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| ABSTRACT

The complexity of Internet of Things devices poses significant validation challenges with their progression from isolated
functions to ecosystems of interconnected systems. The software-hardware interaction bugs often cannot be identified during
traditional testing, especially in power management, communication protocols, and sensor interfaces. The described scalable
Hardware-in-the-Loop framework deals with these issues by introducing a hybrid between declarative and procedural
architecture that decouples the implementation of tests and their specification. Python procedural engine is a hardware
abstraction engine, and YAML configuration can be used to write domain experts without understanding abstract frameworks.
Such an architecture is bringing validation out of the manual and subjective process, and into an automated and deterministic
process, which is part of development pipelines. The framework allows prompt feedback on changes in the code, concurrent
running of tests, and extensive data gathering that will reveal hidden peculiarities. Using physical hardware testing during the
development lifecycle, as opposed to the end of it, improves the product quality, provides faster development speed despite
increased testing needs.
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1. Introduction

1.1. The Growing Challenge of loT Firmware Validation

The rapid expansion of Internet-of-Things technology has fundamentally transformed embedded systems from simple isolated
devices into complex interconnected networks, creating unprecedented firmware validation challenges. Modern IoT devices
incorporate sophisticated power management systems, real-time communication protocols, and intricate sensor networks that
must function reliably across diverse operating environments. The validation landscape has become increasingly complex as
these systems evolve beyond traditional embedded architectures.

Research reveals a critical pattern in embedded system failures: approximately 64% of critical defects occur at the hardware-
software interaction boundary rather than within isolated software components [1]. These defects typically manifest in scenarios
that traditional software-only testing methodologies fail to address effectively:

Power state transitions during sleep/wake cycles and battery charging
Communication protocol handshakes in wireless connectivity

Sensor calibration and feedback loop processing

Timing-sensitive operations requiring precise synchronization
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The validation challenge intensifies significantly when organizations maintain a unified firmware codebase supporting multiple
hardware variants. Each hardware configuration introduces new variables into the testing matrix, creating exponential growth in
test permutations. This combinatorial explosion renders comprehensive manual testing logistically impossible within modern
development timeframes that have compressed from months to weeks due to market pressures.

Manual laboratory testing approaches introduce substantial variability based on operator expertise and equipment
configuration. The inherent limitations in repeatability and scalability become particularly problematic when applied to product
families requiring continuous regression testing throughout accelerated development cycles. Without standardized automation,
validation becomes a significant bottleneck that conflicts directly with market-driven timeline requirements.

1.2. Economic and Market Implications

The financial stakes of effective validation have escalated alongside market growth projections exceeding $1.3 trillion by 2026
[2]. The loT landscape shows remarkable expansion across diverse sectors including industrial automation, healthcare
monitoring, and smart infrastructure. This growth has been accompanied by escalating customer expectations regarding
reliability and performance.

The consequences of firmware defects extend far beyond immediate remediation costs to encompass reputational damage,
regulatory compliance issues, and potential product recalls, factors that can determine market success or failure. This reality
creates a fundamental tension between accelerating development cycles and ensuring comprehensive quality validation.
Organizations face mounting pressure to simultaneously decrease time-to-market while enhancing product quality, as early
market entrants often establish significant competitive advantages through ecosystem effects and customer acquisition.

1.3. The Paradigm Shift in Validation

Traditional sequential development approaches, where hardware validation follows software development as a discrete phase,
have become increasingly untenable. This separation creates substantial feedback delays between code implementation and
discovery of hardware-dependent issues, significantly increasing remediation costs compared to early-stage detection.

Forward-thinking organizations have begun implementing integrated methodologies that incorporate hardware-dependent
testing throughout the development lifecycle. This paradigm shift acknowledges the fundamental interconnection between
firmware and hardware in loT systems and the necessity of concurrent validation rather than sequential verification.

Effective validation methodologies must now bridge the gap between digital simulation and physical hardware interaction while
generating quantitative, reproducible results compatible with modern development workflows. This integration requirement has
driven interest in automated, scalable frameworks that can validate firmware against actual hardware without creating
bottlenecks in accelerated development cycles.

