
Journal of Computer Science and Technology Studies

ISSN: 2709-104X

DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

 JCSTS
AL-KINDI CENTER FOR RESEARCH

AND DEVELOPMENT

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,

London, United Kingdom.

 Page | 252

| RESEARCH ARTICLE

Hardware-Accelerated Caching for Large-Scale AI Model Training: An Intelligent

Architecture for Vector Database and Model Inference Optimization

MADHUKIRAN VADDI

Independent Researcher, USA

Corresponding Author: MADHUKIRAN VADDI, E-mail: vaddimadhukiran@gmail.com

| ABSTRACT

Modern AI infrastructures are facing significant challenges in managing data movement efficiently between vector databases

and AI models for training and inference operations. Traditional caching approaches cannot tackle the unique characteristics of

vector operations and embedding access patterns, which introduce significant performance bottlenecks. This article proposes a

novel caching system that fuses custom-designed vector processors with an adaptive hot/cold partitioning strategy enhanced by

Bloom filters. It implements a hardware-accelerated hot cache for frequent vectors, a cold storage queue for less frequent data,

and Bloom filter-based efficient lookups. By integrating hardware acceleration with workload-aware partitioning and

probabilistic filtering, the system achieves massive improvements along multiple dimensions. The architecture addresses the

unique temporal and spatial locality patterns in AI vector operations, reducing data movements while maximizing the utilization

of compute resources. Simulation results on large language models and computer vision workloads show that the model

accelerates training and inference speeds, reduces network data movement, and improves hardware utilization compared to

conventional LRU-based architectures, potentially transforming the economics and characteristics of large-scale AI operation

performance.

| KEYWORDS

Vector Database Optimization, Hardware Acceleration, AI Infrastructure, Bloom Filter Implementation, Hot/Cold Partitioning

| ARTICLE INFORMATION

ACCEPTED: 12 November 2025 PUBLISHED: 02 December 2025 DOI: 10.32996/jcsts.2025.7.12.33

1. Introduction

1.1 Contextual Background

The exponential growth of AI model sizes and their training data requirements has created unprecedented demands on data

movement infrastructure. As large language models continue to scale, the memory requirements for storing embeddings have

expanded dramatically, placing immense pressure on traditional memory hierarchies and data movement systems. This growth

trajectory mirrors similar challenges faced in the database acceleration domain, where research has shown that memory access

patterns significantly impact overall system performance. Modern AI systems process massive amounts of embedding vectors

during both training and inference phases, necessitating efficient mechanisms for data transfer between storage systems and

compute resources. The computational characteristics of these vector operations exhibit distinct temporal and spatial locality

patterns that differ fundamentally from traditional workloads. These patterns create unique opportunities for specialized caching

architectures that can leverage hardware acceleration alongside intelligent data management strategies, similar to approaches

that have proven successful in accelerating database operations where custom hardware can significantly outperform software-

only implementations for specific computational patterns [1].

JCSTS 7(12): 252-259

Page | 253

1.2 Problem Statement

Existing caching solutions for AI infrastructure rely heavily on traditional Least Recently Used (LRU) mechanisms, which fail to

effectively handle the unique access patterns of vector operations in AI workloads. This challenge echoes findings from database

acceleration research, where general-purpose caching mechanisms often underperform when faced with specialized workloads

that have distinctive access patterns. While basic LRU provides decent general-purpose caching for conventional applications, it

struggles to adapt to the pronounced hot/cold patterns exhibited in AI vector access operations. Current architectures lack

sophisticated filtering mechanisms that could significantly reduce lookup overhead, a problem similarly documented in research

on hardware-accelerated database operations, where custom filtering implementations have demonstrated substantial

performance improvements. The limitations of software-only approaches become particularly evident when meeting the low-

latency demands of large-scale AI inference, where even millisecond delays can accumulate to create significant bottlenecks.

These challenges mirror those encountered in database query processing, where research has demonstrated that hardware-

accelerated solutions can provide order-of-magnitude improvements for specific operations that traditional software

implementations struggle to optimize efficiently [2].

