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| ABSTRACT 

Monte Carlo Simulation has served as a fundamental methodology in financial risk management for decades, particularly in 

applications such as Interest Rate Risk in the Banking Book, market risk assessment, and regulatory stress testing frameworks. 

While traditional Monte Carlo approaches have proven valuable for probabilistic risk modeling, they face significant limitations, 

including reliance on static distributions, fixed correlation matrices, a lack of macroeconomic coherence in scenario generation, 

and substantial computational demands. The emergence of artificial intelligence and generative AI technologies presents a 

transformative opportunity to address these shortcomings while preserving the core probabilistic framework that makes Monte 

Carlo simulation effective. This article examines the comprehensive evolution of Monte Carlo simulation through AI integration, 

exploring how technologies such as Variational Autoencoders, Graph Neural Networks, Generative Adversarial Networks, and 

diffusion models enhance each phase of the simulation lifecycle from data preparation through governance. The transformation 

encompasses richer data ingestion through vector databases and natural language processing, neural density estimation for 

capturing complex distributions, dynamic correlation modeling that adapts to market regimes, generation of macroeconomically 

consistent stress scenarios, accelerated valuation through neural surrogate models, and enhanced explainability via SHAP values 

and large language model-generated reports. Through detailed examination of Interest Rate Risk in the Banking Book 

applications, particularly Economic Value of Equity analysis, this article demonstrates how AI-enhanced simulation produces 

results that are simultaneously more accurate, comprehensive, explainable, and aligned with regulatory expectations for model 

risk management and stress testing transparency, representing not a replacement but an intelligent augmentation of proven 

quantitative methods. 
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1. Introduction 

Monte Carlo Simulation (MCS) has long served as a cornerstone methodology in financial risk management, particularly within 

Interest Rate Risk in the Banking Book (IRRBB), market risk assessment, and Comprehensive Capital Analysis and Review (CCAR) 

frameworks. Named after the famed casino in Monaco to reflect its reliance on randomness and probability, this technique 

estimates uncertain outcomes by generating thousands of possible scenarios through random sampling. In its traditional form, 

MCS employs probabilistic modeling to evaluate risk metrics such as Economic Value of Equity (EVE), Net Interest Income (NII), 

and Value at Risk (VaR) by defining problem parameters, identifying uncertain inputs, assigning probability distributions, and 

aggregating results across numerous iterations. Research examining IRRBB levels for Indian banks has demonstrated that interest 

rate risk exposure varies significantly across institutions, with traditional simulation approaches revealing that changes in interest 

rates directly impact both the economic value of banks' equity and their net interest income streams, as documented by Sathye 

and Sathye in their comprehensive analysis of Indian banking institutions [1]. 
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The widespread adoption of Monte Carlo methods in banking has been driven by regulatory mandates and the need to quantify 

complex risk exposures under uncertainty. Financial institutions employ these simulations to model how interest rate movements 

affect their entire balance sheet, considering the repricing characteristics of assets and liabilities with different maturities and 

embedded options. The IRRBB framework requires banks to assess potential losses from parallel and non-parallel shifts in yield 

curves, with traditional Monte Carlo approaches generating multiple interest rate scenarios to estimate the distribution of 

possible outcomes. Studies of Indian banks have shown that IRRBB exposure levels depend heavily on the composition of the 

balance sheet, the maturity profile of assets and liabilities, and the behavioral assumptions embedded in deposit and 

prepayment models, with some institutions demonstrating higher vulnerability to rate shocks than others based on their asset-

liability mismatches [1]. 

 

However, the financial landscape's increasing complexity—characterized by regime shifts, tail risk dependencies, and nonlinear 

relationships—has exposed critical limitations in conventional MCS approaches. The challenge of modeling correlations and 

dependencies between risk factors has become particularly acute, as traditional linear correlation measures fail to capture the 

complex dependency structures observed in financial markets. Research on copula selection for risk management has 

emphasized that the choice of dependency structure significantly impacts risk measures, with empirical evidence showing that 

tail dependencies during stress periods differ markedly from normal market conditions, as explored by Embrechts, McNeil, and 

Straumann in their foundational work on risk management methodologies [2]. Traditional methods that rely on static 

distributions and fixed correlation matrices struggle to capture these dynamic relationships and fail to reflect the 

macroeconomic realism necessary for comprehensive risk assessment. The computational resources required for traditional 

approaches further constrain the breadth and depth of scenario analysis that institutions can feasibly conduct. 

