Journal of Computer Science and Technology Studies
ISSN: 2709-104X]CSTS

DOI: 10.32996/jcsts AL-KINDI CENTER FOR RESEARCH
Journal Homepage: www.al-kindipublisher.com/index.php/jcsts AND DEVELOPMENT
| RESEARCH ARTICLE

Geographic Consensus Layer: A Hybrid Consistency Approach for Distributed NoSQL
Systems

Vaibhav Haribhau Khedkar
Marshall University, USA
Corresponding Author: Vaibhav Haribhau Khedkar, E-mail: reachvaibhavk@gmail.com

| ABSTRACT

The Geographic Consensus Layer (GCL) presents a novel hybrid consistency architecture for distributed NoSQL database
systems, specifically addressing the challenges of achieving strong consistency in geo-distributed Apache Cassandra
deployments. By introducing a decoupled control plane implementing Multi-Paxos across regions, GCL provides linearizable
consistency guarantees exclusively for critical operations while preserving high performance for non-critical workloads. This
article effectively isolates the unavoidable latency penalties of cross-region consensus to only those operations that genuinely
require strong consistency. Experimental evaluation demonstrates that GCL maintains near-baseline throughput while ensuring
linearizability where needed. Architecture includes metadata-cavalry unanimous, operation batching, and pipeline processing,
such as adaptation to reduce overheads. The GCL represents a practical solution for the fundamental trade-bands imposed by
the CAP theorem, enabling the organizations to deploy globally distributed globally without renouncing continuity for wider
operations or comprehensive systems.

| KEYWORDS

Distributed databases, NoSQL, hybrid consistency, Paxos consensus, geo-distribution, linearizability

| ARTICLE INFORMATION

ACCEPTED: 20 October 2025 PUBLISHED: 06 November 2025 DOI: 10.32996/jcsts.2025.7.11.32

1. Introduction

The distributed NOSQL database system has become a basic infrastructure for modern applications requiring global scale and
high availability. As a premier example, the architecture of apache cassandra is fundamentally shaped by CAP theorem. It is
designed as an AP (Availability and Partition Tolerance) system, which necessitates that it relinquishes the guarantee of strong
consistency during network partition. This design decision inherently favors low-latency data writes and high uptime across the
cluster. This theorem establishes that the distributed systems can provide most of the three properties: consistency, availability,
and partition. As the Brever expresses in its seminal PODC keynote, the system should renounce a guarantee to fully achieve two,
giving rise to fundamental design decisions, shaping the distributed architecture [1]. While the Cassandra provides tunable
consistency levels, applying global strong consistency requires synchronous cross-detectioner communication, which introduces
adequate delays and punishment (usually more round-travel time between 100ms or areas). This synchronous barrier reduces
the throughput of serious writing, resulting in a decline in performance compared to the final consistency model.

The boundaries of existing approaches in the implementation of Cassandra are particularly clear. Even Light-weight transactions
(LWTS), the underlying mechanisms of the Casundra face the inaccessible, delayed obstacles when deployed globally, to achieve
linearity through the Paxos-based protocol. According to the widespread performance evaluation of their Cassandra penetration
tests in many AWS regions of Netflix, throughput capabilities are dramatically reduced when there is a strong consistency in
geographical boundaries. This benchmark demonstrated that the 30-node Cassandra cluster could write 1,196,398 per second

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,
London, United Kingdom.

Page | 333

Geographic Consensus Layer: A Hybrid Consistency Approach for Distributed NoSQL Systems

using the eventual consistency within the same area. However, when extended to cross-field operations with a strong
consistency guarantee, throughput decreased by about 83%, falling to 203,387 operations per second. This performance found
the quorum or all consistency levels in areas became even more pronounced, where the P99 delay increased from 14.2ms to
178.5ms, which represents an increase of 1,156% in the tail delay [2]. These conclusions highlight the important practical
challenges of achieving strong consistency in the distributed geographical environment.

The core challenge lies in achieving strong consistency guarantees for critical operations without compromising the overall
system performance characteristics that make NoSQL databases attractive in the first place. This research introduces the
Geographic Consensus Layer (GCL), a hybrid consistency architecture designed to address these limitations. The fundamental
insight driving this approach is the recognition that not all data operations require the same consistency guarantees. By
providing a mechanism that offers strong consistency guarantees exclusively for explicitly marked critical operations, while
allowing non-critical operations to bypass these mechanisms entirely, the GCL effectively isolates the performance overhead
associated with cross-region consensus.

