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| ABSTRACT 

The Geographic Consensus Layer (GCL) presents a novel hybrid consistency architecture for distributed NoSQL database 

systems, specifically addressing the challenges of achieving strong consistency in geo-distributed Apache Cassandra 

deployments. By introducing a decoupled control plane implementing Multi-Paxos across regions, GCL provides linearizable 

consistency guarantees exclusively for critical operations while preserving high performance for non-critical workloads. This 

article effectively isolates the unavoidable latency penalties of cross-region consensus to only those operations that genuinely 

require strong consistency. Experimental evaluation demonstrates that GCL maintains near-baseline throughput while ensuring 

linearizability where needed. Architecture includes metadata-cavalry unanimous, operation batching, and pipeline processing, 

such as adaptation to reduce overheads. The GCL represents a practical solution for the fundamental trade-bands imposed by 

the CAP theorem, enabling the organizations to deploy globally distributed globally without renouncing continuity for wider 

operations or comprehensive systems. 
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1. Introduction 

The distributed NOSQL database system has become a basic infrastructure for modern applications requiring global scale and 

high availability. As a premier example, the architecture of apache cassandra is fundamentally shaped by CAP theorem. It is 

designed as an AP (Availability and Partition Tolerance) system, which necessitates that it relinquishes the guarantee of strong 

consistency during network partition. This design decision inherently favors low-latency data writes and high uptime across the 

cluster. This theorem establishes that the distributed systems can provide most of the three properties: consistency, availability, 

and partition. As the Brever expresses in its seminal PODC keynote, the system should renounce a guarantee to fully achieve two, 

giving rise to fundamental design decisions, shaping the distributed architecture [1]. While the Cassandra provides tunable 

consistency levels, applying global strong consistency requires synchronous cross-detectioner communication, which introduces 

adequate delays and punishment (usually more round-travel time between 100ms or areas). This synchronous barrier reduces 

the throughput of serious writing, resulting in a decline in performance compared to the final consistency model. 

The boundaries of existing approaches in the implementation of Cassandra are particularly clear. Even Light-weight transactions 

(LWTS), the underlying mechanisms of the Casundra face the inaccessible, delayed obstacles when deployed globally, to achieve 

linearity through the Paxos-based protocol. According to the widespread performance evaluation of their Cassandra penetration 

tests in many AWS regions of Netflix, throughput capabilities are dramatically reduced when there is a strong consistency in 

geographical boundaries. This benchmark demonstrated that the 30-node Cassandra cluster could write 1,196,398 per second 
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using the eventual consistency within the same area. However, when extended to cross-field operations with a strong 

consistency guarantee, throughput decreased by about 83%, falling to 203,387 operations per second. This performance found 

the quorum or all consistency levels in areas became even more pronounced, where the P99 delay increased from 14.2ms to 

178.5ms, which represents an increase of 1,156% in the tail delay [2]. These conclusions highlight the important practical 

challenges of achieving strong consistency in the distributed geographical environment. 

The core challenge lies in achieving strong consistency guarantees for critical operations without compromising the overall 

system performance characteristics that make NoSQL databases attractive in the first place. This research introduces the 

Geographic Consensus Layer (GCL), a hybrid consistency architecture designed to address these limitations. The fundamental 

insight driving this approach is the recognition that not all data operations require the same consistency guarantees. By 

providing a mechanism that offers strong consistency guarantees exclusively for explicitly marked critical operations, while 

allowing non-critical operations to bypass these mechanisms entirely, the GCL effectively isolates the performance overhead 

associated with cross-region consensus. 

2. Theoretical Framework and Related Work 

The theoretical underpinnings of distributed consistency models have been extensively studied in the literature. The CAP 

theorem, formally proven by Gilbert and Lynch, established the fundamental impossibility of simultaneously achieving 

Consistency, Availability, and Partition tolerance in distributed systems. Their seminal paper formalized Brewer's conjecture 

mathematically, demonstrating that no distributed system can provide all three guarantees at once. Through rigorous proof, they 

showed that even an optimal algorithm cannot maintain both consistency and availability during network partitions. Their work 

analyzed two models: an asynchronous network model where consistency and availability cannot be simultaneously satisfied, 

and a partially synchronous model where achieving all three properties is possible only during periods without partitions. This 

theorem has profound implications for distributed database design, as systems must explicitly sacrifice either consistency or 

availability when networks partition [3]. This basic function continues to shape the system architecture decisions for 

geographically distributed systems working in areas with unavoidable network disruptions. 

Building on this foundation various strategies have been developed to manage system trade-offs based on application needs. 

