
Journal of Computer Science and Technology Studies

ISSN: 2709-104X

DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

 JCSTS
AL-KINDI CENTER FOR RESEARCH

AND DEVELOPMENT

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,

London, United Kingdom.

 Page | 339

| RESEARCH ARTICLE

Taming Asynchrony in Distributed Payment Systems: Guarantees, Idempotency, and End-

to-End Reconciliation

Krishna Dusad

University of Illinois, Urbana-Champaign

Corresponding Author: Krishna Dusad, E-mail: krishnadusad27@gmail.com

| ABSTRACT

Today's distributed payment systems must function correctly despite the inherent presence of asynchrony, partial failures, and

third-party integrations. Unlike typical RPC-based workflows used in software development, payment flows are heavily

influenced by external delays, retries, timeouts, and nondeterministic state changes across multiple systems of record. A fault-

tolerant ledger abstraction that decouples payment intent from execution enables safe retries and supports service events that

may arrive out of order. Correctness and safety depend on distributed transaction constructs such as outbox/inbox patterns,

compensation workflows, and time-bounded state machines to contain the effects of race conditions, double submissions, and

ambiguous or indeterminate outcomes. A declarative reconciliation framework continuously verifies consistency between

internal and external systems, enabling real-time anomaly detection and facilitating orchestration and recovery. These pragmatic

engineering approaches, validated through simulations and production-level benchmarks, offer guidance for building resilient

payment infrastructures in naturally asynchronous and failure-prone environments.

| KEYWORDS

distributed payments, idempotency, eventual consistency, reconciliation, fault tolerance

| ARTICLE INFORMATION

ACCEPTED: 20 October 2025 PUBLISHED: 06 November 2025 DOI: 10.32996/jcsts.2025.7.11.33

1. Introduction

1.1 Temporal Uncertainties in Financial Transaction Networks

Research on asynchronous processing models indicates that organizations with systems that rely on various timing mechanisms

embrace these timing differences rather than resisting them will yield a far more resilient system architecture [1]. Industry

implementations at scale demonstrate how embracing asynchronous patterns enables payment platforms to handle millions of

transactions while maintaining reliability [11].

1.2 Synchronous Communication Bottlenecks in Financial Systems

Financial institutions historically built their infrastructure assuming reliable, fast responses between components. Consider

authorization requests that block threads while awaiting responses from external processors. During peak shopping periods, a

payment gateway might exhaust its connection pool waiting for slow bank responses, causing legitimate transactions to fail

despite having adequate computing resources. Analysis of distributed communication protocols reveals that synchronous

designs suffer from convoy problems where fast services wait unnecessarily for slower participants [2]. Financial transactions

compound these issues because timeouts carry monetary consequences—abandoning a request too early might leave funds in

limbo, while waiting too long degrades customer experience and system throughput.

Taming Asynchrony in Distributed Payment Systems: Guarantees, Idempotency, and End-to-End Reconciliation

Page | 340

Characteristic Synchronous (RPC-Based) Asynchronous (Event-Driven)

Resource Utilization Threads block during external calls Non-blocking event processing

Failure Handling Immediate timeout decisions Deferred retry with backoff

Scalability Limited by the thread pool size Horizontal scaling through queues

Latency Impact Cascading delays Isolated component delays

Transaction Coupling Tight coupling across services Loose coupling via messages

Idempotency Support Manual implementation required Built into the message infrastructure

Table 1: Comparison of Synchronous and Asynchronous Payment Processing Architectures [1, 2]

1.3 Document Structure and Technical Contributions

This document presents architectural solutions for payment systems operating under unreliable timing conditions. The technical

framework separates transaction intent from execution status, enabling safe retries without financial risk. Novel adaptation of

distributed computing patterns addresses payment-specific requirements like regulatory compliance and audit trails.

Additionally, automated reconciliation techniques detect discrepancies between internal ledgers and external payment networks

within minutes rather than days. The following sections explore these concepts systematically. Section 2 establishes foundational

concepts and system boundaries. Section 3 introduces ledger designs supporting asynchronous operations. Section 4 adapts

transaction coordination for payment workflows. Section 5 describes continuous reconciliation mechanisms. Section 6

synthesizes implementation recommendations and research opportunities.