 

The advent of artificial intelligence (AI) and generative AI (GenAI) technologies presents a transformative opportunity to address 

these shortcomings while preserving the fundamental probabilistic framework that makes Monte Carlo simulation valuable. This 

article examines how AI and GenAI enhance each phase of the Monte Carlo lifecycle, from data preparation through governance, 

ultimately creating a more robust, explainable, and dynamically responsive risk modeling ecosystem that addresses both the 

dependency modeling challenges identified in copula research and the balance sheet risk assessment imperatives demonstrated 

in banking sector studies. 

 

2. Traditional Monte Carlo Simulation: Methodology and Limitations 

The classical Monte Carlo simulation framework follows a systematic seven-phase lifecycle that has been refined over decades of 

application in financial risk management. Beginning with data preparation, analysts collect historical market data, including 

interest rates, spreads, volatilities, and correlations, using standard tools such as SQL, Python, and R. This foundational phase 

requires careful curation of time series data, often spanning multiple years to capture different market regimes and stress 

periods. The assumption-setting phase involves defining statistical distributions—typically Normal, Lognormal, or Student-t 

distributions—for each risk factor based on historical calibration. Monte Carlo simulation in financial engineering has evolved 

into a sophisticated computational technique that addresses complex valuation and risk management problems, particularly for 

derivative securities and portfolios with nonlinear payoffs where analytical solutions prove intractable, as extensively 

documented by Glasserman in his comprehensive treatment of Monte Carlo methods applied to financial problems [3]. 

Correlation modeling then constructs covariance matrices to capture interdependencies among risk factors, commonly 

employing Pearson correlation coefficients and Cholesky decomposition for multivariate simulation. The Cholesky 

decomposition method transforms independent random variables into correlated ones by factorizing the positive-definite 

covariance matrix, enabling the generation of correlated scenarios that preserve the specified dependency structure across 

multiple risk factors simultaneously. 

 

The core of the simulation occurs during scenario generation, where pseudorandom or quasi-random number generators 

produce thousands of potential paths for each risk factor. Quasi-random sequences like Sobol or Halton sequences offer 

improved convergence properties compared to pseudorandom generators, particularly for high-dimensional problems common 

in portfolio risk assessment, where dozens or even hundreds of risk factors must be simulated simultaneously. Each generated 

scenario feeds into valuation models that reprice portfolios using discounted cash flow methodologies, calculating metrics like 

EVE and NII under various conditions. The aggregation phase synthesizes these results into summary statistics, computing 

quantile-based risk measures such as VaR and Expected Shortfall. The application of Monte Carlo methods to financial 

engineering problems requires careful attention to variance reduction techniques, path generation algorithms, and 

computational efficiency considerations, particularly when dealing with American-style options or portfolios containing multiple 

exotic derivatives that demand intensive calculation for each simulated path [3]. Finally, validation and governance processes 

ensure model accuracy through backtesting against historical outcomes and sensitivity analysis, adhering to regulatory 

frameworks like SR 11-7 for model risk management. 
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Despite its widespread adoption, traditional MCS faces significant limitations that have become increasingly apparent as financial 

markets have grown more complex and interconnected. The assumption of static distributions fails to capture regime changes 

and structural breaks in financial markets, where volatility patterns and return characteristics can shift dramatically during crisis 

periods. Fixed correlation matrices cannot adequately represent time-varying dependencies or tail co-movements during stress 

periods, a phenomenon that has gained renewed attention with the emergence of artificial intelligence tools in financial analysis. 

