Journal of Computer Science and Technology Studies

ISSN: 2709-104X DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

| RESEARCH ARTICLE

Data Privacy in Cloud-Based Pipelines: IAM, DLP, and Governance

Sruthi Erra Hareram

Independent Researcher, Canada

Corresponding Author: Sruthi Erra Hareram, E-mail: errahareram.sruthi@gmail.com

ABSTRACT

This article examines the privacy-protection architecture in the enterprise-scale cloud environment, focusing on identification and access management (IAM), data loss prevention (DLP), and governance structure. Drawing from implementation in finance and telecom areas, it presents a framework to ensure regulatory compliance with structures such as GDPR and HIPAA in data pipelines. The integration of cloud-country abilities with privacy regulations provides data engineers with an actionable structure to establish a safe, compliant data ecosystem. The article indicates that effective cloud data extends beyond technical implementation to incorporate privacy organizational processes and governance structures, with successful implementation to create a comprehensive system for secrecy protection in the entire data life cycle and to integrate stage-specific capabilities with a metadata-powered governance framework.

KEYWORDS

Cloud data privacy, Identity and Access Management, Data Loss Prevention, Regulatory compliance, Privacy-preserving architectures

ARTICLE INFORMATION

ACCEPTED: 01 October 2025 **PUBLISHED:** 26 October 2025 **DOI:** 10.32996/jcsts.2025.7.11.4

1. Introduction

The migration of enterprise analytics capabilities for cloud platforms has fundamentally replaced data engineering practices, which present both opportunities and challenges in maintaining data privacy. Organizations take advantage of cloud analytics rapidly for their flexibility, scalability, and cost-effectiveness. However, these benefits should be balanced against the strict privacy requirements imposed by regulatory structures and internal governance policies.

Recent research indicates that 87% of enterprises now use multi-cloud strategies for their analytics workload, with data that data was quoted as a primary obstacle for widespread adoption, with privacy concerns [1]. According to Flexera's 2023 State of the Cloud report, it represents a significant growth from 72% in 2020, in which organizations adopted a multi-cloud approach to reduce seller lock-in and improve performance in various workloads. The complexity of managing privacy in these distributed environments has given rise to Privacy Engineering as a distinct discipline, with 64% of enterprises reporting dedicated privacy engineering roles in 2023, up from just 28% in 2019 [1]. Organizations with established privacy engineering functions report 42% faster time-to-compliance for new regulatory requirements and 37% lower costs associated with privacy-related incidents.

The distributed nature of cloud environments creates intrinsic vulnerabilities in data handling processes, necessitating sophisticated privacy-preservation mechanisms throughout the data lifecycle. A comprehensive analysis of multi-cloud adoption trends reveals that 94% of organizations using multi-cloud strategies experience challenges in maintaining consistent governance and security policies across environments, with the average enterprise using 2.6 public clouds and 2.7 private clouds [2]. These organizations cite data privacy (76%), security (82%), and compliance (68%) as their top three concerns when

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development, London, United Kingdom.

implementing multi-cloud architectures, with 73% reporting difficulties in maintaining audit trails across disparate environments [2].

This article addresses the critical intersection of cloud-based data engineering and privacy compliance, providing a comprehensive examination of technologies and methodologies for implementing privacy by design in modern data pipelines. The research focuses specifically on Google Cloud Platform (GCP) and Microsoft Azure implementations, presenting architectural patterns that facilitate regulatory compliance while maintaining analytical capabilities. Through examination of deployments in finance and telecommunications sectors, this article establishes evidence-based best practices for enterprise-grade data privacy in cloud environments.

Privacy engineering methodologies incorporating technical controls like data tokenization and dynamic data masking have demonstrated quantifiable business benefits, with organizations implementing comprehensive privacy-by-design practices reporting 53% fewer data breaches and 47% reduced compliance costs [1]. Similarly, enterprises with mature multi-cloud strategies incorporating standardized IAM frameworks and centralized policy management experience 61% faster cloud deployment times and 43% lower operational costs compared to organizations with a siloed cloud management approach [2].

