## **Journal of Computer Science and Technology Studies**

ISSN: 2709-104X DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts



## | RESEARCH ARTICLE

# HealthNavAI: An AI-Powered National Platform for Real-Time Healthcare Service Availability and Patient Routing

Kiran Kumar Jaghni Ness USA Inc, USA

Corresponding Author: Kiran Kumar Jaghni, E-mail: kiran.jaghni@gmail.com

## ABSTRACT

Delays in accessing healthcare are not limited to overcrowded Emergency Departments (EDs)—patients frequently face prolonged waits for specialist consultations, diagnostic imaging, and elective surgeries. While some regions provide partial visibility into ED wait times, these systems are fragmented, inconsistent, and rarely extend to other critical services. This article proposes HealthNavAI, a regulation-backed, nationwide Healthcare Service Availability and Routing Platform that mandates real-time, standardized data sharing from all healthcare providers. The platform integrates ED queue status, specialist appointments, diagnostic imaging capacity, elective surgery schedules, and ambulance availability. An AI-based routing engine processes this data to predict service load, optimize patient allocation, and recommend optimal service locations based on predicted wait times, travel distance, clinical capability, and equity constraints. By leveraging interoperability standards and predictive analytics, HealthNavAI delivers actionable, real-time guidance to citizens, healthcare providers, and emergency services, enabling nationwide patient load balancing and reduced wait times across multiple services.

## **KEYWORDS**

Healthcare Al, Patient Routing, Wait Times, Real-time Data, Interoperability.

#### ARTICLE INFORMATION

**ACCEPTED:** 03 October 2025 **PUBLISHED:** 19 October 2025 **DOI:** 10.32996/jcsts.2025.7.10.43

#### 1. Introduction

## 1.1 Contextual Background

Healthcare accessibility presents a significant global challenge, with waiting periods substantially impacting clinical outcomes, system performance, and consumer confidence. Extended delays for urgent care, professional consultations, advanced diagnostics, and scheduled procedures frequently exacerbate medical conditions and heighten patient distress. Various healthcare jurisdictions report concerning statistics—approximately 20% of American patients experience 30-90 day waits for physician appointments, with urban centers recording average delays of 46 days for initial specialist evaluations [10, 11].

Several regional initiatives have emerged, including the digital monitoring systems implemented by health authorities in New South Wales [1] and Singapore's University Health Network [2]. However, these innovations primarily address emergency department congestion without extending to other vital healthcare domains. Without comprehensive, contemporaneous visibility across multiple service categories, patients and emergency responders typically default to geographical proximity rather than optimal availability, creating imbalanced facility utilization patterns.

#### 1.2 Problem Statement

Contemporary health care structures lack an integrated and responsive framework for consolidating operational status across emergency departments [1-3], specialist practices [4], diagnostic facilities [5,6], surgical services [7], and medical transportation [15, 16]. Available systems work in isolation, are often domain-specific, and utilize disparate, partial, or outdated information [4,10,11], limiting timely medical treatment and resource management [3,14].

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development, London, United Kingdom.

#### 1.3 Identified Gaps

The systematic review of existing healthcare navigation capabilities reveals several critical deficiencies:

Fragmented National Infrastructure— Service accessibility data exists in disconnected silos without standardized integration mechanisms across geographical boundaries [1,2,5,7].

Limited Functional Coverage — Available systems focus on discrete service categories rather than providing integrated navigation to support a patient-centered experience [3],[4],[7],[15].

Interoperability Gaps — Inconsistent adoption of standards for the exchange of health care information introduces significant barriers to effective coordination of data [8],[12].

Lack of Predictive Analytics — Current regret models lack predictive functionalities, which address the dynamics of demand and enable proactive resource manipulation [4],[5],[13].

Limited Patient Distribution — There is currently no coordinated approach for responding dynamically to population-level patient distributions, based on institutions' changes in capacity [1],[2],[15].

Restricted Information Accessibility — Real-time operational status remains largely unavailable to patients and affiliated organizations [4], [10], [11].

Systemic Inefficiencies — These limitations perpetuate preventable congestion, treatment delays, and underutilized healthcare assets [3], [7], [14], [15].

#### 1.4 Purpose & Scope

This research aims to conceptualize, develop, and assess HealthNavAl—a regulatory-compliant national healthcare service availability and routing platform consolidating real-time operational metrics across diverse medical services. This system will deliver actionable information through consumer interfaces, institutional dashboards, and emergency service tools to enhance decision-making processes.