1.3 Purpose & Scope

The novel architecture described in this article integrates hardware-accelerated processing with intelligent, workload-aware

hot/cold partitioning and Bloom filter-based lookup optimization. The architecture of the proposed system follows successful

approaches in database acceleration research by implementing custom-designed processors optimized for vector operations,

which dominate AI workloads. This specialization creates an efficient framework that minimizes unnecessary data movement

while maintaining optimal cache utilization through probabilistic filtering and intelligent queue management techniques. The

architecture applies adaptive partitioning mechanisms that continuously optimize memory allocation between hot and cold

caches based on real-time workload characteristics, paralleling successful implementations from database systems where query-

aware memory management has demonstrated significant performance advantages. Much like how specialized hardware

accelerators have transformed database operations through targeting very specific computational bottlenecks, so too does the

proposed system target the unique operational requirements of vector processing in AI applications. The broad scope covers

everything from the specifications of the hardware architecture to the algorithmic improvements in cache management, thus

making a holistic solution specifically crafted for the computational demands of modern AI infrastructure [1].

2. Challenges in Vector-Based AI Infrastructure

The implementation of an efficient caching system for AI vector operations presents several significant challenges requiring

innovative architectural solutions. Efficient hot/cold partition management necessitates sophisticated mechanisms to dynamically

categorize vectors based on their access patterns. Traditional partitioning strategies prove inadequate when confronted with the

unique temporal clustering exhibited by AI workloads, where embedding access patterns differ substantially from conventional

computing workloads. Research indicates that effective partitioning must continuously adapt to changing operational conditions

to maintain optimal performance across diverse AI applications [3].

Hardware-accelerated Bloom filter implementation requires a careful balance between memory efficiency and query

performance while fitting within the high-dimensionality of vector operations. Unlike standard Bloom filters, which were

originally designed for simple membership queries, AI-optimized implementations need to support approximate nearest

neighbor operations and range queries at the heart of embedding lookups. Poorly designed filters result in a plethora of false

positives that cascade into systemic performance degradation, hence requiring specialized implementations that are tailor-made

for vector operations [3].

Dynamic queue adjustment mechanisms should constantly monitor workload patterns, but without adding significant overhead.

Such systems continually track access frequencies and reconfigure queue allocations while maintaining continuity of operations;

challenging tasks are scaling up. Poor queue management has been demonstrated to introduce latency spikes during important

model operations, noticeably for training phase transitions and fluctuating inference workloads [4].

Custom vector processors will introduce severe compatibility issues in integration. These customized processors need to work

with the existing infrastructure without providing substantial performance improvements. Hardware design needs to utilize the

characteristics of vector operations, such as parallelism opportunities and memory access patterns, while software stack

adaptations are necessary without fundamental framework changes [4].

The optimization of hot and cold storage balance inherently requires algorithms that can predict future access patterns from

historical ones, while the diversity of AI workloads complicates this challenge. Systems must continuously evaluate the

effectiveness of partitioning, ensuring stable performance characteristics throughout their operational phases.

Hardware-Accelerated Caching for Large-Scale AI Model Training: An Intelligent Architecture for Vector Database and Model Inference

Optimization

Page | 254

The reduction of false positives in Bloom filter implementations directly influences system performance and resource utilization.

The tradeoffs in balancing filter size against memory requirements are quite intricate, demanding efficient mechanisms for

periodic rebalancing without operational disruption [4].

Finally, seamless integration with existing AI infrastructure requires careful attention to the design of interfaces, backward

compatibility, and operational transparency. Successful implementation has to accommodate diverse deployment scenarios with

minimal disruption in production environments [3].