Recent research examining correlation pitfalls has highlighted how misunderstanding correlation concepts can lead to flawed 

risk assessments, particularly when practitioners fail to distinguish between correlation and causation or when they apply 

correlation measures inappropriately to non-stationary data, as demonstrated in studies analyzing common statistical 

misconceptions that persist even among sophisticated users of quantitative methods [4]. Scenario generation often lacks 

macroeconomic coherence, producing paths that may be mathematically valid but economically implausible. Furthermore, the 

computational intensity of running thousands or millions of scenarios creates practical constraints, while the static nature of 

calibrated models means they quickly become outdated as market conditions evolve. These limitations have motivated the 

search for more adaptive, intelligent approaches to probabilistic risk modeling. 

 

Phase Traditional Approach AI/GenAI Enhancement Key Improvement Metric 

Data Preparation 
Historical time series only (rates, 

spreads, volatilities) 

Structured + unstructured 

data (news, filings, text) via 

AI data fabrics 

Data richness: 2-3x more 

information sources 

Assumption Setting 
Parametric distributions (Normal, 

Lognormal, Student-t) 

Neural density estimators, 

VAEs, learn true 

distributions 

Distribution accuracy: 

Captures multimodal, fat-

tailed behavior 

Correlation Modeling 
Static covariance matrix (Pearson 

correlation, Cholesky) 

Graph Neural Networks 

model dynamic 

dependencies 

Correlation adaptability: 

Regime-dependent 

relationships 

Scenario Generation 
Pseudorandom/quasi-random 

draws (Sobol, Halton sequences) 

GANs and diffusion models 

generate macro-consistent 

scenarios 

Economic realism: 

Plausible, stress-aligned 

paths 

Valuation/Projection 
Formula-based DCF pricing 

models 

Neural surrogates, RL 

simulators approximate 

pricing 

Computation speed: 10-

100x faster 

Aggregation 
Quantile metrics (VaR, Expected 

Shortfall) 

Explainable AI (SHAP) for 

driver attribution 

Insight depth: Traces risk 

to specific drivers 

Validation/Governance 
Static backtesting, periodic 

recalibration 

Continuous monitoring, 

drift detection, and audit 

trails 

Governance quality: Real-

time model validation 

Table 1: Comparison of Traditional vs. AI-Enhanced Monte Carlo Simulation Phases [3, 4] 

 

3. AI and GenAI Transformation Across the Simulation Lifecycle 

The integration of AI and GenAI technologies fundamentally transforms each phase of the Monte Carlo simulation process, 

addressing traditional limitations while introducing new capabilities that reshape how financial institutions approach risk 

modeling and scenario analysis. In data preparation, AI-powered data fabrics and vector databases enable the integration of 

both structured time series and unstructured data sources—including news feeds, regulatory filings, and textual information—

creating a richer, real-time data environment. This expansion beyond purely numerical historical data allows models to 

incorporate forward-looking information and sentiment signals that may presage market movements. Natural language 

processing techniques can extract risk signals from Federal Reserve communications, earnings call transcripts, and regulatory 

announcements, transforming qualitative information into quantitative inputs for risk models. Machine learning algorithms can 

process these heterogeneous data streams continuously, identifying emerging patterns and regime shifts that traditional models 

based solely on historical price data would miss. 

 

Assumption setting evolves from parametric distribution fitting to neural density estimation, where Variational Autoencoders 

(VAEs) and other deep learning architectures learn the true underlying distributions of risk factors directly from data. These 

methods can capture nonlinear relationships, multimodal distributions, and fat-tailed behavior that parametric assumptions 

often miss. Traditional approaches that assume returns follow normal or log-normal distributions systematically underestimate 

the probability of extreme events, whereas neural density estimators can learn arbitrary probability distributions that better 

reflect the empirical characteristics of financial data. Correlation modeling advances through Graph Neural Networks (GNNs), 
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which model dynamic dependencies and regime-dependent correlations rather than assuming static relationships. This allows 

the simulation to adapt correlation structures based on market conditions, capturing the tendency for correlations to increase 

during stress periods. Research on deep learning for portfolio optimization has demonstrated that neural network architectures 

can effectively learn complex patterns in financial data and optimize asset allocation strategies, with studies showing that deep 

learning models incorporating Long Short-Term Memory networks and Convolutional Neural Networks can process historical 

price data to generate portfolio weights that adapt to changing market conditions and outperform traditional mean-variance 

optimization approaches in various market scenarios [5]. 

