comprehensive-analysis-1c434e85ba7c
https://pub.towardsai.net/kv-cache-the-key-to-efficient-llm-inference-7260a504efed
https://pub.towardsai.net/kv-cache-the-key-to-efficient-llm-inference-7260a504efed
https://www.researchgate.net/publication/387223217_Optimizing_LLM_Latency_and_Throughput_for_Interactive_Web_Interfaces
https://arxiv.org/html/2402.16775v1