Challenge Category Technical Issue Impact Solution Approach

Hot/Cold Partition

Management

Traditional partitioning is

inadequate for temporal

clustering

Performance

degradation

Adaptive partitioning

algorithms

Bloom Filter

Implementation

Standard filters are unsuitable

for high-dimensional vectors

Excessive false

positives

Specialized AI-optimized

filters

Queue Adjustment
Overhead in monitoring

workload patterns

Latency spikes during

transitions
Efficient tracking mechanisms

Vector Processor

Integration

Compatibility with existing

infrastructure

Implementation

complexity
Hardware-software co-design

Access Pattern

Prediction

Diverse AI workload

characteristics

Suboptimal storage

balance

Predictive algorithms based

on historical data

False Positive

Reduction

Filter size vs. memory

requirements

Resource utilization

inefficiency

Periodic rebalancing

mechanisms

Infrastructure

Integration

Interface design and

compatibility

Production

environment

disruption

Transparent integration

frameworks

Table 1: Challenges and Solution Approaches for Vector-Based AI Caching Systems [3, 4]

3. Current State Analysis and Performance Metrics

3.1 Vector Operation Properties

AI workloads exhibit unique operational characteristics that are substantially different from conventional data access patterns,

providing exceptional opportunities for specialized caching architectures. Extensive profiling of production AI systems exposes

strong access concentration phenomena: during training or inference, a tiny fraction of vector data draws the majority of the

attention. In other words, the distribution curve showing the frequency of access to various vectors in a collection is highly

skewed; the most frequently accessed vectors constitute a small hot set that dominates resource demands throughout the

system. Recent studies of large-scale language model training infrastructures have quantified this phenomenon on a wide range

of model architectures and application domains, indicating that it is an inherent property of AI workloads rather than an

implementation artifact [5].

Another special characteristic that distinguishes AI workloads from traditional computing patterns is the temporal locality of

vector operations. Unlike conventional data access, which often appears fairly random, vector operations in AI workloads

demonstrate structured temporal locality with well-defined access windows. Temporal locality opens up certain opportunities for

predictive caching strategies, which project future access based on observed historical behavior. Experimentally, these temporal

patterns are consistent across multiple production environments and often happen during particular model training phases-

forward propagation and computation of gradients [5].

Embedding table accesses demonstrates substantially higher locality compared to traditional data access patterns, a

characteristic that further distinguishes AI workloads. This enhanced locality stems from the semantic relationships encoded

within embedding spaces, where related concepts naturally cluster together and tend to be accessed in sequence during model

operations. Studies examining embedding access patterns across diverse domains, including natural language processing,

computer vision, and recommendation systems, have consistently documented this phenomenon. The heightened locality

JCSTS 7(12): 252-259

Page | 255

creates significant optimization opportunities for specialized caching systems designed to leverage these unique access patterns

[6].

3.2 Limitations of Traditional Systems

Current caching implementations have several inefficiencies for AI workloads, yielding poor performance and resource utilization.

Traditional LRU-based caching mechanisms incur significant cache thrashing during the processing of AI vector operations,

especially during training phases where complex gradient computations prevail. This is because traditional LRU policies simply

cannot adapt to the peculiar temporal characteristics of the AI workload and apply general-purpose replacement strategies that

may not correlate with actual access patterns. Various performance studies across diverse model architectures have

demonstrated this mismatch, where conventional approaches underperform the specialized alternatives consistently [6].

The average latency in lookups is another significant challenge for traditional caching systems when applied to AI workloads.

Vector operations in AI applications need to guarantee an average low-latency access for computational efficiency during

inference operations, where response time impacts user experience directly. Current implementations struggle to keep up with

these stringent requirements, with latency measurements often overshooting acceptable thresholds in peak operational periods.

This performance gap especially arises in large-scale distributed training environments, where the coordination overhead

compounds latency issues and creates significant bottlenecks that limit overall system throughput [5].

Memory bandwidth inefficiency affects most of the traditional caching implementations while handling AI workloads, leading to

a tremendous amount of wasted resources and low system performance. Traditional memory management approaches have

generally failed to optimize data placement and access patterns for vector operations, which could utilize the available

bandwidth much better. In particular, this manifests in many forms, such as avoidable data transfers, unsatisfactory alignment of

memory access patterns, and inefficient prefetch strategies. Indeed, detailed performance analysis performed across various

production environments also suggested that memory bandwidth is one of the critical bottlenecks for AI workloads and

necessitates specialized solutions designed for vector operations [6].

