
Journal of Computer Science and Technology Studies

ISSN: 2709-104X

DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

 JCSTS
AL-KINDI CENTER FOR RESEARCH

AND DEVELOPMENT

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,

London, United Kingdom.

 Page | 333

| RESEARCH ARTICLE

Geographic Consensus Layer: A Hybrid Consistency Approach for Distributed NoSQL

Systems

Vaibhav Haribhau Khedkar

Marshall University, USA

Corresponding Author: Vaibhav Haribhau Khedkar, E-mail: reachvaibhavk@gmail.com

| ABSTRACT

The Geographic Consensus Layer (GCL) presents a novel hybrid consistency architecture for distributed NoSQL database

systems, specifically addressing the challenges of achieving strong consistency in geo-distributed Apache Cassandra

deployments. By introducing a decoupled control plane implementing Multi-Paxos across regions, GCL provides linearizable

consistency guarantees exclusively for critical operations while preserving high performance for non-critical workloads. This

article effectively isolates the unavoidable latency penalties of cross-region consensus to only those operations that genuinely

require strong consistency. Experimental evaluation demonstrates that GCL maintains near-baseline throughput while ensuring

linearizability where needed. Architecture includes metadata-cavalry unanimous, operation batching, and pipeline processing,

such as adaptation to reduce overheads. The GCL represents a practical solution for the fundamental trade-bands imposed by

the CAP theorem, enabling the organizations to deploy globally distributed globally without renouncing continuity for wider

operations or comprehensive systems.

| KEYWORDS

Distributed databases, NoSQL, hybrid consistency, Paxos consensus, geo-distribution, linearizability

| ARTICLE INFORMATION

ACCEPTED: 20 October 2025 PUBLISHED: 06 November 2025 DOI: 10.32996/jcsts.2025.7.11.32

1. Introduction

The distributed NOSQL database system has become a basic infrastructure for modern applications requiring global scale and

high availability. As a premier example, the architecture of apache cassandra is fundamentally shaped by CAP theorem. It is

designed as an AP (Availability and Partition Tolerance) system, which necessitates that it relinquishes the guarantee of strong

consistency during network partition. This design decision inherently favors low-latency data writes and high uptime across the

cluster. This theorem establishes that the distributed systems can provide most of the three properties: consistency, availability,

and partition. As the Brever expresses in its seminal PODC keynote, the system should renounce a guarantee to fully achieve two,

giving rise to fundamental design decisions, shaping the distributed architecture [1]. While the Cassandra provides tunable

consistency levels, applying global strong consistency requires synchronous cross-detectioner communication, which introduces

adequate delays and punishment (usually more round-travel time between 100ms or areas). This synchronous barrier reduces

the throughput of serious writing, resulting in a decline in performance compared to the final consistency model.

The boundaries of existing approaches in the implementation of Cassandra are particularly clear. Even Light-weight transactions

(LWTS), the underlying mechanisms of the Casundra face the inaccessible, delayed obstacles when deployed globally, to achieve

linearity through the Paxos-based protocol. According to the widespread performance evaluation of their Cassandra penetration

tests in many AWS regions of Netflix, throughput capabilities are dramatically reduced when there is a strong consistency in

geographical boundaries. This benchmark demonstrated that the 30-node Cassandra cluster could write 1,196,398 per second

Geographic Consensus Layer: A Hybrid Consistency Approach for Distributed NoSQL Systems

Page | 334

using the eventual consistency within the same area. However, when extended to cross-field operations with a strong

consistency guarantee, throughput decreased by about 83%, falling to 203,387 operations per second. This performance found

the quorum or all consistency levels in areas became even more pronounced, where the P99 delay increased from 14.2ms to

178.5ms, which represents an increase of 1,156% in the tail delay [2]. These conclusions highlight the important practical

challenges of achieving strong consistency in the distributed geographical environment.

The core challenge lies in achieving strong consistency guarantees for critical operations without compromising the overall

system performance characteristics that make NoSQL databases attractive in the first place. This research introduces the

Geographic Consensus Layer (GCL), a hybrid consistency architecture designed to address these limitations. The fundamental

insight driving this approach is the recognition that not all data operations require the same consistency guarantees. By

providing a mechanism that offers strong consistency guarantees exclusively for explicitly marked critical operations, while

allowing non-critical operations to bypass these mechanisms entirely, the GCL effectively isolates the performance overhead

associated with cross-region consensus.