The Hardware-in-the-Loop validation framework presented in subsequent sections addresses these challenges through a
structured, repeatable approach to firmware testing that integrates seamlessly with contemporary software development
practices while accommodating the physical realities of embedded systems. By enabling concurrent validation of hardware-
dependent functionality throughout development, this approach transforms validation from a sequential bottleneck into an
integrated quality assurance mechanism that supports both rapid development and robust product reliability.

2. Current Challenges in Embedded System Validation

2.1. The Evolution of Validation Requirements

The transformation of embedded systems from isolated devices to interconnected loT ecosystems has fundamentally altered
validation requirements. Traditional validation methodologies developed for previous generations of embedded technology
operate on assumptions that no longer apply in complex, multi-connected environments. These conventional approaches face
increasing inadequacy as loT devices incorporate sophisticated communication protocols, dynamic power management systems,
and complex sensor networks operating under variable environmental conditions.

2.2. The Limitations of Manual Testing

Despite recognized shortcomings, manual testing procedures remain surprisingly prevalent across the embedded systems
industry. This approach typically involves engineers connecting oscilloscopes, power supplies, and other measurement
equipment to devices under test while visually assessing signal waveforms and system responses. This methodology introduces
several critical limitations:
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2.2.1. Subjectivity and Inconsistency

Visual inspection inherently introduces subjective interpretation into what should be an objective analysis process. The
assessment of waveform characteristics, timing relationships, and signal quality becomes dependent on individual judgment
rather than quantitative metrics. This subjectivity creates significant variation in test outcomes between different validation
sessions or when conducted by different personnel, undermining result consistency and reliability.

2.2.2. Documentation Deficiencies

Manual testing processes frequently lack standardized documentation practices. Test procedures, measurement criteria, and
acceptance thresholds often exist as tribal knowledge rather than formal specifications. This results in validation artifacts of
varying quality and completeness, creating challenges for knowledge transfer, regulatory compliance, and defect reproduction.

2.2.3. Scalability Constraints

As product complexity increases, manual testing creates severe scalability bottlenecks. The linear relationship between feature
count and testing time becomes unsustainable as development schedules compress. Validation cycles consume disproportionate
timeline allocations that conflict directly with accelerated development expectations, forcing quality compromises to meet
market windows.

2.3. Sequential Methodology

Perhaps most critically, conventional validation approaches position hardware testing as a sequential activity following firmware
development rather than an integrated, parallel process. This creates substantial feedback delays between code implementation
and the discovery of hardware-dependent issues. Research examining embedded systems development workflows demonstrates
that this temporal disconnect significantly increases remediation costs compared to early-stage detection, introducing
inefficiencies that propagate throughout the development lifecycle [3].

2.3.1. The Simulation Shortfall

Software simulation environments, while valuable for certain aspects of validation, demonstrate fundamental limitations when
addressing hardware-dependent behaviors. These environments operate on abstract representations of hardware rather than
modeling the complex electrical and timing characteristics of physical devices.

Simulations struggle to accurately replicate critical phenomena including:

Power supply fluctuations and brownout conditions
Electromagnetic interference effects on signal integrity
Temperature variations affecting component performance
Timing jitter and clock synchronization issues
e Sensor input variations under real-world conditions
These physical-layer behaviors significantly influence system operation in deployment environments but frequently evade
detection in simulation-only validation approaches.

2.4. Enterprise Solutions and Adoption Barriers

Industries like automotive and aerospace have developed sophisticated hardware-in-the-loop testing methodologies to address
these challenges. However, these solutions typically involve specialized test equipment with proprietary interfaces and complex
software environments. These enterprise-grade systems introduce significant adoption barriers within consumer electronics
ecosystems due to:

Integration challenges with modern development frameworks

High implementation complexity requiring specialized expertise

Substantial capital investment requirements

Architectures designed for singular complex systems rather than distributed device ecosystems

These adoption barriers create a significant validation gap wherein many embedded systems projects remain inadequately
tested for physical-layer phenomena. This gap creates elevated risk profiles particularly in power management, communication
protocols, and sensor interfaces, precisely the areas where critical 10T failures most commonly occur [4].