#### Within Scope:

- Data integration from governmental and private healthcare facilities, clinics, imaging providers, ambulance networks, and supplementary care organizations
- Service categories encompassing emergency departments, specialist consultations, diagnostic procedures, surgical appointments, transportation availability, and community health resources
- Compliance with technical frameworks (HL7 FHIR specifications, SANER protocols)
- Artificial intelligence components for wait-time forecasting, patient allocation optimization, and capacity distribution algorithms
- User interfaces, including public websites, mobile applications, provider visualization tools, and emergency service coordination systems

#### **Beyond Scope:**

- Exchange of patient medical information between healthcare systems
- Collection, processing, or transmission of personally identifiable health records
- Clinical decision support or medical intervention guidance
- Financial processing, insurance verification, or billing operations
- Cross-border data aggregation beyond the initial implementation jurisdiction

#### 2. Healthcare Access Metrics

Medical service accessibility continues to present substantial obstacles to prompt intervention across numerous care categories:

#### 2.1 Emergency Services Timeframes

Within American hospital systems, 2023 data revealed waiting periods exceeding 40 minutes (median) before provider contact, with multiple states documenting averages surpassing 60 minutes [13]. Patient holding phases frequently extend beyond 4 hours in numerous facilities [14]. Comparatively, Australian facilities under NSW Health governance report waiting intervals ranging from 20 to 90 minutes, contingent upon urgency classification [1].

#### 2.2 Specialist Consultation Intervals

Recent nationwide assessment (2025) documented average waiting durations of 26.0 days for initial consultations within metropolitan centers, while certain urban localities experience scheduling delays surpassing 90 days [4]. Particularly impacted specialties, including dermatological and orthopedic services, occasionally impose 4–6 month waiting periods for consultations [4],[10],[11].

#### 2.3 Imaging Procedure Scheduling

Urban American hospitals typically schedule magnetic resonance imaging appointments with 2–6 week advance notice requirements, whereas rural communities frequently confront scheduling horizons beyond 8 weeks [6]. Such prolonged intervals adversely influence therapeutic planning and clinical progression.

#### 2.4 Procedural Scheduling Timeframes

Documentation from OECD healthcare analytics demonstrates surgical appointment intervals exceeding 6 months within jurisdictions lacking unified waitlist administration frameworks [7]. Canadian healthcare systems report median intervals of 24 weeks for hip arthroplasty procedures [5].

#### 2.5 Medical Transport Metrics

Transport response analytics indicate average intervals of approximately 8 minutes within urban environments and 14 minutes throughout rural territories. Hospital transfer operations contribute an additional 20–45 minute intervals before definitive intervention commences [15]. British emergency services report Category 2 (urgent) response durations significantly surpassing established benchmarks, averaging approximately 47 minutes during early 2025 [16].

| Service Category                    | United States                                                                                     | Canada                                                             | United Kingdom                                                               | Australia                                           |
|-------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|
| Emergency<br>Department (ED)        | Median wait<br>before provider:<br>40–60 min;<br>boarding often<br>4+ hrs [13], [14]              | Median wait before<br>provider: 1.5 hrs; rural<br>up to 3+ hrs [5] | 4+ hrs wait target often<br>missed in busy trusts;<br>some exceed 6 hrs [7]  | Median wait: 50<br>min, rural up to 2<br>hrs [1]    |
| Specialist<br>Appointment           | Metro avg: 26<br>days; some > 90<br>days; certain<br>specialties 4–6<br>months [4], [10],<br>[11] | Median wait: 11.1<br>weeks for specialist<br>consult [5]           | GP referral to specialist:<br>median 14.6 weeks [7]                          | GP referral to<br>specialist: median<br>8 weeks [7] |
| Diagnostic<br>Imaging (MRI)         | Urban: 2–6<br>weeks; rural: 8+<br>weeks [6]                                                       | Median: 10.6 weeks [6]                                             | NHS England median: 2–<br>6 weeks, but some<br>regions exceed 8 weeks<br>[7] | Median: 3.5 weeks,<br>rural up to 6<br>weeks [7]    |
| Elective Surgery<br>(Knee/Cataract) | 1–6 months<br>depending on<br>provider capacity<br>[7]                                            | Median: 27.4 weeks<br>from specialist consult<br>to surgery [5]    | NHS median: 14.3<br>weeks, but often longer<br>in winter [7]                 | Median: 18–25<br>weeks [7]                          |

**Table 1: International Comparison of Healthcare Wait Times** 

#### 3. Contemporary Solutions Assessment

#### 3.1 Existing Implementation Review

Various national healthcare systems have established partial transparency mechanisms addressing service accessibility:

- Australian and Singaporean emergency department status visualization systems [1],[2]
- Canadian institute-maintained procedural and diagnostic waiting period documentation [5],[6]
- American specialty-specific accessibility reporting frameworks [4],[10],[11]
- British emergency medical service operational metrics publication [16]
- Technical information exchange frameworks, including healthcare interoperability specifications [12],[8]
- These implementations nonetheless demonstrate significant limitations:

- Service category isolation without cross-domain coordination
- Geographical restriction within specific administrative boundaries
- Connectivity barriers stemming from inconsistent data formatting practices
- Temporal limitations, including infrequent refreshing schedules
- Exclusion of supplementary and auxiliary service categories

#### 3.2 Technological Innovation Proposition

The HealthNavAI framework introduces pioneering artificial intelligence-enhanced, privacy-conscious coordination capabilities addressing longstanding healthcare navigation challenges. Primary technological advances include:

**Interconnected Network Architecture** – Consolidates contemporaneous operational information across diverse provider organizations and service classifications [1],[2],[4],[5],[7],[15]

**Privacy-Enhanced Data Exchange** – Transmits exclusively operational capacity information through established healthcare informatics standards [8],[12] while excluding personally identifiable health records

**Multifactorial Distribution Intelligence** – Incorporates waiting durations, geographical proximity, clinical requirements, specialty availability, and institutional capacity within comprehensive patient allocation algorithms [15]

**Anticipatory Volume Modeling** – Employs computational prediction frameworks forecasting facility utilization patterns and simulating operational scenarios.

**Synchronized Visual Interfaces** – Provides customized informational displays tailored for public accessibility and professional operational oversight [1],[2],[4]

**Comprehensive Service Integration** – Expands beyond acute care environments to incorporate rehabilitation services, supportive care, and medical transportation coordination [15]

Recursive Performance Optimization – Progressively refines computational models through continuous outcome analysis.

Unlike existing fragmentary initiatives, HealthNavAl combines network interconnection, privacy-conscious information exchange, predictive analytics, sophisticated allocation methodologies, and comprehensive service integration within a scalable architectural framework.

#### 4. Implementation Framework

#### 4.1 Requirements Discovery Methodology

The initial implementation phase transforms identified healthcare visibility and interoperability challenges into concrete, actionable specifications through:

**Stakeholder Consultation Process** - Started strategic conversations to gather district staff, emergency management professionals, transportation managers, leadership of diagnostic facilities, and operational stakeholders.

**Compliance Framework Mapping** - Completed an extensive analysis of the governance requirements in the jurisdiction, which included health information privacy and data security legislation.

**Implementation Prioritization** - Utilized systems of requirement classification based on clinical priority and technical feasibility when considering implementation.

**Performance Benchmark Establishment** – Documentation of baseline operational metrics enabling post-implementation comparative assessment

## 4.2 Architectural Design Principles

HealthNavAl employs contemporary standards-compliant integration methodologies, consolidating operational metrics across diverse healthcare environments. The information processing sequence encompasses:

**Information Acquisition** – Operational status feeds from emergency facilities, specialist practices, imaging centers, surgical departments, transportation networks, and supplementary services

**Standardization Processing** – Transformation into standardized healthcare information exchange formats aligned with established schema specifications

**Information Architecture** – Implementation of contemporary storage frameworks supporting both immediate operational needs and longitudinal analytics

**Analytical Feature Development** – Creation of operational pattern recognition capabilities without exposure of protected health information

**Predictive Model Development** – Creation and verification of waiting time estimation, capacity forecasting, and optimal allocation algorithms

**Deployment Architecture** – Implementation of containerized prediction services within scalable computational environments **Operational Implementation** – Processing of contemporaneous signals for prediction generation and recommendation formulation

**Continuous Improvement Cycle** – Algorithmic refinement based on outcome validation and performance assessment **Operational Intelligence** – Generation of key performance indicators and regulatory compliance documentation

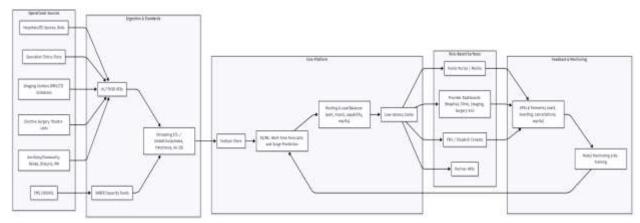



Figure 1: Dataflow

## HealthNavAl Framework



Figure 2: Framework

## 4.3 Technological Infrastructure

The implementation architecture adheres to fundamental design principles:

Inherent Interoperability – Adoption of broadly implemented healthcare information standards

Privacy-Focused Architecture – Implementation of data minimization practices, capturing exclusively aggregated operational metrics