2. Background and System Model

2.1 Payment Network Topology and Service Boundaries

Modern payment processing relies on loosely coupled services that exchange messages without tight synchronization. A typical

transaction touches dozens of components: mobile wallets connect to payment aggregators, which route requests through

acquiring banks to international card schemes. Each participant runs autonomously with private data stores and proprietary

interfaces. Distributed auction platforms, where bidders communicate through middlemen without direct coordination, are

modeled by this topology [3]. Payment orchestrators manage these interactions by translating between incompatible

protocols—converting REST calls to ISO 8583 messages for legacy systems while handling JSON webhooks from fintech

providers. Such architectural choices enable independent scaling of components but complicate end-to-end transaction tracking.

2.2 Timing Variations and Behavioral Unpredictability

Transaction processing exhibits randomness from numerous sources that compound unpredictably. Database locks create

microsecond delays that cascade into timeout failures. Payment processors throttle requests during busy periods using

undocumented algorithms. Banks process certain transactions instantly while holding others for manual review based on opaque

risk scores. Graph-based analysis techniques reveal how these timing variations propagate through distributed computations,

creating emergent behaviors impossible to predict from component specifications [4]. Currency conversion adds another layer—

exchange rate updates arrive asynchronously, creating windows where identical requests produce different results. Retry storms

occur when multiple services simultaneously attempt recovery, overwhelming downstream systems already struggling with

backlogs.

Source

Category

Examples Impact on Payment

Processing

Mitigation Strategy

Internal Factors Garbage collection pauses,

Queue backlogs

Variable processing times Resource provisioning, Load

balancing

JCSTS 7(11): 339-345

Page | 341

External APIs Bank response times, Rate

limiting

Unpredictable latencies Circuit breakers, Timeout

policies

Network Issues Packet loss, Routing

changes

Message delivery delays Retry mechanisms,

Alternative routes

Clock Differences Server time drift, Timezone

variations

Transaction ordering

conflicts

Logical timestamps, Vector

clocks

Business Rules Risk scoring delays, Manual

reviews

Non-deterministic holds Asynchronous processing,

Status polling

Table 2: Sources of Non-Determinism in Distributed Payment Systems [4]

2.3 Financial Integrity Constraints

Money movement demands mathematical precision despite technical uncertainty. Account balances must remain non-negative

without artificial holds that impact customer experience. Transaction sequences require strict ordering—a refund cannot be

processed before its original charge, even if messages arrive out of sequence. Regulatory mandates impose additional

constraints: suspicious activity reports must capture exact timestamps, audit trails need cryptographic proof of authenticity, and

settlement files require specific formatting for clearinghouse acceptance. Database isolation levels that prevent dirty reads might

cause deadlocks during month-end processing. Enforcing strict serializability could throttle throughput below business

requirements. Payment systems must balance competing demands while maintaining absolute accuracy in financial calculations.

2.4 Evolution of Transaction Coordination Techniques

Early distributed databases relied on blocking protocols that proved unsuitable for internet-scale payments. Subsequent

innovations introduced compensation logic, allowing transactions to proceed optimistically and reverse when conflicts arise.

Message-oriented architectures emerged to decouple processing stages, though this created new challenges in correlating

related events. Modern approaches combine multiple strategies: event logs provide immutable history, state machines enforce

valid transitions, and vector clocks establish causal relationships. Yet payment processing pushes beyond standard distributed

systems theory. External participants follow banking regulations rather than computer science principles. Research on

dependable auction systems offers relevant insights for handling unreliable participants [3], while non-determinism analysis

helps quantify uncertainty in message-passing systems [4]. These foundations inform practical payment system design.

3. Fault-Tolerant Ledger Abstraction

3.1 Separating Transaction Requests from Settlement Processes

Payment systems face a fundamental disconnect between when users submit transactions and when money moves between

accounts. Most databases treat these as atomic operations, but real-world payments involve multiple stages with different failure

modes. A resilient ledger architecture records user requests separately from their eventual outcomes. Consider a wire transfer

initiated Friday afternoon: the customer's intent gets logged immediately, but actual fund movement waits until Monday when

banks open. By maintaining distinct records for intentions and executions, systems continue accepting new transactions even

during settlement outages. This architectural choice mirrors distributed simulation concepts where planned events exist

independently from their simulated execution [5]. Each payment intent carries metadata about desired outcomes, allowing later

processes to fulfill the request through various execution paths based on availability.