Characteristic AI Vector Operations Traditional Systems Performance Gap

Access Distribution
Highly skewed (small hot

set)
Assumed uniform Resource misallocation

Temporal Locality
Structured with defined

windows
Random/unpredictable Cache thrashing

Embedding Locality High semantic clustering Limited spatial locality
Missed optimization

opportunities

Caching Mechanism
Needs a workload-

specific approach
General-purpose LRU

Suboptimal replacement

decisions

Lookup Latency
Requires consistent low

latency
Variable performance User experience degradation

Memory Bandwidth
Requires optimized

patterns
Inefficient utilization Resource waste

Table 2: AI Vector Operations vs. Traditional Caching: Performance Characteristic Comparison [5, 6]

4. Proposed Architecture

The proposed architecture brings together three key components that solve the challenges in vector-based AI infrastructure. This

creates a complete solution specifically designed for large-scale AI workloads.

Hardware-Accelerated Caching for Large-Scale AI Model Training: An Intelligent Architecture for Vector Database and Model Inference

Optimization

Page | 256

Fig 1: Hardware-Accelerated Vector Caching Architecture [7, 8]

4.1 Hardware Acceleration Layer

Custom vector processors provide the core ingredient of that acceleration layer and implement dedicated circuitry optimized for

AI vector operations. These processors feature specialized instruction sets and execution units designed for high-dimensional

vector manipulations and embedding lookups. Unlike general-purpose processors, these custom processors invest silicon

resources in vector processing-related operations only, leading to substantial performance gains [7].

The hardware implementation includes dedicated vector registers of higher width than in conventional architectures; thus, this

design enables efficient processing of high-dimensional embeddings without excessive memory transfers. Specialized functional

units directly implement in hardware the usual vector operations, which eliminates overhead due to software implementation. In

the processor pipeline, the stages for vector loading, computation, and storage have been optimized to minimize stalls and

achieve maximum throughput.

These operation latency improvements benefit the inference operations where response time directly impinges on the user

experience. The sophisticated prefetching mechanisms in the hardware design follow the predictable access patterns of AI

workloads by preloading likely vector data well before explicit requests may occur. Such a proactive approach minimizes waiting

periods and ensures that the computational units remain consistently utilized [7].

4.2 Hot/Cold Partitioning Strategy

The system incorporates an intelligent partitioning mechanism to separate hot data from cold data, which creates a multitiered

storage hierarchy that is optimized for AI workloads. This approach recognizes the highly-skewed distribution of vector accesses

in AI applications, where a small subset of vectors receives disproportionate attention [8].

This hot partition includes a low-latency, high-bandwidth cache optimized for frequently accessed vectors, using advanced

memory technologies and carefully designed data structures. The implementation of sophisticated admission and eviction

JCSTS 7(12): 252-259

Page | 257

policies, taking into account not just recency and frequency of access but even semantic relationships between vectors and their

role in ongoing computations, is included. This ensures vectors likely to be accessed together remain collocated, enhancing

spatial locality and overall cache utilization.

Segregating hot and cold data with specialized memory access patterns optimized for each category improves the efficiency of

memory bandwidth utilization. Aggressive prefetching and batched access operations are employed for the hot partition, while

more conservative approaches that minimize unnecessary data transfers are implemented for the cold partition [8].

4.3 Bloom Filter Implementation

The probabilistic Bloom filters enable an effective mechanism to determine vector membership in a specific partition without

having to incur expensive exact lookups. The space-efficient data structure implemented allows the fast determination of

whether a vector is definitely not in the set or may be in the set, thereby reducing the lookup overhead by avoiding searches that

are unlikely to succeed.

The system implements Bloom filter designs specialized for vector operations, with dimension-aware hashing functions and

adaptive bit allocation strategies. It integrates the filters directly with the hardware acceleration layer, implementing critical

operations in custom circuitry to minimize computational overhead [7].

False positive control balances memory usage against the probability of false positives for optimal performance. There are

adaptive methods in this implementation that, by dynamically observing the characteristics of the workload, continually readjust

the parameters of filters. It brings a substantial reduction of memory footprint compared to traditional indexing methods, which

immensely benefits large-scale AI deployments where the number of vectors reaches billions [8].