**Continuous Monitoring Capabilities** – Processing of operational indicators with minimal latency **Adaptable Component Design** – Implementation of decoupled functional elements supporting future capability expansion

The infrastructure incorporates multiple specialized components:

Operational Data Processing – Powers contemporaneous visualization interfaces and routing algorithms

Comprehensive Information Repository – Maintains longitudinal operational metrics supporting analytical functions

Model Feature Management – Delivers consistent, versioned analytical inputs for computational models

Analytical Data Environment – Facilitates interactive reporting and operational analysis

Forecasting Capabilities – Enables future state prediction, scenario modeling, and demand projection

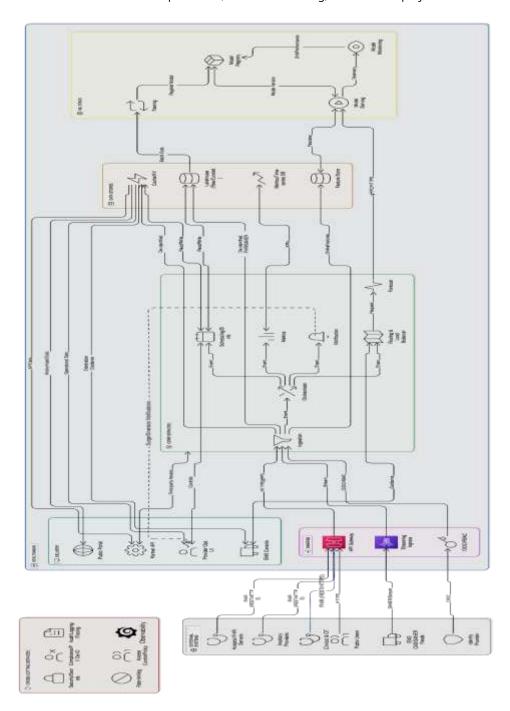



Figure 3: Architecture

## **5. Performance Assessment Framework**

## 5.1 Service-Specific Evaluation Metrics

Assessment methodologies address each primary service domain:

**Emergency Department Flow** – Measurement of waiting interval reduction, patient holding duration decrease, and facility variance minimization

Specialist Consultation Access – Documentation of appointment interval reduction and scheduling optimization improvements

Diagnostic Service Optimization – Assessment of procedural backlog reduction and resource utilization enhancement

Surgical Service Efficiency – Evaluation of operating theater utilization improvements and cancellation rate reduction

Medical Transportation Coordination – Measurement of response interval reduction and facility transfer optimization

| Domain                                      | Evaluation Metrics                                                                                                                | Data Source                                |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Emergency Department (ED) Queue Status      | Avg. reduction in patient wait time before provider contact; decrease in ED boarding times; variance reduction across facilities. | Hospital EHR & SANER-compliant feeds       |
| Specialist Appointment<br>Slot Availability | Reduction in average days-to-appointment; percentage of redirected patients matched to earlier slots                              | Provider scheduling systems, HL7 FHIR APIs |
| Diagnostic Imaging<br>Capacity              | % reduction in MRI/CT backlog; slot utilization rate improvement                                                                  | Imaging center scheduling data             |
| Elective Surgery<br>Schedules               | Theatre utilization rate; decrease in wait time for priority elective cases                                                       | Hospital OR management systems             |
| Emergency Transport<br>Services             | Reduction in ambulance response time, improved hospital handover time, and interagency dispatch efficiency                        | EMS CAD logs, NEMSIS feeds                 |
| Supporting and<br>Ancillary Services        | Wait time reduction for post-acute care, dialysis, rehab, and mental health services.                                             | Provider-specific scheduling systems       |

**Table 7: Evaluation Metrics** 

#### 5.2 Computational Model Evaluation

Artificial intelligence components undergo rigorous assessment addressing:

- Prediction accuracy measurement (absolute error quantification)
- Resource allocation optimization impact
- Equitable distribution validation within routing recommendations
- Model performance stability monitoring
- Decision rationale transparency

#### 5.3 Implementation Validation Strategy

#### **Technical Performance Validation:**

- System load capacity assessment, integration verification, and resilience testing
- Performance requirements: ≥99.9% operational availability, response intervals ≤2 seconds, elimination of critical interoperability failures
- Clinical Implementation Validation:
- Deployment within diverse healthcare environments
- Performance targets: ≥15% reduction in emergency department throughput intervals, ≥10% improvement in appointment utilization metrics