3.2 Duplicate-Safe Transaction Processing

Network hiccups cause payment requests to arrive multiple times at processing endpoints. Without safeguards, these duplicates

trigger multiple charges against customer accounts. Building operations that yield consistent results regardless of invocation

count requires sophisticated tracking mechanisms. Every payment request carries a unique marker generated by the initiating

system. Processing nodes maintain recently-seen markers in distributed caches, checking each incoming request against this

history. The challenge extends beyond simple caching—markers must persist long enough to catch delayed duplicates but

expire before legitimate reuse. External payment rails complicate matters by accepting duplicate submissions in some scenarios

while rejecting others based on opaque rules. Successful implementations combine multiple strategies: cryptographic request

signing, sliding time windows for marker validity, and careful response caching that distinguishes retriable failures from

permanent rejections.

3.3 Append-Only Transaction Histories

Traditional databases overwrite old values during updates, losing historical context crucial for financial auditing. Another method

views the ledger as an append-only log in which new entries detail modifications without changing records that already exist.

Taming Asynchrony in Distributed Payment Systems: Guarantees, Idempotency, and End-to-End Reconciliation

Page | 342

Account balances become computed values derived from scanning all relevant entries rather than stored fields. This design

naturally preserves complete audit trails while enabling powerful time-travel queries. Reconstruction techniques borrowed from

parallel simulation enable efficient state rebuilding after system crashes [5]. Each log entry includes enough context to apply

changes independently—transaction amounts, participating accounts, and causal dependencies. Periodic snapshots capture

computed states, reducing reconstruction overhead for frequently accessed accounts. Log compaction strategies archive old

entries while preserving legally required details, balancing performance against compliance needs.

3.4 Sequence Confusion in Distributed Payments

Payment processing is complicated by the rarity of message delivery over dispersed systems that maintain sending order. A

refund might arrive before its associated charge, or authorization extensions could process after transaction completion. Simple

wall-clock timestamps fail when servers drift apart or transactions span continents. Payment systems need ordering schemes that

respect business logic rather than arbitrary timing. Stream processing research provides foundations for handling temporally

scrambled data through buffering strategies and reordering logic [6]. Financial applications adapt these techniques using

domain knowledge: credits wait for matching debits, chargebacks reference specific transactions, and recurring payments follow

scheduled patterns. Buffer management becomes critical—holding events too long delays processing, while releasing them

prematurely causes constraint violations. Smart timeout policies recognize different event types and require different patience

thresholds.

4. Distributed Transaction Patterns for Payment Flows

4.1 Transactional Messaging Through Database-Backed Queues

Financial message delivery fails when servers crash between completing business logic and sending notifications. A robust

approach stores outbound messages alongside transaction data within database boundaries. Services record payment state

changes and corresponding messages in a single atomic operation. Background workers scan message tables, transmitting

pending entries to destination queues. Recipients mirror this pattern, persisting inbound messages before processing prevents

loss during unexpected shutdowns. This technique eliminates split-brain scenarios where payments complete but confirmations

never arrive. Network failures cannot create situations where accounts are debited without merchants receiving approval codes.

Each processing stage maintains dedicated message storage, creating reliable hand-offs across distributed boundaries without

complex coordination protocols.

Pattern Use Case Key Properties Failure Recovery

Outbox/Inbox Payment notifications Atomic message

persistence

Polling-based retry

Compensation Workflows Multi-step transfers Forward and reverse

operations

Automatic rollback

Time-Bound State

Machines

Authorization holds Temporal constraints Timeout-triggered

transitions

Optimistic Locking Balance updates Version-based conflicts Retry with fresh data

Event Sourcing Audit trails Immutable event log State reconstruction

Table 3: Distributed Transaction Patterns for Payment Workflows [7, 8]

4.2 Reversal Logic for Multi-Step Transactions

Many organizations that are unable to take part in conventional database transactions are involved in complex payment

processes. These workflows break down into discrete steps, each of which has an associated undo function. Through

compensatory efforts that semantically reverse accomplished work, failures cause systematic rollback. The workflow

customisation study has shown that different business contexts require different reversal approaches [7]. While loyalty point

redemptions restore points with adjustment entries, bank transfers may reverse through opposite-direction movements. Timing

is important; although some reversals wait for batch processing windows to open, others run instantly. Workflow coordinators

keep track of execution history and plan corrections for mistakes. Reversals are made more difficult by partial failures; changes in

exchange rates may preclude complete reimbursements, necessitating the establishment of firm policies to address

inconsistencies. Reversal instructions are carried by every forward action, allowing downstream systems to comprehend

correction semantics.