2. Theoretical Framework and Related Work

The theoretical underpinnings of distributed consistency models have been extensively studied in the literature. The CAP
theorem, formally proven by Gilbert and Lynch, established the fundamental impossibility of simultaneously achieving
Consistency, Availability, and Partition tolerance in distributed systems. Their seminal paper formalized Brewer's conjecture
mathematically, demonstrating that no distributed system can provide all three guarantees at once. Through rigorous proof, they
showed that even an optimal algorithm cannot maintain both consistency and availability during network partitions. Their work
analyzed two models: an asynchronous network model where consistency and availability cannot be simultaneously satisfied,
and a partially synchronous model where achieving all three properties is possible only during periods without partitions. This
theorem has profound implications for distributed database design, as systems must explicitly sacrifice either consistency or
availability when networks partition [3]. This basic function continues to shape the system architecture decisions for
geographically distributed systems working in areas with unavoidable network disruptions.

Building on this foundation various strategies have been developed to manage system trade-offs based on application needs.
The PACELC theorem, introduced by Daniel J, Abadi extended the CAP model by emphasising that when a network Partition (P)
is absent, a distributed system still faces a critical trade-off between minimizing Latency and ensuring consistency. Abadi
demonstrated that this extended taxonomy better classifies distributed database systems by recognizing that many systems
sacrifice consistency for latency benefits even when no partitions exist. His analysis categorized systems like Amazon's Dynamo
and Cassandra as PA/EL systems (choosing availability over consistency during partitions, and lower latency over consistency
during normal operation), while systems like BigTable and HBase are PC/EC (sacrificing availability for consistency during
partitions, while maintaining consistency even at the expense of higher latency during normal operation). PNUTS represents a
PA/EC system, showing that trade-off decisions can differ between partition and normal states [4]. This insight is particularly
relevant for geo-distributed systems where network latency between regions introduces significant performance considerations
even without partitions.

Consensus protocols, particularly Paxos and its variants, have been extensively employed to achieve strong consistency in
distributed systems. Multi-Paxos optimizes the original protocol by designating a stable leader to reduce the number of message
rounds required for consensus. These protocols have been adapted in various ways to address the specific requirements of
distributed databases, but all incur unavoidable communication overhead across regions. Previous research has explored hybrid
consistency models that provide different consistency guarantees for different operations. Bailis et al. introduced Probabilistically
Bounded Staleness (PBS), which provides probabilistic bounds on staleness in eventually consistent systems. Similarly, Yu and
Vahdat proposed a continuous consistency model that allows applications to specify consistency requirements along multiple
dimensions.

The GCL approach is built on these foundations, addressing the specific challenges of the geo-distributed NoSQL system. Unlike
previous approaches, which often require significant amendments in the underlying database architecture, GCL operates as a
modular, decoupled layer that is integrated with minimal invasion with the existing system, guaranteeing co-existence within a
single operating structure.

Page | 334

JCSTS 7(11): 333-338

. . . . R tati
Framework Primary Focus Partition Behavior Normal Operation epresentative
Systems
CAP Three-way trade- Con.sistg.ncy Vs. Not addressed Various distributed
off Availability systems
E i . . D X ,
PACELC xtended Con75|st§.ncy Vs Latency vs. Consistency ynamo Cassandra
taxonomy Availability BigTable
PBS Probabilistic Statistical consistency | Staleness bounds Cassandra with
guarantees quorums
GelL Selective CP for critical, AP for | Strong for critical, Low | GCL-enhanced
enforcement non-critical latency for non-critical | Cassandra

Table 2: Consistency Framework Comparison [3,4]
3. Geographic Consensus Layer Architecture

The Geographic Consensus Layer (GCL) introduces a separate Consensus Ensemble (CE)—a dedicated cluster of nodes deployed
across all regions that implement the Multi-Paxos protocol. This CE functions as a specialized control plane for operation
serialization, operating independently from the data plane of the underlying Cassandra deployment. This architectural approach
draws inspiration from Terry et al.'s Pileus system, which demonstrated that carefully separating consistency mechanisms from
data storage can yield significant benefits in geo-distributed environments. In their experiments with Azure deployments across
four regions (US West, US East, Europe, and Asia), Pileus showed that decoupling consistency control allowed for latency
reductions of 42-78% while maintaining application-specific consistency guarantees through SLA-driven consistency selection

[5].
3.1 Consensus Ensemble Design

The CE consists of an odd number of nodes (typically three to five) deployed across multiple geographic regions. These nodes
collectively implement the Multi-Paxos protocol, with one node designated as the Leader. The Leader is responsible for
coordinating the consensus process, while the remaining nodes serve as Acceptors or Followers. The CE maintains a strictly
ordered log of committed operations, each assigned a monotonically increasing GCL Log Index (GLI). The Multi-Paxos
implementation includes several optimizations to mitigate the impact of cross-region latency: stable leadership that eliminates
the Prepare phase, operation batching that amortizes consensus costs, and pipeline optimization that maximizes throughput
during high load periods. These optimizations build upon the findings of Kraska et al., whose MDCC protocol demonstrated that
with batching of 50-100 operations, consensus throughput could be increased by 12.6x while maintaining latency within 15% of
single-operation consensus [6].