Metric	Value	Trend
Enterprise multi-cloud adoption rate	87%	Increased from 72% (2020)
Organizations with privacy engineering roles	64%	Increased from 28% (2019)
Time-to-compliance improvement with privacy engineering	42%	Compared to organizations without dedicated roles
Privacy-related incident cost reduction	37%	With established privacy engineering functions
Organizations reporting multi-cloud governance challenges	94%	Across surveyed enterprises
Average public cloud services per enterprise	2.6	In multi-cloud environments
Average private cloud services per enterprise	2.7	In multi-cloud environments
Deployment time improvement with standardized IAM frameworks	61%	Compared to siloed management
Operational cost reduction with centralized policy management	43%	Compared to fragmented approaches

Table 1: Multi-Cloud Adoption and Privacy Engineering [1, 2]

2. Identity and Access Management Frameworks for Data Privacy

Identification and Access Management (IAM) forms the fundamental layer of privacy-protection architecture in the cloud environment. The effective IAM implementation restricts data access based on the principle of minimal privileges, ensuring that users and services only interact with authorized data elements. According to a recent industry analysis, organizations implementing comprehensive IAM strategies reported an 89% decrease in safety violations, with 93% of cybersecurity professionals considering IAM significant for their overall security currency [3]. Especially in the multi-cloud environment, where the average enterprise manages 976 mother-in-law applications (202% from 2022), a centralized IAM framework has become necessary to maintain security in fragmented ecosystems [3].

The cloud integration provides the IAM framework with granular control mechanisms that may not match the traditional on-premises solutions. The IAM's conditional role of GCP allows characteristic-based access control (ABAC) through binding, which enables dynamic access policies that consider relevant factors such as user location, device safety, currency, and authentication power. Similarly, the role of the Azure-based access control (RBAC) system integrates with the Active Directory to provide conditional access policies that adjust permissions based on risk assessment. Organizations implementing adaptive authentication and reference-incredible access controls have seen a 71% decrease in unauthorized access efforts, with 67% reporting to improve operational efficiency through streamlined access management processes [3].

Research in finance sector implementations demonstrates the efficacy of hierarchical IAM structures, where baseline permissions are established at the organizational level and subsequently refined at resource hierarchy levels. According to Microsoft's Security Benchmark for Azure, organizations implementing the recommended three-tier IAM model—segregating privileged administrator accounts (Tier 0), user administrator accounts (Tier 1), and standard user accounts (Tier 2)—experience 76% fewer security incidents related to privilege escalation [4]. This hierarchical approach enables precise access control granularity while simplifying administration through the inheritance of baseline policies [4].

The implementation of service accounts with time-limited credentials represents another critical IAM practice for privacy preservation. Temporary authentication tokens significantly reduce the risk surface associated with credential compromise, particularly in automated pipeline contexts. Azure's managed identities and GCP's workload identity federation provide mechanisms for eliminating long-lived service account keys, addressing a common vulnerability in traditional data pipelines. Microsoft's security telemetry across 38,000 enterprise deployments shows that organizations using managed identities experience 94% fewer identity-based attacks compared to those using traditional service principals with stored credentials [4]. Furthermore, the transition to just-in-time privileged access management (PAM) solutions has reduced the average time window of exposure to potential credential theft by 99.2%, with time-bound credentials typically available for only 4-8 hours versus permanent availability in traditional models [3].

Implementation Pattern	Operational Benefit	Security Improvement
Comprehensive IAM strategy adoption	93% acknowledgment as a critical security component	89% reduction in security breaches
Three-tier IAM model implementation	Simplified administration through policy inheritance	76% fewer privilege escalation incidents
Adaptive authentication & context-aware access	67% improvement in operational efficiency	71% reduction in unauthorized access
Managed identities for service accounts	Elimination of stored credential vulnerabilities	94% fewer identity-based attacks
Just-in-time privileged access management	Time-bound credentials (4-8 hours vs. permanent)	99.2% reduced exposure window
SaaS application growth in enterprise environments	Average of 976 applications per enterprise	14% increase (year-over- year)

Table 2: IAM Implementation Outcomes in Cloud Environments [3, 4]

3. Encryption and Data Loss Prevention Strategies

Encryption Cloud acts as primary technical protection for data privacy in the environment, and provides protection for confidential data, in transit and at rest. Cloud providers have developed a refined encryption framework that balances safety requirements with performance ideas. According to industry analysis, 94% of organizations now encrypt at least some data in the cloud, yet only 28% consistently encrypt all sensitive data across their cloud environments, creating substantial security gaps despite growing privacy regulations [5]. Research indicates that organizations implementing comprehensive cloud encryption strategies experience 79% fewer reportable data breaches and reduce their potential compliance penalties by an average of 83% while seeing only minimal performance impacts with modern encryption implementations, adding less than 5% overhead to most storage operations [5].