JCSTS 7(11): 339-345

Page | 343

4.3 Temporal Constraints in Transaction Lifecycles

Money movements follow regulated timelines that software must enforce programmatically. Pre-authorizations hold funds

temporarily before capture or release. Settlement cycles follow banking calendars with region-specific holidays. These temporal

rules translate into state transition models where time becomes an explicit parameter. Theoretical work on time-aware finite

automata provides foundations for such modeling [8]. Payment implementations extend basic state machines with temporal

predicates: transitions activate after duration thresholds, states carry expiration timestamps, and timeouts trigger automated

cleanup. Authorization holds exemplify these patterns—merchants request fund reservations that automatically release after

configured periods. Temporal limitations are incorporated into state definitions to avoid indefinite resource locks. Distributed

scheduling infrastructure ensures time-based transitions execute reliably across server failures and clock discrepancies.

4.4 Preventing Concurrent Modification Conflicts

Production systems blend techniques based on conflict likelihood and business impact. Low-contention paths use versioned

updates with automatic retry. Hot accounts employ buffered aggregation, collecting changes before batch application. Soft

reservations are implemented with inventory-like limitations, which allow for small errors while preventing overselling. Balance

modifications require stricter controls: multi-version storage with deterministic conflict resolution based on transaction priorities.

Large-scale payment platforms demonstrate how these techniques enable processing millions of transactions while maintaining

strong consistency guarantees [12]. Background reconciliation processes continuously scan for inconsistencies introduced by

racing updates, applying corrections based on authoritative event sequences.

5. Declarative Reconciliation Framework

5.1 Streaming Verification of Transaction Integrity

When distributed systems execute payments in diverse ways, financial records become disjointed. Internal systems and banks

update their ledgers on various schedules, which might result in short-term discrepancies that could conceal long-term mistakes.

Instead of comparing static snapshots, a streaming approach analyzes transactions as they progress through processing stages.

Rules provided in declarative syntax specify invariants, which include balances reflecting all submitted entries, precisely

computed fees, and debits matching credits. The study of formal verification techniques demonstrates how mathematical

requirements may detect minute inconsistencies [9]. These techniques are used in payment reconciliation, where predicates that

are continuously assessed are used to encapsulate business restrictions. Transaction streams from various sources are ingested

by processing engines, which use rule sets to indicate inconsistencies as soon as they are detected. Batch-oriented reconciliation

suffers from mistake accumulation, which is avoided by this immediacy.

5.2 Cross-Boundary Transaction Matching

Banks speak ISO20022 while card processors use proprietary formats. Internal systems generate unique identifiers that bear no

resemblance to bank reference numbers. Reconciling these disparate representations requires sophisticated correlation logic.

Adapters translate native formats into normalized schemas, preserving original data for audit purposes. Fuzzy matching

algorithms correlate transactions using multiple attributes—amounts within tolerance ranges, timestamps in overlapping

windows, and merchant identifiers with spelling variations. Some integrations provide real-time feeds while others deliver batch

files on banking schedules. The protocol gracefully handles these timing differences, progressively refining matches as additional

data arrives. When systems disagree about transaction status, precedence rules determine authoritative sources—generally,

external confirmations override internal records for completed payments.

5.3 Pattern Recognition in Transaction Streams

Subtle anomalies often precede major payment failures. Success rates dropping gradually might indicate API degradation before

complete outages occur. Network traffic analysis techniques adapted for payment monitoring reveal these hidden patterns [10].

Statistical baselines capture normal behavior for different payment types, merchant categories, and periods. Deviations trigger

investigations—why did refund percentages spike for a specific acquiring bank, or what caused authorization timeouts to cluster

around particular timestamps? Graph analysis reveals relationship anomalies like payment loops where money circles between

accounts, suggesting technical errors rather than legitimate activity. Sequence gaps in batch numbers indicate dropped files

requiring recovery. These systemic patterns differ from fraud signals that focus on individual transaction characteristics.