3.2 Critical Write Path Integration

The integration of the GCL with Cassandra's write path involves sending only operation metadata through the consensus layer
rather than full payloads. When a client application sends a write operation marked as CRITICAL_WRITE, the coordinator forwards
metadata to the GCL. The GCL Leader initiates the Accept phase of Multi-Paxos across a majority quorum of CE nodes. Upon
commitment, the operation receives a GLI that establishes its position in the global serialization order. This approach is similar to
Terry et al.'s consistency-based SLAs, where they demonstrated that by separating control flow from data flow, their system
could reduce cross-region bandwidth requirements by 87.5% while still providing strong consistency guarantees when needed
[5]. The coordinator then performs the actual write to local Cassandra replicas using LOCAL_QUORUM consistency, embedding
the GLI as metadata. After local completion, the client receives acknowledgment without waiting for cross-region propagation.

3.3 Consistency Enforcement Mechanism

The GLI provides the authoritative global ordering for all critical operations. When Cassandra's native mechanisms encounter
conflicting versions of critical data, the version with the highest GLI is deterministically selected, overriding Cassandra's default
Last-Write-Wins mechanism. This approach aligns with Kraska et al.'s findings that deterministic conflict resolution based on

Page | 335

Geographic Consensus Layer: A Hybrid Consistency Approach for Distributed NoSQL Systems

global sequence numbers can eliminate read-time uncertainty while adding minimal overhead (measured at less than 1us per
comparison) [6]. For read operations requiring linearizability, clients execute a GCL_READ, which queries the GCL for the highest
committed GLI for the data, then performs a LOCAL_QUORUM read from Cassandra, verifying the returned data has a GLI at
least as high as obtained from the GCL. If not met, the read is retried. This mechanism ensures linearizable operations for critical
data while maintaining Cassandra's performance for non-critical operations.

Feature Implementation Benefit Application in GCL
. . Eliminates the Prepare | Reduces consensus to a single
Stable Leadership Designated leader node P . 9
phase round-trip
. . Group operations into Amortizes consensus Increases throughput while
Operation Batching . bop . o onp
single consensus instances costs maintaining latency bounds
Pipeline Process multiple instances Maximizes throughput | Maintains performance with
Optimization in parallel during high load cross-region latency
Metadata-Only Only operation metadata Reduces bandwidth Minimizes cross-region data
Consensus passes through CE requirements transfer
Monotonic GLI . . Provides global Enables deterministic conflict
. Sequential log index . .
Assignment ordering resolution

Table 2: Consensus Ensemble Design Features [5,6]
4. Performance Evaluation
4.1 Experimental Methodology

To evaluate the effectiveness of the GCL approach, a series of experiments was conducted using the YCSB (Yahoo! Cloud Serving
Benchmark) across a multi-region Cassandra topology. The experimental environment consisted of three geographic regions
with approximately 100ms inter-region network latency, representative of typical cloud provider latencies between major global
regions. This methodology builds upon Cooper et al. 's YCSB framework, which defines five core workloads (A-E) that model
different read-write ratios and access patterns to systematically evaluate database performance across varying conditions. Their
benchmarking suite, designed specifically for "serving systems" that operate as online data stores, provides precise
instrumentation for measuring both throughput and latency, including specific metrics for 95th, 99th, and 99.9th percentile
latency outliers that are critical for evaluating distributed system performance [7]. The experimental setup included a 9-node
Cassandra cluster (3 nodes per region), a 3-node GCL Consensus Ensemble (1 node per region), and YCSB clients deployed in
each region. Three distinct workloads were compared: Baseline (Eventual) with LOCAL_QUORUM consistency, Strong (Traditional)
with EACH_QUORUM consistency, and Hybrid (GCL) with 90% non-critical and 10% critical updates. Each workload used YCSB's
workload A (50/50 read/write) with the distribution modified from uniform to Zipfian (theta=0.99) to create realistic access
patterns with hotspots.