 

Perhaps most significantly, scenario generation transforms through the application of Generative Adversarial Networks (GANs) 

and diffusion models. Rather than simple random draws from predetermined distributions, these GenAI models produce realistic, 

macroeconomically consistent stress scenarios that can be conditioned on specific policy parameters or economic assumptions. 

GANs consist of two neural networks—a generator that creates synthetic scenarios and a discriminator that distinguishes real 

from generated data—trained in an adversarial fashion until the generator produces scenarios indistinguishable from historical 

observations. These generative models can be conditioned on macroeconomic variables such as GDP growth, unemployment 

rates, or central bank policy stances, ensuring that generated interest rate paths remain consistent with broader economic 

scenarios. In the valuation phase, neural surrogate models and reinforcement learning simulators approximate complex pricing 

functions with dramatic computational speedups, enabling more sophisticated modeling of nonlinear instruments. Neural 

networks have proven particularly effective at solving partial differential equations that govern derivative pricing and risk 

evolution, with deep learning algorithms demonstrating the capability to approximate solutions to complex PDEs that arise in 

financial mathematics, including the Black-Scholes equation and its generalizations, thereby enabling rapid valuation of options 

and structured products across thousands of scenarios without requiring computationally expensive numerical methods for each 

iteration [6]. 

 

Aggregation and insight generation benefit from Explainable AI techniques such as SHAP values, which trace portfolio sensitivity 

back to specific risk drivers, while large language models generate natural language summaries of results. Finally, governance 

evolves from static backtesting to continuous model monitoring with drift detection, maintaining audit trails through model 

registries and explainability reports that satisfy regulatory requirements. 
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Simulation Phase 
Traditional 

Technology 

AI/GenAI 

Technology 
Specific AI Method Primary Benefit 

Data Preparation 
SQL, Python, R for 

structured data 

AI data fabrics, 

Vector databases 

Natural Language 

Processing 

Real-time multi-source 

integration 

Assumption Setting 
Parametric fitting 

(Normal, Lognormal) 

Neural density 

estimation 

Variational 

Autoencoders 

(VAEs) 

Captures nonlinear, 

multimodal distributions 

Correlation Modeling 
Pearson correlation, 

Static matrices 

Dynamic 

dependency 

networks 

Graph Neural 

Networks (GNNs) 

Regime-dependent 

correlations 

Scenario Generation 

Pseudorandom 

generators (Sobol, 

Halton) 

Generative models 
GANs, Diffusion 

models 

Macro-consistent stress 

scenarios 

Valuation/Pricing 
Discounted cash flow 

formulas 

Neural 

approximators 

Neural surrogates, 

PDE solvers 

10-100x computational 

speedup 

Behavioral Modeling 
Fixed prepayment 

curves 

Adaptive decision 

models 

Reinforcement 

Learning 

Context-dependent 

responses 

Aggregation/Insights 
VaR, Expected 

Shortfall calculations 
Attribution analysis 

SHAP values, XAI 

techniques 

Driver-level sensitivity 

tracing 

Reporting 
Manual report 

generation 

Automated 

narrative 

generation 

Large Language 

Models (LLMs) 

Natural language 

summaries 

Governance Periodic backtesting 
Continuous 

monitoring 

Drift detection 

algorithms 
Real-time model validation 

Table 2: AI Technologies Applied Across Monte Carlo Simulation Phases [5, 6] 

 

4. Architectural Framework for GenAI-Enabled Simulation 

The implementation of GenAI-enhanced Monte Carlo simulation requires a comprehensive architectural framework that 

integrates multiple AI components into a cohesive pipeline designed to address the complex requirements of modern financial 

risk management. The ingestion layer continuously streams market data, macroeconomic indicators, and textual signals from 

diverse sources—including interest rates, credit spreads, Federal Reserve releases, and corporate earnings reports—into vector 

databases optimized for both structured and unstructured data. This real-time data infrastructure ensures that models always 

operate on current information rather than becoming stale between recalibration cycles. Modern data architectures leverage 

distributed computing frameworks and cloud-based storage solutions to handle the massive volumes of heterogeneous data 

generated by financial markets, with implementations processing millions of price updates, thousands of news articles, and 

hundreds of economic releases daily. Vector databases employ embedding techniques that transform both numerical time series 

and textual documents into high-dimensional vector representations, enabling efficient similarity search and retrieval of relevant 

historical patterns that inform current risk assessments. 