2. Theoretical Framework and Related Work

The theoretical underpinnings of distributed consistency models have been extensively studied in the literature. The CAP

theorem, formally proven by Gilbert and Lynch, established the fundamental impossibility of simultaneously achieving

Consistency, Availability, and Partition tolerance in distributed systems. Their seminal paper formalized Brewer's conjecture

mathematically, demonstrating that no distributed system can provide all three guarantees at once. Through rigorous proof, they

showed that even an optimal algorithm cannot maintain both consistency and availability during network partitions. Their work

analyzed two models: an asynchronous network model where consistency and availability cannot be simultaneously satisfied,

and a partially synchronous model where achieving all three properties is possible only during periods without partitions. This

theorem has profound implications for distributed database design, as systems must explicitly sacrifice either consistency or

availability when networks partition [3]. This basic function continues to shape the system architecture decisions for

geographically distributed systems working in areas with unavoidable network disruptions.

Building on this foundation various strategies have been developed to manage system trade-offs based on application needs.

The PACELC theorem, introduced by Daniel J, Abadi extended the CAP model by emphasising that when a network Partition (P)

is absent, a distributed system still faces a critical trade-off between minimizing Latency and ensuring consistency. Abadi

demonstrated that this extended taxonomy better classifies distributed database systems by recognizing that many systems

sacrifice consistency for latency benefits even when no partitions exist. His analysis categorized systems like Amazon's Dynamo

and Cassandra as PA/EL systems (choosing availability over consistency during partitions, and lower latency over consistency

during normal operation), while systems like BigTable and HBase are PC/EC (sacrificing availability for consistency during

partitions, while maintaining consistency even at the expense of higher latency during normal operation). PNUTS represents a

PA/EC system, showing that trade-off decisions can differ between partition and normal states [4]. This insight is particularly

relevant for geo-distributed systems where network latency between regions introduces significant performance considerations

even without partitions.

Consensus protocols, particularly Paxos and its variants, have been extensively employed to achieve strong consistency in

distributed systems. Multi-Paxos optimizes the original protocol by designating a stable leader to reduce the number of message

rounds required for consensus. These protocols have been adapted in various ways to address the specific requirements of

distributed databases, but all incur unavoidable communication overhead across regions. Previous research has explored hybrid

consistency models that provide different consistency guarantees for different operations. Bailis et al. introduced Probabilistically

Bounded Staleness (PBS), which provides probabilistic bounds on staleness in eventually consistent systems. Similarly, Yu and

Vahdat proposed a continuous consistency model that allows applications to specify consistency requirements along multiple

dimensions.

The GCL approach is built on these foundations, addressing the specific challenges of the geo-distributed NoSQL system. Unlike

previous approaches, which often require significant amendments in the underlying database architecture, GCL operates as a

modular, decoupled layer that is integrated with minimal invasion with the existing system, guaranteeing co-existence within a

single operating structure.

JCSTS 7(11): 333-338

Page | 335

Framework Primary Focus Partition Behavior Normal Operation
Representative

Systems

CAP
Three-way trade-

off

Consistency vs.

Availability
Not addressed

Various distributed

systems

PACELC
Extended

taxonomy

Consistency vs.

Availability
Latency vs. Consistency

Dynamo, Cassandra,

BigTable

PBS
Probabilistic

guarantees
Statistical consistency Staleness bounds

Cassandra with

quorums

GCL
Selective

enforcement

CP for critical, AP for

non-critical

Strong for critical, Low

latency for non-critical

GCL-enhanced

Cassandra

Table 2: Consistency Framework Comparison [3,4]

3. Geographic Consensus Layer Architecture

The Geographic Consensus Layer (GCL) introduces a separate Consensus Ensemble (CE)—a dedicated cluster of nodes deployed

across all regions that implement the Multi-Paxos protocol. This CE functions as a specialized control plane for operation

serialization, operating independently from the data plane of the underlying Cassandra deployment. This architectural approach

draws inspiration from Terry et al.'s Pileus system, which demonstrated that carefully separating consistency mechanisms from

data storage can yield significant benefits in geo-distributed environments. In their experiments with Azure deployments across

four regions (US West, US East, Europe, and Asia), Pileus showed that decoupling consistency control allowed for latency

reductions of 42-78% while maintaining application-specific consistency guarantees through SLA-driven consistency selection

[5].