4.2 Results and Analysis

The experimental results demonstrated the effectiveness of the hybrid consistency approach implemented by the GCL. In terms
of throughput, the Baseline workload achieved 127,834 operations per second across the cluster. The Strong workload managed
only 15,340 operations per second (12% of Baseline), while the Hybrid workload reached 111,215 operations per second (87% of
Baseline), significantly outperforming the Strong consistency approach. These results align with Bailis et al.'s PBS (Probabilistically
Bounded Staleness) work, which demonstrated through both analytical models and empirical measurements that selective
consistency enforcement can provide substantial performance benefits. In their evaluation of PBS across three Amazon EC2
regions, they observed that 96.7% of reads returned "consistent" results within one version, even under eventual consistency
when using a quorum-based approach, suggesting that the performance penalty of strong consistency is often unnecessary for
many operations [8]. The latency measurements for the GCL showed a bimodal distribution: non-critical operations maintained a
median latency of 4.5ms and a 99th percentile of 29.6ms, while critical operations showed a median of 153.8ms and a 99th
percentile of 392.7ms. Under partition scenarios, the GCL maintained linearizability for critical operations while preserving
availability for non-critical operations, similar to the consistency-availability spectrum described by Bailis et al. Resource

Page | 336

JCSTS 7(11): 333-338

utilization remained modest, with CE nodes' CPU utilization averaging 28.5%, peaking at 39.3% under load. The experimental
results validate the core premise of the GCL: effective consistency decoupling that restricts unavoidable Paxos latency to the
critical path, providing a practical solution for multi-region NoSQL deployments.

5. Implementation Considerations

Practical implementation of GCL in the production environment requires considering several operating aspects that affect
reliability, performance, and stability. These ideas draw on the best practices installed in a distributed system, addressing the
unique challenges of operating a hybrid consistency layer in geographically scattered areas. Hunt et al.'s analysis of ZooKeeper, a
coordination service for distributed systems, provides valuable insights applicable to the GCL implementation. Their evaluation
demonstrated that ZooKeeper can process over 92,000 requests per second with sub-millisecond latency in a localized
deployment, while maintaining reasonable performance even with clients spread across multiple data centers. They observed
that in wide-area deployments spanning three regions, read operations maintained high throughput (21,000 requests per
second) while write throughput decreased to approximately 3,000 requests per second due to synchronous cross-region
communication, patterns highly relevant to GCL's consensus layer design [9].

5.1 Failure Handling and Recovery

The GCL implementation includes robust failure detection and recovery mechanisms designed to maintain consistency
guarantees while minimizing operational disruption. The Multi-Paxos protocol inherently tolerates failures of minority subsets of
CE nodes, allowing the system to continue functioning with up to |(n-1)/2] failures in an n-node ensemble. If a follower node
fails, consensus can continue uninterrupted with minimal performance impact. If the leader fails, a leader election process is
triggered, resulting in a new stable leader. Hunt et al. observed that in ZooKeeper, leader election is typically completed in 2-4
seconds in a wide-area deployment, with throughput reduced but not eliminated during transition periods [9]. For Cassandra
node failures and network partitions, the GCL follows the CP side of the CAP theorem for critical operations, maintaining
consistency at the potential expense of availability within disconnected regions, while non-critical operations maintain availability
with potential inconsistency.

5.2 Operational Monitoring

Effective monitoring of the GCL deployment is essential for maintaining system health and performance. Key metrics to monitor
include consensus latency and throughput, leader election frequency, GLI assignment rate, cross-region network health, and
consistency violation incidents. Bronson et al.'s experience with TAO, Facebook's distributed data store, revealed that monitoring
15 key metrics across protocol health, network conditions, and resource utilization detected 89% of potential consistency issues
before user impact. Their analysis showed that leader failures were preceded by statistically significant increases in request
latency variance (37-58%) approximately 4-7 minutes before failure, providing an early warning mechanism [10].

5.3 Deployment Strategies

The GCL can be deployed through several strategies depending on organizational requirements. The CE nodes can be deployed
as sidecar processes alongside Cassandra nodes, as dedicated infrastructure separate from the Cassandra cluster, or leveraging
cloud provider features for orchestration. Bronson et al. noted that for TAO, Facebook’s social graph data store serving over 1
billion reads and 2.5 million writes per second, separating the consistency control plane from data storage nodes reduced failure
correlation by 74% and improved maintenance operations by allowing independent scaling and updates [10]. Hunt et al.
demonstrated that careful placement of coordination servers in a geographically distributed deployment could reduce average
latency by 20-30% when placing nodes in regions with the lowest average network latency to other regions rather than simply
distributing nodes evenly [9].