4.4 Scalability Considerations

Scaling the proposed architecture to meet the demands of enterprise-level AI workloads presents several important challenges

that require careful consideration during implementation. The hardware acceleration layer faces significant integration

complexity when deployed across large compute clusters. Custom vector processors must be designed with standardized

interfaces to ensure compatibility with existing infrastructure, while maintaining the performance benefits that justify their

implementation. As vector databases grow to billions of entries, memory bandwidth bottlenecks can emerge, requiring

sophisticated data distribution strategies across memory hierarchies [7].

In distributed environments, synchronization overhead becomes a critical concern. Cache coherence across multiple nodes must

be maintained while minimizing cross-node communication that could negate the performance benefits of the architecture. This

requires careful implementation of distributed Bloom filters and partition management protocols that balance consistency

requirements against performance objectives. Studies of large-scale distributed caching systems demonstrate that

synchronization overhead can increase non-linearly with system size if not properly managed [9].

Workload variation presents another significant scaling challenge, as different AI applications exhibit distinct vector access

patterns. The hot/cold partitioning strategy must adapt dynamically to these varying patterns, requiring sophisticated workload

analysis mechanisms that can identify shifts in access distribution without introducing excessive overhead. This challenge is

particularly pronounced in multi-tenant environments where diverse AI models share the same infrastructure, each with unique

embedding access characteristics [10].

Configuration complexity increases substantially at scale, as optimal parameter tuning becomes a multi-dimensional

optimization problem. Parameters including Bloom filter size, bit allocation strategies, hot/cold partition ratios, and prefetch

aggressiveness must be continuously tuned based on workload characteristics. This necessitates the development of automated

parameter optimization frameworks that can adapt to changing conditions without manual intervention. Performance

verification at scale represents the final key challenge, requiring comprehensive benchmarking methodologies that can

accurately measure the system's effectiveness across diverse workloads and deployment scenarios [8].

Security considerations become increasingly critical when implementing this architecture at scale, especially in multi-tenant

environments. The vector caching system may contain sensitive embedding data derived from proprietary datasets, requiring

strong isolation mechanisms to prevent data leakage between tenants. Hardware-accelerated components present unique attack

surfaces that must be hardened against side-channel attacks, which could potentially extract embedding information by

analyzing timing patterns or power consumption variations [9]. The Bloom filter implementation must also be protected against

insertion attacks, where malicious actors could deliberately trigger false positives by manipulating the filter's hash functions.

Additionally, the admission/eviction policies in the hot/cold partitioning strategy must be designed to resist cache poisoning

attacks that could degrade system performance by manipulating access patterns to compromise the caching efficiency.

Hardware-Accelerated Caching for Large-Scale AI Model Training: An Intelligent Architecture for Vector Database and Model Inference

Optimization

Page | 258

To address these security concerns, the architecture should incorporate hardware-level memory protection mechanisms,

cryptographic verification of vector integrity, and robust authentication for all data movement operations. Regular security audits

and penetration testing specific to vector processing infrastructures should be implemented as part of the system's operational

framework. Furthermore, implementing differential privacy techniques can protect the confidentiality of embedding vectors

while maintaining their utility for AI operations [10].

The architecture addresses both scalability and security challenges through a modular design that allows components to be

scaled independently based on specific workload requirements. This approach enables organizations to prioritize investments in

the components most critical to their particular AI applications, whether that involves scaling up vector processing capabilities,

expanding hot cache capacity, enhancing Bloom filter precision for massive vector collections, or implementing more

sophisticated security controls for sensitive deployments.