5.4 Self-Healing Transaction Corrections

Analysts typically research and investigate each mismatch independently. Automated corrective procedures usually fix normal

mismatches, and elaborate refinement processes are limited to workflows involving humans. Missing confirmations generate

status inquiry messages to upstream service providers right away. Timeout failures retry the correction with exponential backoff,

and remain within limits for each rate limit. Amount mismatches within commonly accepted tolerances generate adjustments

based on accounting rules. Orphaned authorizations are voided automatically based on the configuration period associated.

Each correction creates an individual log entry with a reason for the correction and everything taken into account when

considering the action taken. Critical safety limits ensure that no automated system creates money or corrects an entry to exceed

Taming Asynchrony in Distributed Payment Systems: Guarantees, Idempotency, and End-to-End Reconciliation

Page | 344

risk limits. Each action is judgment-based, which follows from a bank-level automation on routine transactions associated with

programmable operations within the payment chain. Since correction measures only follow standard payment API validations

and risk checks in the same way as the original transaction, the safety of the end-user remains intact.

5.5 Scalability Under Production Loads

During the month-end closure and holiday shopping seasons, reconciliation responsibilities increase. System behavior under

these high-stress scenarios is verified by performance testing. Parallel execution strategies partition work across transaction

attributes—date ranges, merchant segments, or payment types. Each partition processes independently, aggregating results for

comprehensive coverage. Synthetic test harnesses inject controlled discrepancies to measure detection accuracy and correction

effectiveness. Production metrics track key indicators: reconciliation lag times, manual intervention rates, and false positive

percentages. Database query optimization proves critical as transaction volumes grow—proper indexing and partition strategies

determine whether reconciliation completes in minutes or hours. Memory-efficient streaming algorithms process unlimited

transaction volumes without requiring proportional RAM increases. Real deployments demonstrate sustained throughput across

billions of monthly transactions while maintaining sub-minute detection latencies.

Capability Traditional Batch Streaming Framework Improvement Factor

Detection Latency Hours to days Seconds to minutes 100-1000x faster

Processing Model Scheduled jobs Continuous evaluation Real-time

Discrepancy Types Known patterns Anomaly detection Broader coverage

Recovery Actions Manual intervention Automated correction Reduced operations

Scalability Vertical scaling Horizontal partitioning Linear growth

Integration Flexibility File-based Multi-protocol Enhanced compatibility

Table 4: Reconciliation Framework Capabilities and Performance Metrics [9, 10]

Conclusion

Distributed payments systems come with limitations from asynchronous, external dependencies, and potential partial failures

that traditional architectures cannot address. The fault-tolerant ledger abstraction introduced here makes good use of

separating execution from intent. The failure semantics assure error recovery methods that protect financial intent. The design

principles for idempotency and event sourcing create an approach to achieve exactly-once processing semantics despite

unreliable networks and duplicate requests. Patterns for distributed transactions, such as outbox/inbox messaging patterns,

compensation workflows, and timed-state machine workflows, provide patterns to follow to coordinate multi-step payment

workflows across organizational boundaries. Declarative reconciliation methods move error detection from a batch to one of

continuous checks, with it in practice turned into minutes, catching discrepancies in seconds rather than days. Auto-recovery

procedures depersonalize the workload of operations, correcting routine mismatches while tracking an audit trail. These

architectural patterns and protocols offered constructive steps towards building payment infrastructures that hold against the

real-world conditions of network partitions, system failures, and timing gaps. Future work may look into areas such as machine

learning applications for predictive detection of failures, blockchain to address cross-border settlements finality, and formal

verification methods to demonstrate correctness properties hold for all possible paths of execution. The examples provided have

encountered technique variations that lay a foundation for future financial systems that embrace distribution and asynchrony in

design.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.
Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher, the editors and the reviewers.

JCSTS 7(11): 339-345

Page | 345

References

[1] Shivansh Chandnani, "Leveraging Asynchronous Frameworks to Scale Payment Systems: A Technical Analysis," Global Journal

of Engineering and Technology Advances (GJETA), Vol. 23, Issue 2, May 2, 2025. https://gjeta.com/content/leveraging-

asynchronous-frameworks-scale-payment-systems-technical-analysis

[2] Chi-Chao Chang, et al., "Evaluating the Performance Limitations of MPMD Communication," in SC '97: Proceedings of the