## **User Experience Validation:**

• Task completion assessment, standardized usability evaluation, and accessibility standard conformance Performance requirements: System Usability Scale scoring ≥80, ≥90% task completion rate, web accessibility guideline compliance [17]

| Domain / Category                                       | Existing Standards /<br>Practices                          | Limitations                                                | HealthNavAl Advantages                                             |
|---------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|
| Emergency Departments<br>(EDs)                          | Regional ED dashboards<br>(e.g., NSW, NUHS) [1], [2]       | Siloed, variable<br>latency, no multi-<br>domain routing   | National integration, ≤60s<br>updates, cross-domain<br>routing     |
| Specialist Clinics                                      | Appointment systems, wait-<br>time surveys [4], [10], [11] | Siloed by network;<br>limited regional<br>coordination     | Cross-provider slot visibility;<br>referral routing                |
| Diagnostic Imaging                                      | PACS/RIS; national indicators (e.g., CIHI MRI) [5], [6]    | Workflow-centric;<br>limited public<br>capacity view       | Real-time capacity + routing to reduce backlogs                    |
| Elective Surgery Theatres                               | OR schedulers; OECD reporting [7]                          | Limited<br>transparency;<br>cancellations not<br>optimized | Predictive theatre optimization; backlog balancing                 |
| Emergency Transport (EMS)                               | CAD/dispatch, agency-<br>specific reports [15], [16]       | Limited hospital<br>visibility; diversion<br>cycles        | EMS–hospital co-visibility;<br>destination optimization            |
| Primary Care / Community & Telehealth                   | Practice-level booking; ad<br>hoc telehealth               | Fragmented view;<br>weak ED diversion                      | Integrated routing to community/telehealth where appropriate       |
| Ancillary & Community<br>Services (rehab, dialysis, MH) | Local directories; manual referrals                        | Rarely in<br>systemwide<br>capacity views                  | Inclusion in availability + routing loops                          |
| Public Portal (Real-Time<br>Patient Access)             | Service-specific portals only [1], [2]                     | No unified national<br>view; inconsistent<br>refresh       | National portal with synchronized real-time capacity & predictions |
| Provider/EMS Operational<br>Dashboards                  | Internal ops tools by department                           | Unsynced with public view; cross-site blind spots          | Role-specific dashboards<br>sharing the same live data             |

| Public–Provider<br>Synchronization      | Separate data feeds                                | Timestamp skew;<br>conflicting info               | Single source of truth;<br>cross-channel consistency<br>checks           |
|-----------------------------------------|----------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------|
| Interoperability & Data<br>Standards    | Partial HL7 FHIR; varied formats [12]              | Integration friction;<br>limited SANER use<br>[8] | Full FHIR resource set +<br>SANER capacity reporting                     |
| Data Freshness / Latency                | Hourly/daily updates<br>common [1], [5], [6], [16] | Not suitable for live routing                     | Streaming ingestion;<br>domain-specific SLOs (ED<br>≤60s; others ≤5 min) |
| Predictive / Prescriptive<br>Analytics  | Descriptive reporting                              | No forecasting or<br>"what-if" simulation         | Al forecasts; scenario<br>simulation; surge prediction                   |
| Intelligent Routing & Load<br>Balancing | Nearest-facility default                           | Inequitable queues;<br>under/overuse              | Multi-criteria routing (wait, travel, capability, equity)                |
| Equity & Accessibility                  | Limited rural/underserved visibility; varied UX    | Equity gaps;<br>accessibility not<br>guaranteed   | Equity-aware routing;<br>WCAG 2.1 AA,<br>language/localization           |
| Privacy & Governance                    | Mixed practices                                    | PHI/consent risks slow adoption                   | PHI-free operational<br>metrics; de-identification;<br>policy alignment  |

TABLE 3: Comparative Standards and HealthNavAl Advantages

## Additional Comparative Insights summary

| Criterion           | Existing Systems                                           | HealthNavAl                                                               |
|---------------------|------------------------------------------------------------|---------------------------------------------------------------------------|
| Service Scope       | Single-domain (ED, imaging, or specialty) [1]–[7], [15]    | Multi-domain integration: ED, specialty, imaging, surgery, EMS, ancillary |
| Geographic Coverage | Local/regional; no national aggregation [1], [2], [5], [7] | Nationwide with regulation-backed participation                           |
| Data Latency        | Hourly/daily updates [1], [5], [6], [16]                   | ≤60 s ED, ≤5 min other domains                                            |
| Interoperability    | Inconsistent; limited HL7 FHIR [8], [12]                   | Full HL7 FHIR R4, SANER, SNOMED CT/LOINC                                  |

| Criterion              | Existing Systems                          | HealthNavAl                                               |
|------------------------|-------------------------------------------|-----------------------------------------------------------|
| Predictive Analytics   | Absent [4], [5], [13]–[16]                | Al-driven forecasting and simulation                      |
| Intelligent Routing    | Absent [1], [2], [15]                     | Multi-criteria routing with equity constraints            |
| Real-Time Dashboards   | Rare; service-specific only [1], [2], [4] | Unified public/provider dashboards with synchronized data |
| Operational Efficiency | Limited, reactive adjustments             | Proactive staffing, scheduling, and resource balancing    |
| Ancillary Services     | Rare [3], [14]                            | Included in routing and visibility                        |
| EMS Integration        | Siloed [15], [16]                         | Nationally integrated with hospital capacity data         |