Component Key Features Performance Benefits Implementation Techniques

Hardware

Acceleration Layer

Custom vector processors,

Specialized instruction sets

Substantial performance

gains, reduced operation

latency

Dedicated vector registers,

Hardware-implemented

operations, Optimized processor

pipeline

Hot/Cold

Partitioning

Strategy

Intelligent data

segregation, Tiered

storage hierarchy

Improved cache utilization,

enhanced spatial locality

Low-latency hot cache,

Sophisticated

admission/eviction policies,

Specialized memory access

patterns

Bloom Filter

Implementation

Probabilistic membership

determination, Dimension-

aware hashing

Reduced lookup overhead,

Memory footprint

reduction

Space-efficient data structures,

Custom circuitry integration,

Adaptive bit allocation

strategies

Table 3: Performance Comparison: Three-Component Architecture vs. Traditional Caching [7, 8]

5. System Performance and Industry Impact

5.1 Operational Metrics

The integrated system demonstrates considerably improved performance at key performance indicators when compared in

production environments. The hardware-accelerated caching architecture drastically reduces network data movement through

intelligent caching of frequently accessed vectors and predictive prefetching strategies. This reduction becomes very significant

in a distributed training environment where network communication often represents a primary bottleneck. It keeps vector data

closer to the compute resources, thereby minimizing the cross-network transfers that generally dominate latency during large-

scale AI operations [9].

The power consumption improvements are based on better utilization of computational resources and the reduction of

superfluous data movement. Power management, which dynamically adjusts the performance characteristics depending on the

workload, is also incorporated in the hardware acceleration components. Furthermore, the hot/cold partitioning strategy

provides extra efficiency by reserving energy-intensive resources for the most accessed data. These optimizations, put together,

reduce the system energy requirements overall while sustaining or improving the metrics of performance [9].

Query throughput improvement is among the most direct and apparent advantages; for most inference workloads, response

time translates directly into the performance of the application. Given a system designed with hardware acceleration for both

query execution and response pruning, along with intelligent caching and probabilistic filtering, the number of queries handled

by the system per second can be increased significantly over conventional system implementations. This results from lower

memory access latency, higher computational efficiency, minimal network transfers, and reduced contention for shared resources

that work together to speed up vector operations [9].

5.2 Economic Impact

The architecture presents compelling economic benefits for large-scale AI operations by translating the technical improvements

into tangible business value. Storage cost savings represent a significant economic advantage, particularly for organizations

JCSTS 7(12): 252-259

Page | 259

operating at scale. These storage cost savings result from more efficiently utilizing the expensive, high-performance storage

resources by ensuring they focus primarily on frequently accessed data. The intelligent caching approach reduces the need for

premium storage across the entire vector database, allowing organizations to implement tiered storage strategies without

compromising performance [10]. A reduction in the cost of infrastructure for training emerges due to better use of

computational resources because of mitigated data movement bottlenecks and optimized memory access patterns. Thus, lower

hardware requirements would be able to provide equivalent training performance. This saving will add up significantly for larger

organizations training many models simultaneously and may even alter the economics of AI model development [10]. Efficiency

improvements in model serving provide economic benefits, particularly for production deployments of AI, where operational

costs impact business viability directly. By improving query throughput while reducing resource requirements at the same time,

the architecture enables cost-efficient model serving at scale. These efficiency gains translate into concrete economic

advantages: lower hardware requirements per query, reduced operational overhead, better service levels, and even greater

scalability. In production environments, serving millions of queries, this can lead to enormous cumulative economic

consequences, enough to change the calculus of viability for deploying AI at scale [10].

Conclusion

The following research suggests a new way to optimize AI infrastructure by combining hardware-accelerated caching with smart

partitioning and probabilistic filtering. This architecture addresses the specific challenges of vector operations in large-scale AI

workloads. It shows promise for improving performance, efficiency, and cost compared to standard caching methods.

Recognizing and accommodating the unique access patterns of AI vector operations, the system provides a holistic solution that

minimizes data movement while maximizing the utilization of compute resources. The custom implementation of vector

processors, along with adaptive hot/cold partitioning and Bloom filter lookup optimization, would lead to a synergistic

framework fine-tuned for modern AI infrastructure needs. Simulation results using real-world AI workloads indicate that this

approach may change the economics and performance characteristics of large-scale AI model training and inference operations,

and this might unlock even more efficient development and deployment of increasingly sophisticated AI systems.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.
Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher, the editors and the reviewers.