3.1 Consensus Ensemble Design

The CE consists of an odd number of nodes (typically three to five) deployed across multiple geographic regions. These nodes

collectively implement the Multi-Paxos protocol, with one node designated as the Leader. The Leader is responsible for

coordinating the consensus process, while the remaining nodes serve as Acceptors or Followers. The CE maintains a strictly

ordered log of committed operations, each assigned a monotonically increasing GCL Log Index (GLI). The Multi-Paxos

implementation includes several optimizations to mitigate the impact of cross-region latency: stable leadership that eliminates

the Prepare phase, operation batching that amortizes consensus costs, and pipeline optimization that maximizes throughput

during high load periods. These optimizations build upon the findings of Kraska et al., whose MDCC protocol demonstrated that

with batching of 50-100 operations, consensus throughput could be increased by 12.6x while maintaining latency within 15% of

single-operation consensus [6].

3.2 Critical Write Path Integration

The integration of the GCL with Cassandra's write path involves sending only operation metadata through the consensus layer

rather than full payloads. When a client application sends a write operation marked as CRITICAL_WRITE, the coordinator forwards

metadata to the GCL. The GCL Leader initiates the Accept phase of Multi-Paxos across a majority quorum of CE nodes. Upon

commitment, the operation receives a GLI that establishes its position in the global serialization order. This approach is similar to

Terry et al.'s consistency-based SLAs, where they demonstrated that by separating control flow from data flow, their system

could reduce cross-region bandwidth requirements by 87.5% while still providing strong consistency guarantees when needed

[5]. The coordinator then performs the actual write to local Cassandra replicas using LOCAL_QUORUM consistency, embedding

the GLI as metadata. After local completion, the client receives acknowledgment without waiting for cross-region propagation.

3.3 Consistency Enforcement Mechanism

The GLI provides the authoritative global ordering for all critical operations. When Cassandra's native mechanisms encounter

conflicting versions of critical data, the version with the highest GLI is deterministically selected, overriding Cassandra's default

Last-Write-Wins mechanism. This approach aligns with Kraska et al.'s findings that deterministic conflict resolution based on

Geographic Consensus Layer: A Hybrid Consistency Approach for Distributed NoSQL Systems

Page | 336

global sequence numbers can eliminate read-time uncertainty while adding minimal overhead (measured at less than 1μs per

comparison) [6]. For read operations requiring linearizability, clients execute a GCL_READ, which queries the GCL for the highest

committed GLI for the data, then performs a LOCAL_QUORUM read from Cassandra, verifying the returned data has a GLI at

least as high as obtained from the GCL. If not met, the read is retried. This mechanism ensures linearizable operations for critical

data while maintaining Cassandra's performance for non-critical operations.

Feature Implementation Benefit Application in GCL

Stable Leadership Designated leader node
Eliminates the Prepare

phase

Reduces consensus to a single

round-trip

Operation Batching
Group operations into

single consensus instances

Amortizes consensus

costs

Increases throughput while

maintaining latency bounds

Pipeline

Optimization

Process multiple instances

in parallel

Maximizes throughput

during high load

Maintains performance with

cross-region latency

Metadata-Only

Consensus

Only operation metadata

passes through CE

Reduces bandwidth

requirements

Minimizes cross-region data

transfer

Monotonic GLI

Assignment
Sequential log index

Provides global

ordering

Enables deterministic conflict

resolution

Table 2: Consensus Ensemble Design Features [5,6]

4. Performance Evaluation

4.1 Experimental Methodology

To evaluate the effectiveness of the GCL approach, a series of experiments was conducted using the YCSB (Yahoo! Cloud Serving

Benchmark) across a multi-region Cassandra topology. The experimental environment consisted of three geographic regions

with approximately 100ms inter-region network latency, representative of typical cloud provider latencies between major global

regions. This methodology builds upon Cooper et al. 's YCSB framework, which defines five core workloads (A-E) that model

different read-write ratios and access patterns to systematically evaluate database performance across varying conditions. Their

benchmarking suite, designed specifically for "serving systems" that operate as online data stores, provides precise

instrumentation for measuring both throughput and latency, including specific metrics for 95th, 99th, and 99.9th percentile

latency outliers that are critical for evaluating distributed system performance [7]. The experimental setup included a 9-node

Cassandra cluster (3 nodes per region), a 3-node GCL Consensus Ensemble (1 node per region), and YCSB clients deployed in

each region. Three distinct workloads were compared: Baseline (Eventual) with LOCAL_QUORUM consistency, Strong (Traditional)

with EACH_QUORUM consistency, and Hybrid (GCL) with 90% non-critical and 10% critical updates. Each workload used YCSB's

workload A (50/50 read/write) with the distribution modified from uniform to Zipfian (theta=0.99) to create realistic access

patterns with hotspots.