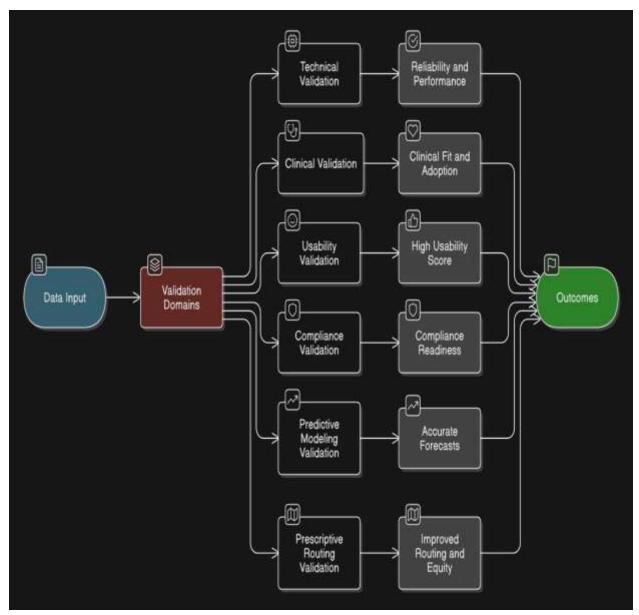



Figure 5: Evaluation Approach

### 6. Comparative Solution Analysis

Contemporary healthcare visibility implementations demonstrate fragmentation, delayed information delivery, and limited functional scope, while providing minimal predictive capabilities and lacking equitable resource allocation mechanisms. HealthNavAl addresses these limitations through:

- Comprehensive Domain Integration Consolidates information from emergency departments, specialist practices, imaging facilities, surgical services, transportation networks, and ancillary providers
- Comprehensive Geographic Coverage Ensures inclusion of rural and historically underserved regions within unified visibility frameworks [5],[6],[15]
- Responsive Information Delivery Provides ≤60s updates for emergency departments and ≤5 min for additional domains
- Standards-Based Connectivity Implements healthcare interoperability specification R4 [12] and situational awareness framework [8] compliance
- Advanced Analytical Capabilities Delivers waiting time forecasting and demand fluctuation prediction.
- Multifaceted Resource Allocation Incorporates waiting intervals, transportation duration, facility capabilities, and equitable distribution requirements.

• Role-Appropriate Visualization – Delivers specialized information interfaces presenting current and projected operational status [1],[2],[4]

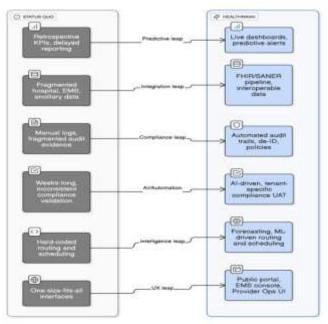



Figure 4: Comparative leap

| Gap ID | Problem Statement / Gap<br>(condensed)                                           | Primary Evaluation Metric(s)                                                                                       | Validation Method                                                            |
|--------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| G1     | No unified national or<br>global platform (cross-<br>region aggregation absent)  | % of facilities reporting nationally;<br>cross-network data completeness; API<br>uptime                            | National pilot; coverage audit;<br>API reliability monitoring                |
| G2     | Fragmentation & limited scope (single-domain tools)                              | # of domains integrated (ED, clinics, imaging, surgery, EMS, ancillary); cross-domain routing availability         | Multi-domain integration test;<br>end-to-end scenario<br>walkthroughs        |
| G3     | Geographic & network isolation (regional silos)                                  | Facility coverage by region/rurality; % cross-network routes possible                                              | Coverage stratified analysis<br>(urban/rural); cross-network<br>routing test |
| G4     | Limited real-time data availability/latency                                      | Median / P95 latency (s) per domain;<br>dashboard refresh interval                                                 | Load tests, production telemetry, time-sync audit                            |
| G5     | Data silos & interoperability<br>barriers (FHIR underuse)                        | FHIR conformance rate<br>(Schedule/Slot/Appointment/Healthca<br>reService/Location); SANER profile<br>completeness | Conformance validation;<br>interoperability plug-fests                       |
| G6     | Lack of predictive analytics                                                     | Forecast MAE/MAPE (wait times,<br>arrivals) per domain; calibration error;<br>lift vs. naïve baseline              | Retrospective back-testing;<br>prospective shadow-mode<br>trials             |
| G7     | No intelligent patient routing/load balancing                                    | $\Delta$ wait time vs. baseline; Occupancy variance index; $\Delta$ travel time; diversion rate                    | Live pilot A/B; interrupted<br>time-series (ITS); simulation<br>studies      |
| G8     | Restricted public & partner access (real-time data is rarely public)             | Public portal availability (SLA); % of endpoints exposed; time-to-publish                                          | Public portal telemetry; policy compliance audit                             |
| G9     | Minimal public–provider synchronization (role-specific but unsynced)             | Timestamp skew (public vs. provider) ≤ X seconds; data consistency rate                                            | Cross-channel consistency checks; synthetic event replay                     |
| G10    | Limited operational<br>efficiency tools (no<br>proactive<br>staffing/scheduling) | OR utilization % and variance; staffing forecast accuracy; throughput per resource                                 | OR workflow analytics;<br>staffing forecast trials                           |