 

The learning layer trains multiple AI models in parallel, with VAEs or GANs learning the joint distribution of risk factors from 

historical and current data, while GNNs capture the dynamic correlation network and its evolution across different market 

regimes. These models update continuously or semi-continuously as new data arrives, maintaining relevance to current market 

conditions. The training process employs techniques such as transfer learning and incremental learning to efficiently incorporate 

new observations without requiring complete retraining from scratch. Research on Machine Learning Operations has established 

comprehensive frameworks for managing the end-to-end lifecycle of ML systems in production environments, emphasizing that 
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MLOps encompasses workflow orchestration, model training automation, continuous integration and deployment pipelines, 

model versioning, monitoring systems, and governance structures that ensure models remain performant and compliant 

throughout their operational lifecycle, with studies demonstrating that organizations implementing mature MLOps practices 

achieve faster model deployment cycles and improved model reliability compared to those relying on ad-hoc processes [7]. The 

generation layer employs conditional diffusion models or GANs to create plausible macroeconomic stress scenarios, with the 

conditioning mechanism allowing risk managers to align scenarios with specific regulatory stress parameters or hypothetical 

policy changes from central banks. 

 

The simulation layer feeds these AI-generated scenarios into pricing models, which may themselves be AI-based surrogate 

models trained to approximate complex valuation functions. Reinforcement learning agents can model dynamic customer 

behavior—such as prepayment rates and deposit flows—that respond to changing conditions rather than following fixed 

assumptions. The explanation layer applies XAI techniques to decompose results, identifying which input shocks drive portfolio 

sensitivity and risk metrics. SHAP values and related attribution methods provide quantitative measures of feature importance, 

enabling risk managers to understand not just what the model predicts but why it produces particular outputs. Research on 

Explainable Artificial Intelligence has identified fundamental concepts and challenges in making AI systems interpretable, noting 

that XAI encompasses multiple approaches including feature importance methods, rule extraction techniques, attention 

mechanisms, and counterfactual explanations, with particular emphasis on the healthcare domain demonstrating that 

explainability proves crucial for building trust with domain experts, facilitating regulatory compliance, and enabling practitioners 

to validate that model predictions align with established medical knowledge rather than spurious correlations, principles that 

extend directly to financial risk management where stakeholders similarly require transparent understanding of model reasoning 

to satisfy governance requirements [8]. LLM-based report generators synthesize these technical attributions into natural 

language narratives accessible to both technical and non-technical stakeholders. Finally, the governance layer maintains a model 

registry using platforms like MLflow or Vertex AI, tracks model performance and drift, generates explainability reports for 

auditors, and incorporates human validation loops to ensure AI-generated scenarios and valuations remain reasonable and 

defensible. 
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Architecture Layer Primary Function Key Technologies 
Data Processing 

Capability 
Output/Deliverable 

Ingestion Layer 
Real-time data 

streaming 

Vector databases, 

Embedding 

techniques 

Millions of price updates, 

thousands of news 

articles, hundreds of 

economic releases daily 

Unified structured + 

unstructured data 

repository 

Learning Layer 
Model training and 

updating 

VAEs, GANs, GNNs, 

Transfer learning 

Continuous/semi-

continuous learning 

from new data 

Trained distribution 

models, dynamic 

correlation networks 

Generation Layer Scenario creation 

Conditional 

diffusion models, 

GANs 

Regulatory stress 

parameters, policy 

constraints 

Macro-consistent stress 

scenarios 

Simulation Layer Portfolio valuation 

Neural surrogates, 

Reinforcement 

Learning agents 

Complex pricing 

functions, behavioral 

dynamics 

EVE, NII, risk metrics across 

scenarios 

Explanation Layer 
Result 

decomposition 

SHAP values, XAI 

techniques, and 

Attribution 

methods 

Feature importance 

quantification 

Driver-level sensitivity 

analysis 

Reporting Layer 
Narrative 

generation 

Large Language 

Models (LLMs) 