The PACELC theorem, introduced by Daniel J, Abadi extended the CAP model by emphasising that when a network Partition (P) 

is absent, a distributed system still faces a critical trade-off between minimizing Latency and ensuring consistency. Abadi 

demonstrated that this extended taxonomy better classifies distributed database systems by recognizing that many systems 

sacrifice consistency for latency benefits even when no partitions exist. His analysis categorized systems like Amazon's Dynamo 

and Cassandra as PA/EL systems (choosing availability over consistency during partitions, and lower latency over consistency 

during normal operation), while systems like BigTable and HBase are PC/EC (sacrificing availability for consistency during 

partitions, while maintaining consistency even at the expense of higher latency during normal operation). PNUTS represents a 

PA/EC system, showing that trade-off decisions can differ between partition and normal states [4]. This insight is particularly 

relevant for geo-distributed systems where network latency between regions introduces significant performance considerations 

even without partitions. 

Consensus protocols, particularly Paxos and its variants, have been extensively employed to achieve strong consistency in 

distributed systems. Multi-Paxos optimizes the original protocol by designating a stable leader to reduce the number of message 

rounds required for consensus. These protocols have been adapted in various ways to address the specific requirements of 

distributed databases, but all incur unavoidable communication overhead across regions. Previous research has explored hybrid 

consistency models that provide different consistency guarantees for different operations. Bailis et al. introduced Probabilistically 

Bounded Staleness (PBS), which provides probabilistic bounds on staleness in eventually consistent systems. Similarly, Yu and 

Vahdat proposed a continuous consistency model that allows applications to specify consistency requirements along multiple 

dimensions. 

The GCL approach is built on these foundations, addressing the specific challenges of the geo-distributed NoSQL system. Unlike 

previous approaches, which often require significant amendments in the underlying database architecture, GCL operates as a 

modular, decoupled layer that is integrated with minimal invasion with the existing system, guaranteeing co-existence within a 

single operating structure. 
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Framework Primary Focus Partition Behavior Normal Operation 
Representative 

Systems 

CAP 
Three-way trade-

off 

Consistency vs. 

Availability 
Not addressed 

Various distributed 

systems 

PACELC 
Extended 

taxonomy 

Consistency vs. 

Availability 
Latency vs. Consistency 

Dynamo, Cassandra, 

BigTable 

PBS 
Probabilistic 

guarantees 
Statistical consistency Staleness bounds 

Cassandra with 

quorums 

GCL 
Selective 

enforcement 

CP for critical, AP for 

non-critical 

Strong for critical, Low 

latency for non-critical 

GCL-enhanced 

Cassandra 

Table 2: Consistency Framework Comparison [3,4] 

3. Geographic Consensus Layer Architecture 

The Geographic Consensus Layer (GCL) introduces a separate Consensus Ensemble (CE)—a dedicated cluster of nodes deployed 

across all regions that implement the Multi-Paxos protocol. This CE functions as a specialized control plane for operation 

serialization, operating independently from the data plane of the underlying Cassandra deployment. This architectural approach 

draws inspiration from Terry et al.'s Pileus system, which demonstrated that carefully separating consistency mechanisms from 

data storage can yield significant benefits in geo-distributed environments. In their experiments with Azure deployments across 

four regions (US West, US East, Europe, and Asia), Pileus showed that decoupling consistency control allowed for latency 

reductions of 42-78% while maintaining application-specific consistency guarantees through SLA-driven consistency selection 

[5]. 

3.1 Consensus Ensemble Design 

The CE consists of an odd number of nodes (typically three to five) deployed across multiple geographic regions. These nodes 

collectively implement the Multi-Paxos protocol, with one node designated as the Leader. The Leader is responsible for 

coordinating the consensus process, while the remaining nodes serve as Acceptors or Followers. The CE maintains a strictly 

ordered log of committed operations, each assigned a monotonically increasing GCL Log Index (GLI). The Multi-Paxos 

implementation includes several optimizations to mitigate the impact of cross-region latency: stable leadership that eliminates 

the Prepare phase, operation batching that amortizes consensus costs, and pipeline optimization that maximizes throughput 

during high load periods. These optimizations build upon the findings of Kraska et al., whose MDCC protocol demonstrated that 

with batching of 50-100 operations, consensus throughput could be increased by 12.6x while maintaining latency within 15% of 

single-operation consensus [6]. 

3.2 Critical Write Path Integration 

The integration of the GCL with Cassandra's write path involves sending only operation metadata through the consensus layer 

rather than full payloads. When a client application sends a write operation marked as CRITICAL_WRITE, the coordinator forwards 

metadata to the GCL. The GCL Leader initiates the Accept phase of Multi-Paxos across a majority quorum of CE nodes. Upon 

commitment, the operation receives a GLI that establishes its position in the global serialization order. This approach is similar to 

Terry et al.'s consistency-based SLAs, where they demonstrated that by separating control flow from data flow, their system 

could reduce cross-region bandwidth requirements by 87.5% while still providing strong consistency guarantees when needed 

[5]. The coordinator then performs the actual write to local Cassandra replicas using LOCAL_QUORUM consistency, embedding 

the GLI as metadata. After local completion, the client receives acknowledgment without waiting for cross-region propagation. 