| G11 | Exclusion of<br>ancillary/community<br>services (rehab, dialysis,<br>MH)     | # ancillary providers integrated;<br>referral completion rate; ED<br>substitution rate | Network onboarding audit;<br>pathway substitution analysis   |
|-----|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|
| G12 | No integrated transport optimization (EMS–hospital silo)                     | EMS response time, hospital handover time, and inter-facility transfer delay           | EMS CAD integration tests;<br>pre/post pilot evaluation      |
| G13 | ED queue status limitations<br>(inconsistent, non-standard,<br>not national) | Door-to-doc; LWBS rate; ED status<br>latency; % facilities reporting ED<br>status      | National ED status audit; ITS with pilot EDs                 |
| G14 | Specialist slot availability is not unified                                  | Third-next-available (days); no-show rate; cross-network fill rate                     | Cross-network scheduling pilot; referral pathway audit       |
| G15 | Diagnostic imaging capacity visibility absent (esp. private)                 | Days-to-MRI/CT; slot fill rate; repeat-<br>test rate                                   | Imaging network onboarding;<br>backlog clearance study       |
| G16 | Elective surgery schedules<br>lack live, procedure-level<br>detail           | Cancellation rate; days-to-surgery; first-case on-time start                           | Theatre schedule integration; pre/post cancellation analysis |
| G17 | EMS availability is not shared across agencies                               | Diversion rate; inter-agency dispatch success; on-scene →door time                     | Multi-agency CAD interoperability test; pre/post metrics     |
| G18 | Geographic equity gaps<br>(rural/underserved<br>underrepresented)            | Coverage % in rural/underserved; SVI-adjusted access index; disparity ratio            | Equity audit; subgroup ITS;<br>rural pilots                  |
| G19 | Operational inefficiency impact (overcrowding/underuse persists)             | System load-balance index;<br>throughput per staffed bed; average<br>boarding time     | System-level KPI dashboard;<br>variance reduction analysis   |

TABLE 2: Mapping of Identified Gaps to Evaluation Metrics and Validation Methods

#### 7. Potential Applications

HealthNavAI has broad applicability across multiple healthcare domains:

- Patient Navigation Enabling informed provider selection based on wait times and capabilities
- EMS Coordination Optimizing ambulance routing to appropriate facilities with available capacity
- Hospital Operations Supporting staff allocation, procedure scheduling, and resource optimization
- Policy Oversight Monitoring service access equity and policy benchmark performance
- Ancillary Care Integration Improving transitions to non-acute services
- Research Platform Facilitating healthcare operations research and innovation