1997 ACM/IEEE Conference on Supercomputing, February 13, 2006.

https://ieeexplore.ieee.org/document/1592592/citations#citations

[3] P. Ezhilchelvan and G. Morgan, "A Dependable Distributed Auction System: Architecture and an Implementation Framework,"

in Proceedings of the 5th International Symposium on Autonomous Decentralized Systems, August 7, 2002.

https://ieeexplore.ieee.org/document/917389

[4] Dylan Chapp, et al., "Identifying Degree and Sources of Non-Determinism in MPI Applications via Graph Kernels," IEEE

Transactions on Parallel and Distributed Systems, Vol. 32, Issue 12, May 18, 2021. https://ieeexplore.ieee.org/document/9435018

[5] Lijun Li; C. Tropper , "Event Reconstruction in Time Warp," in Proceedings of the 18th Workshop on Parallel and Distributed

Simulation (PADS), June 1, 2004. https://ieeexplore.ieee.org/document/1301283

[6] Ming Li et al., "Event Stream Processing with Out-of-Order Data Arrival," in 27th International Conference on Distributed

Computing Systems Workshops (ICDCSW), IEEE, July 30, 2007. https://ieeexplore.ieee.org/document/4279071

[7] Xiao Ding, et al., "A Multi-Tenant Oriented Customizable Compensation Mechanism for Workflows," in 2010 3rd IEEE

International Conference on Broadband Network and Multimedia Technology (IC-BNMT), January 31, 2011.

https://ieeexplore.ieee.org/document/5705230

[8] Wuxu Peng, "Single-Link and Time Communicating Finite State Machines," in Proceedings of ICNP - 1994 International

Conference on Network Protocols, August 6, 2002. https://ieeexplore.ieee.org/document/344368

[9] Radek Marik, "On Design of Data Consistency Verification," in 2016 17th International Conference on Mechatronics –

Mechatronika (ME), January 30, 2017. https://ieeexplore.ieee.org/abstract/document/7827870

[10] Haoyu Liu, et al., "RAIN: Towards Real-Time Core Devices Anomaly Detection Through Session Data in Cloud Network," in

2020 IEEE/IFIP Network Operations and Management Symposium (NOMS), June 8, 2020.

https://ieeexplore.ieee.org/abstract/document/9110414

[11] Uber Engineering, "Building Uber's Payment Platform," Uber Engineering Blog, 2019. https://www.uber.com/blog/payments-

platform/

[12] Uber Engineering, "Money at Scale: Building a Strong Data Foundation," Uber Engineering Blog, 2020.

https://www.uber.com/blog/money-scale-strong-data/

https://gjeta.com/content/leveraging-asynchronous-frameworks-scale-payment-systems-technical-analysis
https://gjeta.com/content/leveraging-asynchronous-frameworks-scale-payment-systems-technical-analysis
https://gjeta.com/content/leveraging-asynchronous-frameworks-scale-payment-systems-technical-analysis
https://ieeexplore.ieee.org/document/1592592/citations#citations
https://ieeexplore.ieee.org/document/1592592/citations#citations
https://ieeexplore.ieee.org/document/1592592/citations#citations
https://ieeexplore.ieee.org/document/917389
https://ieeexplore.ieee.org/document/917389
https://ieeexplore.ieee.org/document/917389
https://ieeexplore.ieee.org/document/9435018
https://ieeexplore.ieee.org/document/9435018
https://ieeexplore.ieee.org/document/1301283
https://ieeexplore.ieee.org/document/1301283
https://ieeexplore.ieee.org/document/4279071
https://ieeexplore.ieee.org/document/4279071
https://ieeexplore.ieee.org/document/5705230
https://ieeexplore.ieee.org/document/5705230
https://ieeexplore.ieee.org/document/5705230
https://ieeexplore.ieee.org/document/344368
https://ieeexplore.ieee.org/document/344368
https://ieeexplore.ieee.org/abstract/document/7827870
https://ieeexplore.ieee.org/abstract/document/7827870
https://ieeexplore.ieee.org/abstract/document/9110414
https://ieeexplore.ieee.org/abstract/document/9110414
https://ieeexplore.ieee.org/abstract/document/9110414
https://www.uber.com/blog/payments-platform/
https://www.uber.com/blog/payments-platform/
https://www.uber.com/blog/payments-platform/
https://www.uber.com/blog/money-scale-strong-data/
https://www.uber.com/blog/money-scale-strong-data/
https://www.uber.com/blog/money-scale-strong-data/