Technical-to-natural 

language translation 

Stakeholder-accessible 

reports 

Governance Layer Model oversight 

MLflow, Vertex AI, 

Drift detection 

algorithms 

Performance tracking, 

audit trail maintenance 

Compliance reports, 

validation documentation 

Table 3: GenAI-Enhanced Monte Carlo Simulation Architecture - Layer-by-Layer Framework [7, 8] 

 

5. Application Case Study: IRRBB and Economic Value of Equity Analysis 

The practical benefits of GenAI-enhanced simulation become apparent when comparing traditional and AI-driven approaches to 

Interest Rate Risk in the Banking Book analysis, specifically in calculating EVE under interest rate stress. In the traditional 

approach, scenario inputs consist of randomly generated interest rate paths drawn from calibrated parametric distributions, with 

correlations captured by a fixed covariance matrix. Customer behavior follows predetermined prepayment curves based on 

historical analysis, and the EVE output reports mean values alongside extreme quantiles such as the percentile loss thresholds 

that regulators require banks to monitor. Results are typically presented in static stress tables with limited insight into the 

underlying drivers of risk. Research on understanding and managing interest rate risk at banks has emphasized that effective 

IRRBB management requires comprehensive frameworks that measure both earnings-based metrics like NII and economic value 

measures like EVE, with studies highlighting that banks must consider multiple dimensions of interest rate risk including 

repricing risk arising from timing differences in the maturity and repricing of assets and liabilities, basis risk from imperfect 

correlation between different rate indices, yield curve risk from non-parallel shifts in the term structure, and embedded option 

risk from prepayments and early withdrawals that customers exercise in response to rate movements [9]. 

 

The GenAI transformation enhances each component of this analysis through the application of advanced machine learning 

architectures and generative modeling techniques. Scenario inputs now consist of macro-consistent rate paths generated by 

conditional diffusion models that respect economic relationships and policy constraints, ensuring that simulated interest rate 

trajectories remain aligned with plausible macroeconomic conditions rather than producing mathematically valid but 

economically implausible combinations. Rate correlations emerge from GNN models that adapt to current regime characteristics 

rather than assuming historical relationships will persist indefinitely into the future. Customer behavior is modeled by AI systems 

trained on both historical data and synthetic scenarios, capturing how prepayments and deposit flows respond to rate changes 

in nonlinear, context-dependent ways that reflect the heterogeneity of customer populations. The EVE output expands from 

simple summary statistics to full probability surfaces with explainable driver attribution, identifying which specific rate 
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movements, curve shapes, or behavioral responses contribute most significantly to potential losses. Studies examining interest 

rate risk management frameworks have documented that banks employing sophisticated modeling techniques that account for 

behavioral dynamics and non-parallel yield curve shifts achieve more accurate risk assessments compared to institutions relying 

solely on standard regulatory shock scenarios, enabling better-informed capital allocation and hedging decisions [9]. 

 

Perhaps most valuably, reporting evolves from static tables to auto-generated IRRBB stress reports with sensitivity narratives 

produced by LLMs. These reports explain in natural language why certain scenarios produce particular EVE impacts, which 

portfolio positions drive vulnerability, and how different risk factors interact to amplify or mitigate losses under stress. Research 

reviewing deep learning developments has highlighted the transformative potential of neural network architectures across 

diverse application domains, noting that deep learning methods have demonstrated remarkable success in pattern recognition, 

time series forecasting, and complex decision-making tasks, with the technology's continued evolution driven by advances in 

network architectures, optimization algorithms, and the availability of large-scale training datasets that enable models to learn 

increasingly sophisticated representations of underlying data structures [10]. This transformation does not abandon the Monte 

Carlo framework but rather elevates it, producing results that are simultaneously more accurate, more comprehensive, more 

explainable, and more aligned with regulatory expectations for model risk management and stress testing transparency. 