The fundamental disconnect between validation requirements and available methodologies necessitates new approaches that
effectively bridge simulation and physical hardware while remaining compatible with the economic and operational constraints
of oT development.
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Challenge Category Description Impact
Manual Testing Limitations Subjective assessment of waveforms Inconsistent test outcomes
Documentation Issues Non-standardized documentation Variable quality artifacts
Scalability Constraints Single device testing bottlenecks Timeline allocation problems
Sequential Methodology Hardware testing after development Delayed feedback loops
Simulation Inadequacy Abstract representation of hardware Missing physical phenomena
Enterprise Solution Barriers Specialized equipment requirements Adoption challenges in loT

Table 1: Current Challenges in Embedded System Validation [3, 4]

3. The HIL Framework: A Declarative-Procedural Approach

3.1. Architectural Innovation

The Hardware-in-the-Loop validation framework introduces a transformative architecture for embedded systems testing through
its hybrid declarative-procedural model. This innovative approach directly addresses the fundamental challenges of loT firmware
validation by establishing a clear separation between test implementation (how tests execute) and test specification (what should
be tested). This separation represents a significant departure from traditional monolithic test scripts where test logic and test
parameters are tightly coupled, creating maintenance challenges and expertise barriers.

3.2. The Procedural Foundation

The framework's procedural component consists of a Python-based test engine built on the PyTest framework, providing
comprehensive hardware abstraction capabilities for diverse test equipment interaction. This abstraction layer encapsulates the
complexity of communicating with hardware test equipment:

Programmable power supplies that simulate various power conditions
Electronic loads that mimic real-world device power consumption

Data acquisition systems capturing high-resolution signal measurements
Communication analyzers monitoring protocol exchanges

This layer presents a consistent interface accessible through straightforward function calls like set_voltage(), measure_current(),
or capture_waveform(). By isolating hardware communication details from test logic, the framework significantly reduces the
technical expertise required for test development while maintaining compatibility with continuous integration environments.

The procedural foundation implements specialized functions for common validation scenarios that occur across multiple product
variants:

Power transition analysis during sleep/wake events
Communication protocol verification for wireless interfaces
Sensor characterization under variable environmental conditions
Timing analysis for critical operational sequences

This creates a standardized validation vocabulary that can be consistently applied across different product variants and test
configurations, eliminating the need to reinvent testing approaches for each new device variant [5].

3.3. The Declarative Layer

Complementing this procedural foundation, the declarative component leverages YAML as a human-readable configuration
language for defining test parameters, sequences, and acceptance criteria. YAML's straightforward syntax enables domain
experts to create comprehensive test specifications without requiring detailed knowledge of the underlying test framework
implementation.

Test definition occurs through YAML configuration files that specify:

Simple parameters (voltage thresholds, timing requirements)
Complex sequences (multi-phase charging algorithms)
Communication events (protocol handshakes)

Pass/fail criteria (acceptable measurement ranges)
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The declarative layer supports hierarchical configuration structures with inheritance capabilities, enabling the creation of base
test definitions that can be extended or specialized for specific device variants. For example, a base battery charging test can be
defined once and then extended with variant-specific parameters for different battery capacities or charging profiles.

This configuration-driven methodology transforms test definitions into self-documented, version-controlled artifacts within the
development ecosystem, enabling application of software engineering best practices to test maintenance. Changes can be
tracked, reviewed, and reverted using the same tools and processes applied to source code [6].

Separation of Responsibilities

The separation of test specification (parameters in YAML) from test implementation (code in Python) creates a natural division of
responsibilities that aligns with organizational expertise boundaries:

Firmware engineers define what should be tested via configuration files
Test automation specialists maintain the underlying framework
Hardware engineers establish measurement criteria and thresholds
Quality assurance teams orchestrate test execution and reporting

This alignment eliminates expertise bottlenecks that frequently occur with monolithic test implementations, where specialized
knowledge of both test frameworks and hardware characteristics is required.