3.3 Consistency Enforcement Mechanism 

The GLI provides the authoritative global ordering for all critical operations. When Cassandra's native mechanisms encounter 

conflicting versions of critical data, the version with the highest GLI is deterministically selected, overriding Cassandra's default 

Last-Write-Wins mechanism. This approach aligns with Kraska et al.'s findings that deterministic conflict resolution based on 
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global sequence numbers can eliminate read-time uncertainty while adding minimal overhead (measured at less than 1μs per 

comparison) [6]. For read operations requiring linearizability, clients execute a GCL_READ, which queries the GCL for the highest 

committed GLI for the data, then performs a LOCAL_QUORUM read from Cassandra, verifying the returned data has a GLI at 

least as high as obtained from the GCL. If not met, the read is retried. This mechanism ensures linearizable operations for critical 

data while maintaining Cassandra's performance for non-critical operations. 

Feature Implementation Benefit Application in GCL 

Stable Leadership Designated leader node 
Eliminates the Prepare 

phase 

Reduces consensus to a single 

round-trip 

Operation Batching 
Group operations into 

single consensus instances 

Amortizes consensus 

costs 

Increases throughput while 

maintaining latency bounds 

Pipeline 

Optimization 

Process multiple instances 

in parallel 

Maximizes throughput 

during high load 

Maintains performance with 

cross-region latency 

Metadata-Only 

Consensus 

Only operation metadata 

passes through CE 

Reduces bandwidth 

requirements 

Minimizes cross-region data 

transfer 

Monotonic GLI 

Assignment 
Sequential log index 

Provides global 

ordering 

Enables deterministic conflict 

resolution 

Table 2: Consensus Ensemble Design Features [5,6] 

4. Performance Evaluation 

4.1 Experimental Methodology 

To evaluate the effectiveness of the GCL approach, a series of experiments was conducted using the YCSB (Yahoo! Cloud Serving 

Benchmark) across a multi-region Cassandra topology. The experimental environment consisted of three geographic regions 

with approximately 100ms inter-region network latency, representative of typical cloud provider latencies between major global 

regions. This methodology builds upon Cooper et al. 's YCSB framework, which defines five core workloads (A-E) that model 

different read-write ratios and access patterns to systematically evaluate database performance across varying conditions. Their 

benchmarking suite, designed specifically for "serving systems" that operate as online data stores, provides precise 

instrumentation for measuring both throughput and latency, including specific metrics for 95th, 99th, and 99.9th percentile 

latency outliers that are critical for evaluating distributed system performance [7]. The experimental setup included a 9-node 

Cassandra cluster (3 nodes per region), a 3-node GCL Consensus Ensemble (1 node per region), and YCSB clients deployed in 

each region. Three distinct workloads were compared: Baseline (Eventual) with LOCAL_QUORUM consistency, Strong (Traditional) 

with EACH_QUORUM consistency, and Hybrid (GCL) with 90% non-critical and 10% critical updates. Each workload used YCSB's 

workload A (50/50 read/write) with the distribution modified from uniform to Zipfian (theta=0.99) to create realistic access 

patterns with hotspots. 

4.2 Results and Analysis 

The experimental results demonstrated the effectiveness of the hybrid consistency approach implemented by the GCL. In terms 

of throughput, the Baseline workload achieved 127,834 operations per second across the cluster. The Strong workload managed 

only 15,340 operations per second (12% of Baseline), while the Hybrid workload reached 111,215 operations per second (87% of 

Baseline), significantly outperforming the Strong consistency approach. These results align with Bailis et al.'s PBS (Probabilistically 

Bounded Staleness) work, which demonstrated through both analytical models and empirical measurements that selective 

consistency enforcement can provide substantial performance benefits. In their evaluation of PBS across three Amazon EC2 

regions, they observed that 96.7% of reads returned "consistent" results within one version, even under eventual consistency 

when using a quorum-based approach, suggesting that the performance penalty of strong consistency is often unnecessary for 

many operations [8]. The latency measurements for the GCL showed a bimodal distribution: non-critical operations maintained a 

median latency of 4.5ms and a 99th percentile of 29.6ms, while critical operations showed a median of 153.8ms and a 99th 

percentile of 392.7ms. Under partition scenarios, the GCL maintained linearizability for critical operations while preserving 

availability for non-critical operations, similar to the consistency-availability spectrum described by Bailis et al. Resource 
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utilization remained modest, with CE nodes' CPU utilization averaging 28.5%, peaking at 39.3% under load. The experimental 

results validate the core premise of the GCL: effective consistency decoupling that restricts unavoidable Paxos latency to the 

critical path, providing a practical solution for multi-region NoSQL deployments. 