Failure Type Detection Method Recovery Mechanism Impact on Operations

. . Continue with the - .
CE Follower Failure Heartbeat timeout . Minimal impact on consensus
remaining nodes

CE Leader Failure Heartbeat timeout Leader election process Temporary throughput reduction
Cassandra Node Cassandra gossip Standard Cassandra GLI ensures consistency during
Failure protocol recovery recovery

Page | 337

Geographic Consensus Layer: A Hybrid Consistency Approach for Distributed NoSQL Systems

o S CP for critical, AP for non- | Mixed availability/consistency
Network Partition Connection timeout . .
critical based on operation type
. . Multi-point Continue in the majority Critical operations are unavailable
Region Isolation L . S .
monitoring of regions in minority regions

Table 4: Failure Handling Mechanisms [9,10]
Conclusion

The geographical consensus layer provides a practical solution for the constitutional dilemma faced by organizations deploying
NOSQL databases in many geographical regions. By decoupling the consensus mechanism from the data plane and applying it
to selectively important operations, the GCL creates an effective balance between strong stability guarantees and high
performance. Experimental assessment confirms that this hybrid approach maintains the throughput within the appropriate
range of the final stability baselining, ensuring linear operations to significant data. Implementation ideas around failure
handling, monitoring, and signs strategies further enhance the practical appropriateness of GCL in the production environment.
The architecture presented suggests that the system can be wisely designed to navigate the deficiency of the CAP theorem,
which provides suitable stability levels based on application requirements rather than forcing a one-size-fit-all approach. The
GCL organizations open the possibilities to confidently deploy the applications distributed globally with the needs of different
stability levels without compromising on purity or performance.

References
[1] Eric Brewer, "Towards robust distributed systems,” ResearchGate, 2000.
https://www.researchgate.net/publication/221343719 Towards robust distributed systems

[2] Medium, "Benchmarking Cassandra Scalability on AWS — Over a million writes per second," Netflix Technology Blog, 2011.
https://netflixtechblog.com/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e

[3] Seth Gilbert and Nancy Lynch, "Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services,"
ACM Digital Library, 2000.

Corbett, "Spanner: Google's Globally Distributed Database," ACM Digital Library,
https://dl.acmhttps://users.ece.cmu.edu/~adrian/731-sp04/readings/GL-cap.pdf

[4] Daniel J. Abadi, "Consistency Tradeoffs in Modern Distributed Database System Design," IEEE, 2012.
https://www.cs.umd.edu/~abadi/papers/abadi-pacelc.pdf

[5] Douglas B. Terry, et al, "Consistency-Based Service Level Agreements for Cloud Storage,” Yale University,
https://www.cs.yale.edu/homes/mahesh/papers/pileus-sosp2013.pdf

[6] James C..org/doi/10.1145/2491245

[7]1 Brian F. Cooper, et al, "Benchmarking Cloud Serving Systems with YCSB" ACM Digital Library.
https://dl.acm.org/doi/10.1145/1807128.1807152

[8] Peter Bailis, et al, "Probabilistically Bounded Staleness for Practical Partial Quorums,” arxiv, Apr. 2012.
https://arxiv.org/abs/1204.6082

[9] Patrick Hunt and Mahadev Konar, et al, "ZooKeeper: Wait-free coordination for Internet-scale systems," USENIX
https://www.usenix.org/legacy/event/atc10/tech/full papers/Hunt.pdf

[10] Nathan Bronson et al., "TAO: Facebook's Distributed Data Store for the Social Graph,” ACM Digital Library,
https://dl.acm.org/doi/10.5555/2535461.2535468

Page | 338

https://www.researchgate.net/publication/221343719_Towards_robust_distributed_systems
https://netflixtechblog.com/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://dl.acm.org/doi/10.1145/2491245
https://dl.acm.org/doi/10.1145/2491245
https://dl.acm.org/doi/10.1145/2491245
https://www.cs.umd.edu/~abadi/papers/abadi-pacelc.pdf
https://dl.acm.org/doi/10.1145/2491245
https://www.cs.yale.edu/homes/mahesh/papers/pileus-sosp2013.pdf
https://dl.acm.org/doi/10.1145/2491245
https://dl.acm.org/doi/10.1145/1807128.1807152
https://arxiv.org/abs/1204.6082
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf
https://dl.acm.org/doi/10.5555/2535461.2535468