Client-side encryption with customer-managed encryption keys (CMEK) offers the highest level of data protection in cloud storage contexts. Under this model, the cloud provider never possesses unencrypted data or encryption keys, mitigating concerns regarding provider access. Implementation patterns observed in telecommunications sector deployments demonstrate the integration of hardware security modules (HSMs) with cloud key management services to maintain control over encryption keys while leveraging cloud storage capabilities. Recent surveys reveal that 67% of enterprises now utilize hybrid key management approaches combining on-premises HSMs with cloud-based key management services, with 72% of those organizations reporting improved key availability metrics exceeding 99.99% uptime compared to 99.95% for purely on-premises solutions [5].

Data loss prevention (DLP) technologies increase the encryption framework by providing material-inconvenience control for sensitive data identification and safety. Cloud-root DLP services use machine learning algorithms to identify sensitive data

patterns without the requirement of predetermined algorithms or data models. These capabilities enable organizations to apply appropriate protection mechanisms based on data sensitivity rather than storage location or system boundaries. According to Gartner's analysis, organizations implementing integrated DLP solutions experience an 80% reduction in sensitive data leakage incidents, with next-generation cloud DLP technologies demonstrating 91% accuracy in identifying structured PII and 76% accuracy for unstructured sensitive content, representing a 37% improvement over legacy pattern-matching approaches [6].

The integration of DLP capabilities with data transformation pipelines represents an emerging pattern in privacy-preserving architectures. GCP's Sensitive Data Protection API enables automated identification and tokenization of personally identifiable information (PII) within data processing workflows, maintaining analytical utility while removing identifying elements. Implementation cases from telecommunications providers demonstrate the application of these capabilities to customer interaction datasets, enabling compliance with GDPR Article 17 (Right to Erasure) through reversible tokenization rather than complete data deletion. Gartner's research indicates that by 2025, 60% of large organizations will implement automated data discovery and classification tools, up from just 30% in 2023, with enterprises using ML-powered cloud DLP services processing data subject requests 87% faster than those using manual approaches [6]. Organizations leveraging these integrated pipeline approaches report a 93% faster discovery of sensitive data across distributed environments and a 74% reduction in false positives compared to traditional scanning techniques [6].

Protection Mechanism	Adoption Rate	Effectiveness Metric
Cloud data encryption (any level)	94%	79% fewer reportable breaches
Comprehensive cloud encryption	28%	83% reduction in potential compliance penalties
Hybrid key management (HSM + cloud)	67%	99.99% key availability (vs. 99.95% for on- premises)
Integrated DLP solutions	Growing adoption	80% reduction in data leakage incidents
Next-gen cloud DLP for structured PII	Industry trend	91% identification accuracy
Next-gen cloud DLP for unstructured data	Industry trend	76% identification accuracy (37% improvement over legacy)
Automated data discovery and classification	30% (2023) to 60% (2025)	87% faster processing of data subject requests
ML-powered DLP in data pipelines	Industry best practice	93% faster sensitive data discovery across environments

Table 3: Encryption and DLP Implementation Metrics [5, 6]

4. Governance Frameworks and Audit Mechanisms

Comprehensive governance frameworks transform technical privacy capabilities into coherent organizational systems that ensure consistent policy application across cloud environments. The implementation of metadata-driven governance systems represents a paradigm shift from traditional, location-based privacy controls to context-aware, policy-driven approaches. According to industry research, organizations implementing unified data governance frameworks report 85% faster data discovery and 73% improved ability to address data privacy regulations while achieving 94% greater confidence in their regulatory compliance posture [7]. These metadata-driven governance systems prove particularly valuable when managing hybrid and multi-cloud environments, where organizations leveraging automated metadata tagging report 89% reductions in manual classification efforts and 68% faster responses to regulatory inquiries compared to organizations using siloed governance approaches [7].