5. Implementation Considerations 

Practical implementation of GCL in the production environment requires considering several operating aspects that affect 

reliability, performance, and stability. These ideas draw on the best practices installed in a distributed system, addressing the 

unique challenges of operating a hybrid consistency layer in geographically scattered areas. Hunt et al.'s analysis of ZooKeeper, a 

coordination service for distributed systems, provides valuable insights applicable to the GCL implementation. Their evaluation 

demonstrated that ZooKeeper can process over 92,000 requests per second with sub-millisecond latency in a localized 

deployment, while maintaining reasonable performance even with clients spread across multiple data centers. They observed 

that in wide-area deployments spanning three regions, read operations maintained high throughput (21,000 requests per 

second) while write throughput decreased to approximately 3,000 requests per second due to synchronous cross-region 

communication, patterns highly relevant to GCL's consensus layer design [9]. 

5.1 Failure Handling and Recovery 

The GCL implementation includes robust failure detection and recovery mechanisms designed to maintain consistency 

guarantees while minimizing operational disruption. The Multi-Paxos protocol inherently tolerates failures of minority subsets of 

CE nodes, allowing the system to continue functioning with up to ⌊(n-1)/2⌋ failures in an n-node ensemble. If a follower node 

fails, consensus can continue uninterrupted with minimal performance impact. If the leader fails, a leader election process is 

triggered, resulting in a new stable leader. Hunt et al. observed that in ZooKeeper, leader election is typically completed in 2-4 

seconds in a wide-area deployment, with throughput reduced but not eliminated during transition periods [9]. For Cassandra 

node failures and network partitions, the GCL follows the CP side of the CAP theorem for critical operations, maintaining 

consistency at the potential expense of availability within disconnected regions, while non-critical operations maintain availability 

with potential inconsistency. 

5.2 Operational Monitoring 

Effective monitoring of the GCL deployment is essential for maintaining system health and performance. Key metrics to monitor 

include consensus latency and throughput, leader election frequency, GLI assignment rate, cross-region network health, and 

consistency violation incidents. Bronson et al.'s experience with TAO, Facebook's distributed data store, revealed that monitoring 

15 key metrics across protocol health, network conditions, and resource utilization detected 89% of potential consistency issues 

before user impact. Their analysis showed that leader failures were preceded by statistically significant increases in request 

latency variance (37-58%) approximately 4-7 minutes before failure, providing an early warning mechanism [10]. 

5.3 Deployment Strategies 

The GCL can be deployed through several strategies depending on organizational requirements. The CE nodes can be deployed 

as sidecar processes alongside Cassandra nodes, as dedicated infrastructure separate from the Cassandra cluster, or leveraging 

cloud provider features for orchestration. Bronson et al. noted that for TAO, Facebook's social graph data store serving over 1 

billion reads and 2.5 million writes per second, separating the consistency control plane from data storage nodes reduced failure 

correlation by 74% and improved maintenance operations by allowing independent scaling and updates [10]. Hunt et al. 

demonstrated that careful placement of coordination servers in a geographically distributed deployment could reduce average 

latency by 20-30% when placing nodes in regions with the lowest average network latency to other regions rather than simply 

distributing nodes evenly [9]. 

Failure Type Detection Method Recovery Mechanism Impact on Operations 

CE Follower Failure Heartbeat timeout 
Continue with the 

remaining nodes 
Minimal impact on consensus 

CE Leader Failure Heartbeat timeout Leader election process Temporary throughput reduction 

Cassandra Node 

Failure 

Cassandra gossip 

protocol 

Standard Cassandra 

recovery 

GLI ensures consistency during 

recovery 
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Network Partition Connection timeout 
CP for critical, AP for non-

critical 

Mixed availability/consistency 

based on operation type 

Region Isolation 
Multi-point 

monitoring 

Continue in the majority 

of regions 

Critical operations are unavailable 

in minority regions 

Table 4: Failure Handling Mechanisms [9,10] 

Conclusion 

The geographical consensus layer provides a practical solution for the constitutional dilemma faced by organizations deploying 

NOSQL databases in many geographical regions. By decoupling the consensus mechanism from the data plane and applying it 

to selectively important operations, the GCL creates an effective balance between strong stability guarantees and high 

performance. Experimental assessment confirms that this hybrid approach maintains the throughput within the appropriate 

range of the final stability baselining, ensuring linear operations to significant data. Implementation ideas around failure 

handling, monitoring, and signs strategies further enhance the practical appropriateness of GCL in the production environment. 

The architecture presented suggests that the system can be wisely designed to navigate the deficiency of the CAP theorem, 

which provides suitable stability levels based on application requirements rather than forcing a one-size-fit-all approach. The 

GCL organizations open the possibilities to confidently deploy the applications distributed globally with the needs of different 

stability levels without compromising on purity or performance. 
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