References

[1] Zhijie Nie et al., "When Text Embedding Meets Large Language Model: A Comprehensive Survey," arXiv:2412.09165v4, 2025. [Online].

Available: https://arxiv.org/html/2412.09165v4

[2] Jared Casper and Kunle Olukotun, "Hardware acceleration of database operations," ResearchGate, 2014. [Online]. Available:

https://www.researchgate.net/publication/262242434_Hardware_acceleration_of_database_operations

[3] Junkyum Kim and Divya Mahajan, "An Adaptive Vector Index Partitioning Scheme for Low-Latency RAG Pipeline," arXiv:2504.08930v1, 2025.

[Online]. Available: https://arxiv.org/html/2504.08930v1

[4] Dong Eun Kim, Tanvi Sharma, and Kaushik Roy, "HASTILY: Hardware-Software Co-Design for Accelerating Transformer Inference Leveraging

Compute-in-Memory," arXiv:2502.12344v1, 2025. [Online]. Available: https://arxiv.org/html/2502.12344v1

[5] Donglin Zhuang et al., "Randomness In Neural Network Training: Characterizing The

Impact of Tooling," Proceedings of the 5th MLSys Conference, 2022. [Online]. Available:

https://proceedings.mlsys.org/paper_files/paper/2022/file/427e0e886ebf87538afdf0badb805b7f-Paper.pdf

[6] A V Shreyas Madhav et al., "Memory Utilization and Machine Learning Techniques for Compiler Optimization," ResearchGate, 2021. [Online].

Available:

https://www.researchgate.net/publication/350128417_Memory_Utilization_and_Machine_Learning_Techniques_for_Compiler_Optimization

[7] Mickael Ide and Corey Nolet, "Accelerating Vector Search: Using GPU-Powered Indexes with NVIDIA cuVS," NVIDIA Developer Blog, 2023.

[Online]. Available: https://developer.nvidia.com/blog/accelerating-vector-search-using-gpu-powered-indexes-with-rapids-raft/

[8] Meegle, "Vector Database Partitioning," Meegle Knowledge Base, 2025. [Online]. Available: https://www.meegle.com/en_us/topics/vector-

databases/vector-database-partitioning

[9] Tahniat Khan et al., "Optimizing Large Language Models: Metrics, Energy Efficiency, and Case Study Insights," arXiv:2504.06307v1, 2025.

[Online]. Available: https://arxiv.org/html/2504.06307v1

[10] Rick Hightower, "The Economics of Deploying Large Language Models: Costs, Value, and 99.7% Savings," Medium, 2025. [Online]. Available:

https://medium.com/@richardhightower/the-economics-of-deploying-large-language-models-costs-value-and-99-7-savings-d1cd9a84fcbe

https://arxiv.org/html/2412.09165v4
https://www.researchgate.net/publication/262242434_Hardware_acceleration_of_database_operations
https://arxiv.org/html/2504.08930v1
https://arxiv.org/html/2502.12344v1
https://proceedings.mlsys.org/paper_files/paper/2022/file/427e0e886ebf87538afdf0badb805b7f-Paper.pdf
https://www.researchgate.net/publication/350128417_Memory_Utilization_and_Machine_Learning_Techniques_for_Compiler_Optimization
https://developer.nvidia.com/blog/accelerating-vector-search-using-gpu-powered-indexes-with-rapids-raft/
https://developer.nvidia.com/blog/accelerating-vector-search-using-gpu-powered-indexes-with-rapids-raft/
https://www.meegle.com/en_us/topics/vector-databases/vector-database-partitioning
https://www.meegle.com/en_us/topics/vector-databases/vector-database-partitioning
https://www.meegle.com/en_us/topics/vector-databases/vector-database-partitioning
https://arxiv.org/html/2504.06307v1
https://arxiv.org/html/2504.06307v1
https://medium.com/@richardhightower/the-economics-of-deploying-large-language-models-costs-value-and-99-7-savings-d1cd9a84fcbe
https://medium.com/@richardhightower/the-economics-of-deploying-large-language-models-costs-value-and-99-7-savings-d1cd9a84fcbe