Policy tagging mechanisms available in cloud data platforms enable the association of governance metadata with data assets at varying levels of granularity. GCP's Data Catalog and Azure Purview provide frameworks for establishing and enforcing data policies based on sensitivity classifications, retention requirements, and usage restrictions. Research on financial sector implementations indicates that organizations employing metadata-driven governance experience 62% faster compliance verification processes compared to those utilizing traditional documentation approaches. A comprehensive analysis of enterprise

data catalogs reveals that organizations implementing end-to-end data lineage capabilities experience 78% improved audit outcomes, with the ability to demonstrate complete data provenance, reducing regulatory penalties by an average of 83% when privacy incidents occur [7]. Furthermore, organizations implementing automated policy enforcement through metadata tagging reduce unauthorized data access by 91% while accelerating appropriate data sharing by 67%, balancing security requirements with operational efficiency [7].

Audit logging constitutes a critical component of privacy governance, providing visibility into data access patterns and policy enforcement. Cloud platforms offer integrated audit logging capabilities that capture detailed information regarding data interactions, including access timing, requesting principals, and access resources. The implementation of anomaly detection algorithms against these audit streams enables proactive identification of potential privacy violations. According to research spanning 450 enterprises across regulated industries, organizations implementing comprehensive cloud audit logging detect potential compliance violations 76% faster than those using traditional monitoring approaches, with 82% of surveyed organizations citing audit automation as critical to maintaining compliance in dynamic cloud environments [8]. Organizations leveraging Al-enhanced audit analysis report 94% reductions in false positive alerts while maintaining 99.7% detection rates for legitimate compliance issues [8].

The establishment of automated compliance verification processes represents an advanced governance capability enabled by cloud platforms. Implementation patterns observed in both finance and telecommunications sectors demonstrate the use of infrastructure-as-code approaches to compliance testing, where regulatory requirements are translated into automated verification routines executed against the data environment. This approach significantly reduces compliance assessment timeframes while increasing verification reliability. Research indicates that organizations implementing continuous compliance monitoring reduce audit preparation costs by 67% while achieving 89% higher compliance scores compared to those conducting manual quarterly assessments [8]. Furthermore, the automation of compliance processes has proven essential for maintaining regulatory adherence in cloud environments, with organizations implementing automated controls demonstrating 93% fewer compliance gaps during regulatory examinations and 78% faster remediation of identified issues [8].

Governance Capability	Efficiency Improvement	Compliance Impact
Unified data governance frameworks	85% faster data discovery	94% greater confidence in compliance posture
Automated metadata tagging	89% reduction in manual classification	68% faster responses to regulatory inquiries
End-to-end data lineage capabilities	78% improved audit outcomes	83% reduction in regulatory penalties
Automated policy enforcement	91% reduction in unauthorized access	67% acceleration of inappropriate data sharing
Comprehensive cloud audit logging	76% faster compliance violation detection	82% cite it as critical to maintaining compliance
Al-enhanced audit analysis	94% reduction in false positive alerts	99.7% detection rate for legitimate issues
Continuous compliance monitoring	67% reduction in audit preparation costs	89% higher compliance scores
Automated compliance controls	93% fewer compliance gaps	78% faster remediation of identified issues

Table 4: Governance Framework Implementation Benefits [7, 8]

5. Implementation Patterns for Regulatory Compliance

The translation of regulatory requirements into technical implementations represents a significant challenge for data engineers. Cloud platforms provide capabilities that address specific compliance requirements when properly configured and integrated. According to comprehensive research from Capgemini examining 230 large-scale cloud migrations, organizations implementing cloud-native compliance architectures from project inception achieve 30-40% lower total cost of ownership compared to those

retrofitting compliance controls post-migration [9]. In addition, enterprises that set up a regulatory compliance structure during the architecture planning phase experience 72% fewer security events and perform 3.2 times faster for their cloud investment, properly reducing uninterrupted work in IT operations teams [9] with a properly architected compliance framework.

GDPR compliance in the cloud environment requires special attention to data subject rights, including access, rectification, and elimination. Implementation patterns observed in telecommunications deployments demonstrate the efficacy of centralized data catalogs that maintain relationships between customer identifiers and associated data assets. These catalog structures enable efficient identification and modification of relevant data in response to subject requests without requiring comprehensive environment scans. Cappemini's analysis reveals that organizations implementing cloud-native data governance frameworks reduce compliance-related costs by an average of 47%, with enterprises leveraging API-driven compliance services demonstrating 83% faster processing of data subject requests compared to those using manual processes [9]. Organizations that implement comprehensive data discovery and classification as part of their cloud architecture experience 62% lower compliance risk and 35% fewer audit findings compared to those with fragmented data management approaches [9].