The approach has demonstrated particular effectiveness in environments with evolving requirements and expanding device
portfolios. Test modifications can be implemented through configuration changes rather than code modifications, significantly
accelerating the adaptation of test suites to accommodate new hardware variants or updated specifications. By enabling domain
experts to directly contribute to test definitions without programming expertise, the framework removes significant friction from
the validation process while enhancing test coverage and relevance.

Component Implementation Function Benefits
. Python-based with . . .
Procedural Engine P));:cl'est Hardware abstraction Reduced complexity barrier
Declarative Configuration | YAML format Test parameter definition | Domain expert empowerment
Hierarchical . I Base/variant test Reduced configuration
. . Inheritance capabilities - L
Configuration definitions duplication
. Equipment .
Hardware Interface Abstraction layer quipment Cross-platform consistency
communication
. . Specialized test Common validation .
Function Library pect . Standardized test vocabulary
functions scenarios
. . Version-controlled . . . .
Configuration-as-Code artifacts Test maintenance Software engineering practices

Table 2: HIL Framework Components - Declarative-Procedural Model [5, 6]

4. Performance Analysis: Automation vs. Manual Testing

4.1. Fundamental Performance Dispatrities

Comparative evaluation of testing methodologies reveals fundamental performance disparities between automated and manual
approaches for embedded systems validation. These differences manifest across multiple dimensions including efficiency,
reproducibility, and detection capability. A systematic assessment of these methodologies demonstrates quantifiable advantages
that automated frameworks provide over traditional manual approaches, particularly for complex loT devices with sophisticated
hardware-software interactions.

4.2. The Setup Overhead Challenge

Manual testing methodologies involve significant setup overhead, requiring precise configuration of measurement equipment,
calibration of power supplies, and preparation of data collection systems. These preparatory activities typically consume 40-60%
of total testing time and require specialized knowledge of equipment operation and configuration. The process typically
involves:

e  Physical connection of oscilloscopes, power supplies, and data acquisition equipment
e Manual calibration of measurement systems to ensure accuracy
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e  Configuration of trigger conditions for capturing relevant events
e  Establishment of appropriate measurement ranges and scales
e  Preparation of data recording mechanisms for post-test analysis

These preparation practices introduce substantial variability based on operator experience and equipment familiarity. An
experienced test engineer might complete setup procedures in half the time required by a novice, creating inconsistent testing
timelines that complicate project scheduling and resource allocation. This variability becomes particularly problematic in team
environments where different engineers may execute different portions of the test suite.

4.3. Throughput and Resource Limitations

Beyond setup inefficiencies, manual testing inherently limits throughput to a single device configuration at any given time. Each
test sequence requires continuous operator attention and interaction, creating a strict one-to-one relationship between test
engineers and devices under test. This limitation creates significant validation bottlenecks during critical development phases
when multiple product variants require simultaneous assessment.

The resource constraints become particularly acute during pre-release validation cycles where comprehensive regression testing
across multiple device configurations creates schedule pressure that frequently results in compromised test coverage.
Organizations often face difficult decisions about which test cases to prioritize and which to defer or eliminate when manual
resources cannot accommodate complete validation.

4.4. The Automation Alternative

Automated test frameworks address these limitations through standardized setup procedures implemented via programmatic
control of test equipment. Once configured, these systems can execute complex test sequences without human intervention,
dramatically reducing variability between test iterations. The standardization transforms validation from an unpredictable,
resource-constrained activity into a deterministic process with well-defined completion parameters that can be effectively
integrated into development planning.

The automation architecture enables parallel execution across multiple test stations, allowing simultaneous validation of different
device configurations or test scenarios. This parallelization creates multiplicative efficiency gains that scale with infrastructure
investment. A single test engineer can supervise multiple automated test stations, each executing different test sequences or
validating different device variants concurrently.

4.5. Data Fidelity and Anomaly Detection

Automated validation frameworks deliver substantial improvements in test fidelity through comprehensive data collection and
consistent evaluation criteria. Manual testing typically relies on visual assessment of oscilloscope displays, creating scenarios
where subtle anomalies may escape detection due to:

Limited sampling frequency during visual observation
Operator fatigue during extended test sessions

Attention is divided across multiple measurement points
Difficulty distinguishing minor variations from normal behavior
Inconsistent scrutiny across different test sections

This approach also introduces interpretation variance, where identical hardware conditions might yield different test outcomes
based on subjective judgment. What one engineer might classify as acceptable ripple in a power supply waveform, another
might flag as problematic. This subjectivity creates inconsistent quality standards across testing sessions and undermines the
reliability of validation results.