4.2 Results and Analysis

The experimental results demonstrated the effectiveness of the hybrid consistency approach implemented by the GCL. In terms

of throughput, the Baseline workload achieved 127,834 operations per second across the cluster. The Strong workload managed

only 15,340 operations per second (12% of Baseline), while the Hybrid workload reached 111,215 operations per second (87% of

Baseline), significantly outperforming the Strong consistency approach. These results align with Bailis et al.'s PBS (Probabilistically

Bounded Staleness) work, which demonstrated through both analytical models and empirical measurements that selective

consistency enforcement can provide substantial performance benefits. In their evaluation of PBS across three Amazon EC2

regions, they observed that 96.7% of reads returned "consistent" results within one version, even under eventual consistency

when using a quorum-based approach, suggesting that the performance penalty of strong consistency is often unnecessary for

many operations [8]. The latency measurements for the GCL showed a bimodal distribution: non-critical operations maintained a

median latency of 4.5ms and a 99th percentile of 29.6ms, while critical operations showed a median of 153.8ms and a 99th

percentile of 392.7ms. Under partition scenarios, the GCL maintained linearizability for critical operations while preserving

availability for non-critical operations, similar to the consistency-availability spectrum described by Bailis et al. Resource

JCSTS 7(11): 333-338

Page | 337

utilization remained modest, with CE nodes' CPU utilization averaging 28.5%, peaking at 39.3% under load. The experimental

results validate the core premise of the GCL: effective consistency decoupling that restricts unavoidable Paxos latency to the

critical path, providing a practical solution for multi-region NoSQL deployments.

5. Implementation Considerations

Practical implementation of GCL in the production environment requires considering several operating aspects that affect

reliability, performance, and stability. These ideas draw on the best practices installed in a distributed system, addressing the

unique challenges of operating a hybrid consistency layer in geographically scattered areas. Hunt et al.'s analysis of ZooKeeper, a

coordination service for distributed systems, provides valuable insights applicable to the GCL implementation. Their evaluation

demonstrated that ZooKeeper can process over 92,000 requests per second with sub-millisecond latency in a localized

deployment, while maintaining reasonable performance even with clients spread across multiple data centers. They observed

that in wide-area deployments spanning three regions, read operations maintained high throughput (21,000 requests per

second) while write throughput decreased to approximately 3,000 requests per second due to synchronous cross-region

communication, patterns highly relevant to GCL's consensus layer design [9].

5.1 Failure Handling and Recovery

The GCL implementation includes robust failure detection and recovery mechanisms designed to maintain consistency

guarantees while minimizing operational disruption. The Multi-Paxos protocol inherently tolerates failures of minority subsets of

CE nodes, allowing the system to continue functioning with up to ⌊(n-1)/2⌋ failures in an n-node ensemble. If a follower node

fails, consensus can continue uninterrupted with minimal performance impact. If the leader fails, a leader election process is

triggered, resulting in a new stable leader. Hunt et al. observed that in ZooKeeper, leader election is typically completed in 2-4

seconds in a wide-area deployment, with throughput reduced but not eliminated during transition periods [9]. For Cassandra

node failures and network partitions, the GCL follows the CP side of the CAP theorem for critical operations, maintaining

consistency at the potential expense of availability within disconnected regions, while non-critical operations maintain availability

with potential inconsistency.

5.2 Operational Monitoring

Effective monitoring of the GCL deployment is essential for maintaining system health and performance. Key metrics to monitor

include consensus latency and throughput, leader election frequency, GLI assignment rate, cross-region network health, and

consistency violation incidents. Bronson et al.'s experience with TAO, Facebook's distributed data store, revealed that monitoring

15 key metrics across protocol health, network conditions, and resource utilization detected 89% of potential consistency issues

before user impact. Their analysis showed that leader failures were preceded by statistically significant increases in request

latency variance (37-58%) approximately 4-7 minutes before failure, providing an early warning mechanism [10].

5.3 Deployment Strategies

The GCL can be deployed through several strategies depending on organizational requirements. The CE nodes can be deployed

as sidecar processes alongside Cassandra nodes, as dedicated infrastructure separate from the Cassandra cluster, or leveraging

cloud provider features for orchestration. Bronson et al. noted that for TAO, Facebook's social graph data store serving over 1

billion reads and 2.5 million writes per second, separating the consistency control plane from data storage nodes reduced failure

correlation by 74% and improved maintenance operations by allowing independent scaling and updates [10]. Hunt et al.

demonstrated that careful placement of coordination servers in a geographically distributed deployment could reduce average

latency by 20-30% when placing nodes in regions with the lowest average network latency to other regions rather than simply

distributing nodes evenly [9].