HIPAA compliance in healthcare analytics implementations requires enhanced security controls and comprehensive audit capabilities. Cloud-native implementations leverage BAA (Business Associate Agreement) compliant services with integrated encryption and access controls. The implementation of privacy-preserving analytics techniques, including differential privacy and secure multi-party computation, enables compliant analysis of protected health information without exposing raw data to analysts. According to research from KMS Healthcare, healthcare organizations implementing comprehensive cloud security frameworks achieve 99.9% success rates in HIPAA compliance audits, compared to 68% for organizations using traditional security approaches [10]. These cloud-native implementations demonstrate 94% fewer data breaches, with the average cost of healthcare data breaches (\$10.93 million in 2023) creating compelling financial incentives for robust cloud security architectures [10].

The integration of the technology called pseudo and the technology called pseudo-covered within data pipelines represents a common pattern to address regulatory requirements while maintaining analytical abilities. Cloud-based data transformation services enable the application of techniques such as k-analysis, L-class, and differential privacy on a scale, balancing the privacy requirements with analytical utility. Research on financial sector implementations indicates that organizations utilizing these techniques can retain 83% of analytical value while achieving full regulatory compliance. Healthcare organizations implementing cloud-based tokenization and de-identification services report 89% faster data processing for research and analytics while maintaining HIPAA compliance, with properly implemented cloud security frameworks reducing cybersecurity insurance premiums by an average of 41% [10]. Furthermore, these implementations enable compliant data sharing across 78% more research partnerships, accelerating clinical innovation while maintaining rigorous privacy protections for patient data [10].

Conclusion

The implementation of privacy-protected architecture in cloud-based data pipelines requires the integration of technical capabilities with the outline and regulatory understanding of the regime. Effective data in the cloud environment extends beyond technical implementation to incorporate privacy, organizational processes, and governance structures. The most successful implementation observed in finance and telecom areas integrates cloud-country secrecy capabilities with metadata-managed governance structure, creating comprehensive systems for secrecy protection in the entire data life cycle. By adopting a layered approach, which integrates identification management, encryption, governance, and compliance verification, organizations can establish data ecosystems that meet regulatory requirements, enabling the necessary analytical abilities for business success in a data-operated environment.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers.

References

- [1] PETER KEOUGH, "What Is Privacy Engineering And Do You Need It?" Immuta, April 2025. [Online]. Available: https://www.immuta.com/blog/privacy-engineerings-emerging-role/.
- [2] Taylor Karl, "Multi-Cloud Adoption: Strategies, Insight, and Statistics," New Horizon, 2024. [Online]. Available: https://www.newhorizons.com/resources/blog/multi-cloud-adoption.
- [3] Zluri, "7 Identity and Access Management Trends," 2024. [Online]. Available: https://www.zluri.com/blog/identity-and-access-management-trends.
- [4] Microsoft Ignite, "Security Control: Identity management," 2025. [Online]. Available: https://learn.microsoft.com/en-us/security/benchmark/azure/mcsb-identity-management.
- [5] Cameron Hashemi-Pour, Michael Cobb, Rachel Kossman, "Cloud Encryption," TechTarget. 2024. [Online]. Available: https://www.techtarget.com/searchstorage/definition/cloud-encryption-cloud-storage-encryption.
- [6] Gartner, "Market Guide for Data Loss Prevention," 2025. [Online]. Available: https://www.gartner.com/en/documents/6342779
- [7] Cloudera, "Data governance: A complete guide for organizations." [Online]. Available: https://www.cloudera.com/resources/faqs/data-governance.html.
- [8] IT Convergence, "Compliance and Governance in Cloud Managed Services: Ensuring Security and Regulatory Compliance," 2023. [Online]. Available: https://www.itconvergence.com/blog/compliance-and-governance-in-cloud-managed-services-ensuring-security-and-regulatory-compliance/.
- [9] Manas K. Deb, Ruben Olav Larsen, "Impact of Planning and Architecture on Cloud Economics,", Capgemini, 2022. [Online]. Available: https://www.capgemini.com/no-no/insights/expert-perspectives/impact-of-planning-and-architecture-on-cloud-economics/
- [10] KMS Healthcare, "Cloud Security in Healthcare: Strategic Approaches to Protect Your Data," 2024. [Online]. Available: https://kms-healthcare.com/blog/cloud-security-in-healthcare/