Furthermore, manual procedures typically focus on capturing discrete measurements at specific test points rather than
continuous waveform data, creating potential blind spots for transient phenomena or intermittent failures. Critical events
occurring between measurement points frequently escape detection entirely, particularly timing-sensitive anomalies that appear
and disappear within microseconds.

4.6. Continuous Data Acquisition
Automated approaches address these limitations through high-resolution data acquisition throughout the entire test sequence.
Modern data acquisition systems can sample at rates exceeding millions of samples per second across multiple channels
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simultaneously, creating comprehensive digital records of system behavior. This continuous monitoring enables detection of
subtle pattern variations and momentary anomalies that frequently elude manual observation.

Advanced signal processing algorithms can analyze these comprehensive datasets to identify deviations from expected behavior
patterns that would be virtually impossible to detect through visual inspection. Pattern matching, statistical analysis, and
anomaly detection algorithms can process gigabytes of signal data to identify subtle precursors to failure modes or performance
degradation.

4.7. Development Process Integration

The integration of automated validation within development workflows provides additional quality benefits by enabling
comprehensive nightly regression testing across the entire product portfolio. This continuous validation process identifies
potential issues introduced by seemingly unrelated code changes before they propagate into formal release candidates.

Automated systems can execute hundreds or thousands of test cases overnight, providing developers with comprehensive
feedback at the start of each workday. This rapid feedback cycle dramatically compresses the time between introducing a defect
and discovering it, significantly reducing remediation complexity. Early detection substantially reduces remediation costs
compared to late-stage discovery, particularly for complex issues involving interactions between firmware components, hardware
subsystems, and environmental conditions [8].

The cumulative effect of these performance improvements transforms validation from a development bottleneck into a quality
enabler that accelerates rather than impedes development velocity.

Aspect Manual Testing Automated Framework
Setup Process Eg:lrzgint configuration by the Programmatic control
Execution Time Extended duration Reduced validation cycles
Repeatability Operator-dependent variations Consistent results
Data Collection Discrete measurement points Continuous waveform capture
Assessment Visual inspection of oscilloscopes Automated analysis against thresholds
Throughput Single device configuration Parallel execution capability
Detection Capability Visible anomalies only Subtle pattern variations
Regression Testing Limited by resources Comprehensive nightly testing

Table 3: Testing Methodology Comparison [7, 8]

5. Enterprise Integration: HIL in CI/CD Pipelines

5.1. Transforming Development Methodology

The integration of Hardware-in-the-Loop testing within Continuous Integration/Continuous Deployment pipelines represents a
fundamental transformation in embedded systems development methodology. Traditional development approaches have
historically maintained strict separation between hardware validation and software development, creating isolated silos with
limited information exchange. This separation creates a sequential workflow where firmware is developed, then built, then
manually deployed to hardware for validation, a process that might occur weeks or months after the initial code creation.

This traditional approach introduces significant inefficiencies as hardware-dependent issues frequently remain undiscovered until
late-stage integration testing. By this point, the development team may have built substantial additional functionality on
potentially flawed foundations, creating complex dependency chains that complicate remediation. The resulting rework cycles
introduce costly delays and frequently necessitate difficult compromise decisions between schedule adherence and
comprehensive issue resolution.

5.2. Orchestration Infrastructure
Effective implementation of continuous validation requires thoughtful integration of physical testing within established software
development infrastructures. This integration necessitates sophisticated orchestration systems capable of seamlessly connecting:

e Version control platforms manage code repositories
e Build automation tools generating firmware binaries
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Deployment systems transferring builds to physical devices

Test execution frameworks controlling hardware test equipment
Results processing engines are analyzing captured data

Reporting systems communicating findings to development teams

Rather than developing specialized systems from the ground up, research indicates that adaptation of existing CI/CD platforms
significantly improves adoption rates across engineering teams. By leveraging familiar tools like Jenkins, GitHub Actions, or
GitLab CI with appropriate extensions for hardware interaction, organizations can minimize learning curves and implementation
friction. This compatibility with established workflows accelerates organizational acceptance and reduces resistance to process
changes [9].