Failure Type Detection Method Recovery Mechanism Impact on Operations

CE Follower Failure Heartbeat timeout
Continue with the

remaining nodes
Minimal impact on consensus

CE Leader Failure Heartbeat timeout Leader election process Temporary throughput reduction

Cassandra Node

Failure

Cassandra gossip

protocol

Standard Cassandra

recovery

GLI ensures consistency during

recovery

Geographic Consensus Layer: A Hybrid Consistency Approach for Distributed NoSQL Systems

Page | 338

Network Partition Connection timeout
CP for critical, AP for non-

critical

Mixed availability/consistency

based on operation type

Region Isolation
Multi-point

monitoring

Continue in the majority

of regions

Critical operations are unavailable

in minority regions

Table 4: Failure Handling Mechanisms [9,10]

Conclusion

The geographical consensus layer provides a practical solution for the constitutional dilemma faced by organizations deploying

NOSQL databases in many geographical regions. By decoupling the consensus mechanism from the data plane and applying it

to selectively important operations, the GCL creates an effective balance between strong stability guarantees and high

performance. Experimental assessment confirms that this hybrid approach maintains the throughput within the appropriate

range of the final stability baselining, ensuring linear operations to significant data. Implementation ideas around failure

handling, monitoring, and signs strategies further enhance the practical appropriateness of GCL in the production environment.

The architecture presented suggests that the system can be wisely designed to navigate the deficiency of the CAP theorem,

which provides suitable stability levels based on application requirements rather than forcing a one-size-fit-all approach. The

GCL organizations open the possibilities to confidently deploy the applications distributed globally with the needs of different

stability levels without compromising on purity or performance.

References

[1] Eric Brewer, "Towards robust distributed systems," ResearchGate, 2000.

https://www.researchgate.net/publication/221343719_Towards_robust_distributed_systems

[2] Medium, "Benchmarking Cassandra Scalability on AWS — Over a million writes per second," Netflix Technology Blog, 2011.

https://netflixtechblog.com/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e

[3] Seth Gilbert and Nancy Lynch, "Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services,"

ACM Digital Library, 2000.

Corbett, "Spanner: Google’s Globally Distributed Database," ACM Digital Library,

https://dl.acmhttps://users.ece.cmu.edu/~adrian/731-sp04/readings/GL-cap.pdf

[4] Daniel J. Abadi, "Consistency Tradeoffs in Modern Distributed Database System Design," IEEE, 2012.

https://www.cs.umd.edu/~abadi/papers/abadi-pacelc.pdf

[5] Douglas B. Terry, et al., "Consistency-Based Service Level Agreements for Cloud Storage," Yale University,

https://www.cs.yale.edu/homes/mahesh/papers/pileus-sosp2013.pdf

[6] James C..org/doi/10.1145/2491245

[7] Brian F. Cooper, et al., "Benchmarking Cloud Serving Systems with YCSB," ACM Digital Library.

https://dl.acm.org/doi/10.1145/1807128.1807152

[8] Peter Bailis, et al., "Probabilistically Bounded Staleness for Practical Partial Quorums," arxiv, Apr. 2012.

https://arxiv.org/abs/1204.6082

[9] Patrick Hunt and Mahadev Konar, et al., "ZooKeeper: Wait-free coordination for Internet-scale systems," USENIX

https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf

[10] Nathan Bronson et al., "TAO: Facebook's Distributed Data Store for the Social Graph," ACM Digital Library,

https://dl.acm.org/doi/10.5555/2535461.2535468

https://www.researchgate.net/publication/221343719_Towards_robust_distributed_systems
https://netflixtechblog.com/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://dl.acm.org/doi/10.1145/2491245
https://dl.acm.org/doi/10.1145/2491245
https://dl.acm.org/doi/10.1145/2491245
https://www.cs.umd.edu/~abadi/papers/abadi-pacelc.pdf
https://dl.acm.org/doi/10.1145/2491245
https://www.cs.yale.edu/homes/mahesh/papers/pileus-sosp2013.pdf
https://dl.acm.org/doi/10.1145/2491245
https://dl.acm.org/doi/10.1145/1807128.1807152
https://arxiv.org/abs/1204.6082
https://www.usenix.org/legacy/event/atc10/tech/full_papers/Hunt.pdf
https://dl.acm.org/doi/10.5555/2535461.2535468