 

Risk Dimension Definition 

Traditional 

Measurement 

Approach 

GenAI-Enhanced 

Approach 
Key Improvement 

Repricing Risk 
Timing differences in 

asset/liability maturity 

Static gap analysis 

with fixed 

assumptions 

Dynamic gap 

modeling with 

behavioral AI 

Context-dependent 

repricing patterns 

Basis Risk 
Imperfect correlation 

between rate indices 

Fixed correlation 

matrices 

GNN-based dynamic 

correlation modeling 

Regime-adaptive basis 

relationships 

Yield Curve Risk 
Non-parallel shifts in 

term structure 

Standardized 

parallel shock 

scenarios 

Conditional diffusion 

model scenarios 

Macroeconomically 

consistent curve shifts 

Embedded 

Option Risk 

Customer 

prepayments and 

early withdrawals 

Predetermined 

prepayment curves 

RL-based behavioral 

models with synthetic 

data 

Nonlinear, heterogeneous 

responses 

EVE 

Measurement 

Economic value 

impact of rate 

changes 

Mean + percentile 

quantiles (e.g., 99th) 

Full probability 

surface with driver 

attribution 

Comprehensive 

distribution 

understanding 

NII Measurement 
Earnings impact over 

the time horizon 

Simple projection 

with fixed behaviors 

AI-driven multi-

scenario projections 

Forward-looking earnings 

volatility 

Scenario 

Generation 

Interest rate path 

creation 

Random draws from 

parametric 

distributions 

GANs/diffusion 

models with policy 

constraints 

Economic plausibility and 

coherence 

Risk Attribution 
Understanding loss 

drivers 

Limited sensitivity 

analysis 

SHAP values for 

driver decomposition 

Granular factor-level 

insights 

Reporting Format 
Communication to 

stakeholders 
Static stress tables 

LLM-generated 

natural language 

narratives 

Stakeholder accessibility 

and clarity 

Table 4: IRRBB Risk Dimensions - Traditional vs. GenAI-Enhanced Measurement [9, 10] 

 

6. Conclusion 

The evolution of Monte Carlo simulation through artificial intelligence and generative AI integration represents a fundamental 

advancement in financial risk management methodology that addresses critical limitations of traditional approaches while 

preserving the probabilistic rigor that has made Monte Carlo methods indispensable to the banking industry. This transformation 

extends across the entire simulation lifecycle, from data preparation enhanced by vector databases and natural language 

processing that incorporate diverse information sources, through assumption setting powered by neural density estimators that 

capture complex, multimodal distributions, to correlation modeling via Graph Neural Networks that adapt dynamically to 

changing market regimes. The application of Generative Adversarial Networks and diffusion models to scenario generation 

produces macroeconomically coherent stress paths that respect fundamental economic relationships and policy constraints, 

overcoming the implausible combinations often generated by traditional random sampling approaches. Neural surrogate 
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models and reinforcement learning agents dramatically accelerate computation while enabling more sophisticated modeling of 

nonlinear instruments and context-dependent customer behaviors, expanding the feasible scope of risk analysis from thousands 

to hundreds of thousands of scenarios within operational timeframes. The integration of Explainable AI techniques, such as SHAP 

values, provides unprecedented transparency in risk attribution, tracing portfolio sensitivity back to specific drivers, and enabling 

large language models to generate natural language narratives that communicate complex technical findings to diverse 

stakeholders. The comprehensive architectural framework presented, spanning ingestion, learning, generation, simulation, 

explanation, reporting, and governance layers, demonstrates how mature Machine Learning Operations practices can ensure that 

AI-enhanced models remain performant, compliant, and defensible throughout their operational lifecycle. The Interest Rate Risk 

in the Banking Book case article demonstrates these advantages tangibly, demonstrating how GenAI transformation lifts 

Economic Value of Equity analysis from rigid stress tables to dynamic, interpretable probability surfaces that get at repricing risk, 

basis risk, yield curve risk, and embedded option risk more precisely and with a finer granularity than traditional approaches 

allow. This integration of human capability, proven quantitative methods, and advanced AI technologies is a prime example of 

how financial risk management innovation advances best through smart augmentation, not complete displacement, to build 

more solid, transparent, and responsive frameworks to the intricacies of current financial markets that continue to uphold the 

rigor of governance required by regulators and internal constituents alike for high-risk capital deployment and strategic 

decisions.  
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