5.3. The Continuous Validation Pipeline

The transition to HIL-integrated development pipelines transforms validation from a discrete phase following development into
an integral quality gate throughout the entire process. This transformation begins with automated test triggering mechanisms
connected directly to repository events such as:

Pull request creation proposing code changes
Commit submissions to development branches
Merge operations combining feature branches

Tag application marking potential release candidates

These events automatically initiate validation pipelines that evaluate the hardware impact of proposed changes. Upon activation,
the pipeline automates firmware compilation using consistent build environments that eliminate "works on my machine"
inconsistencies. The resulting binary is then deployed to physical devices in test environments without manual intervention
requirements that would otherwise create workflow bottlenecks.

5.4. Test Execution and Analysis

Test execution proceeds according to predefined validation suites with intelligent prioritization based on modified components
and risk assessment algorithms. This enables efficient resource utilization by focusing validation effort on areas most likely
affected by recent changes rather than executing the entire test suite for minor modifications.

Upon completion, automated analysis engines process captured data, including:

Waveform recordings from analog measurements
Communication logs from protocol exchanges
Timing measurements from critical operations
Power consumption profiles during various activities

This analysis generates comprehensive reports directly linked to the originating code changes in version control systems. The
linkage between code modifications and validation results creates clear traceability that enhances debugging efficiency and
accountability.

5.5. Quality and Efficiency Benefits

This integrated approach delivers substantial quality improvements by identifying hardware-dependent issues at the earliest
possible stage, when the causal changes remain fresh in developers' minds and before dependent functionality has been
constructed on potentially flawed foundations. Early detection dramatically reduces the complexity of issue resolution and
minimizes rework requirements.

The shift from post-development validation to continuous in-process testing represents a fundamental change in quality
assurance philosophy that aligns with broader industry movements toward continuous delivery methodologies and agile
development practices. Organizations implementing this approach consistently report reduced defect remediation costs
alongside improvements in overall development velocity despite more comprehensive testing regimens [10].

By transforming hardware validation from a sequential bottleneck into a parallel, continuous activity, HIL-integrated CI/CD
pipelines enable organizations to simultaneously improve product quality while accelerating development cycles, resolving the
traditional tension between speed and reliability that has historically challenged embedded systems development.
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Integration Element Function Benefit
Test Triggering Repository event connection Immediate evaluation
Build Automation Firmware compilation Workflow continuity
Deployment Binary transfer to physical devices Eliminated manual intervention
Test Execution Prioritization by component risk Optimized resource utilization
Results Processing Waveform and log analysis Linked to code changes
Report Generation Comprehensive documentation Development visibility
Quality Gate Continuous validation Early issue identification
Pipeline Adaptation Modified existing CI/CD tools Enhanced adoption rates

Table 4: CI/CD Pipeline Integration Elements [9, 10]

6. Conclusion

The Hardware-in-the-Loop validation system focuses on the primary issues of software testing in 1oT by introducing a disruptive
solution in the context of bridging the gap between digital simulation and the physical interaction with hardware. The
framework, by not relating test logic and configuration and by linking directly to the development pipeline, will make validation
at an earlier stage in the development lifecycle, where the problem can be detected and addressed at the lowest possible cost.
The declarative-procedural architecture allows domain experts to develop end-to-end test specifications, and the standardized
hardware abstraction allows end-to-end testing to be done on all product variants in a consistent, reproducible way. Subtle
anomalies that could not have been detected otherwise are brought to light due to automated data collection and analysis,
which does away with subjective assessment. Since 0T ecosystems have become increasingly complex and the market demand
requires faster development cycles, automated validation frameworks are now simply a necessity, but not an option. The
integrated and scalable nature of the discussed approach allows organizations to improve product quality and reliability at the
same time, shorten the development schedules, and make the validation process a competitive edge, rather than a bottleneck of
the development process in an increasingly competitive market.
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