| Domain / Application<br>Area                                    | Potential Application                                                                            | Expected Benefits                                                   |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Emergency Departments<br>(EDs)                                  | Real-time diversion management; patient<br>load balancing across nearby EDs; surge<br>prediction | Reduced overcrowding,<br>shorter wait times, improved<br>safety     |
| Specialist Clinics                                              | Referral slot visibility; routing patients to clinics with capacity                              | Improved access, reduced referral delays                            |
| Diagnostic Imaging                                              | Backlog management; patient scheduling to underutilized centers                                  | Faster diagnosis, reduced waitlists                                 |
| Elective Surgery<br>Theatres                                    | Theatre schedule optimization; predictive cancellation reallocation                              | Increased throughput,<br>reduced backlog                            |
| Emergency Transport<br>(EMS)                                    | Intelligent destination routing; hospital–<br>EMS synchronization                                | Reduced turnaround time, improved patient outcomes                  |
| Primary Care /<br>Community Clinics                             | Routing low-acuity patients away from EDs to community/GP services                               | Reduced ED load, enhanced continuity of care                        |
| Telehealth Services                                             | Redirect eligible patients to teleconsults during capacity constraints                           | Expands access, reduces unnecessary in-person load                  |
| Ancillary & Community<br>Services (dialysis, rehab,<br>MH, LTC) | Integration of ancillary care capacity into routing                                              | Better chronic care<br>management; reduced<br>hospital readmissions |
| Public Portal (Patient Access)                                  | Real-time national portal for wait times, slots, and routing                                     | Transparency empowers patients to choose efficiently                |
| Provider Operational<br>Dashboards                              | Unified dashboards for hospitals, EMS, and clinics                                               | Better situational awareness,<br>improved resource<br>coordination  |
| Policy, Research, and<br>System Oversight                       | Aggregated, de-identified analytics for capacity planning, compliance monitoring                 | Equitable distribution,<br>evidence-based policy-<br>making         |

Table 4: Potential Applications Across Healthcare Domains

#### 8. Broader Implications

## 8.1 Environmental Impact

HealthNavAl can generate positive environmental outcomes through:

- Reduced patient and EMS travel by recommending optimal facilities
- Balanced facility utilization, minimizing energy-intensive surges
- Fewer redundant diagnostic procedures through improved coordination
- Increased adoption of telehealth and community-based care

#### 8.2 Economic Impact

The platform offers economic benefits across domains:

- Emergency Departments Reduced overtime, diversion costs, and avoidable admissions
- **Specialist Care** Fuller utilization of physician time and fewer no-shows
- **Diagnostic Imaging** Higher return on expensive imaging equipment
- **Elective Surgery** More predictable OR utilization and reduced cancellations

- EMS Services Lower fuel costs and improved ambulance turnaround times
- **System-Level** Reduced need for costly emergency expansions

| Domain                                                                                                  | Cost Reduction                                                                                                        | Efficiency Gains                                                                                      | Revenue Opportunities                                                                                |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Emergency<br>Departments (EDs)                                                                          | Reduced crowding lowers<br>overtime staffing, fewer costly<br>diversion penalties, and reduced<br>uncompensated care. | Faster triage and throughput reduce patient boarding times and resource strain.                       | Improved patient satisfaction boosts reimbursement under value-based care and patient retention.     |
| Specialist Clinics                                                                                      | Reducing unnecessary specialist consults lowers costs to patients and insurers.                                       | Optimized referral routing ensures specialists are booked appropriately, improving panel utilization. | Increased patient throughput enables more billed visits, reducing revenue leakage.                   |
| Diagnostic Imaging<br>Centers                                                                           | Fewer redundant scans cut down wasteful imaging costs and payer denials.                                              | Predictive scheduling reduces idle scanner time and increases technologist productivity.              | Higher scan throughput and better payer compliance boost billing and revenue capture.                |
| Elective Surgery<br>Theatres                                                                            | Lower cancellation rates reduce wasted pre-op preparation costs.                                                      | Improved OR block scheduling increases theatre utilization and surgeon productivity.                  | Recovered surgical volume translates into additional procedure revenue and reduced backlog losses.   |
| Emergency Transport (EMS)  Reducing unnecessary transports decreases vehicle, fuel, and staffing costs. |                                                                                                                       | More intelligent routing lowers travel time and improves resource coverage.                           | Freed-up ambulances can serve more billable calls or high-acuity cases.                              |
| Primary / Urgent<br>Care Clinics                                                                        | Diverting low-acuity patients from<br>the ED lowers payer cost per<br>encounter.                                      | Improved scheduling increases provider efficiency and reduces patient churn.                          | Higher visit capture drives additional billing opportunities and continuity of care revenue.         |
| System-Level<br>(Regional /<br>Network Impact)                                                          | Balanced load reduces regional inefficiencies, minimizing costly bottlenecks.                                         | Improved cross-facility staffing and bed allocation optimizes resource utilization.                   | Network-level contracting improves payer negotiations, risk-adjustment revenue, and system branding. |

Table 5: Economic Impact by Healthcare Domain

## 8.3 Social Effects

HealthNavAl can positively impact social aspects of healthcare:

- Improved patient experience and satisfaction through reduced uncertainty
- Enhanced equity of access across geographic and demographic groups
- Better workforce well-being through balanced patient loads
- Increased public trust in the healthcare system transparency
- Strengthened community resilience during crises
- Improved health literacy and patient empowerment

| Social Effect Dimension    | Description / Impact                                                                                            |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Patient Access & Equity    | Equalizes access across rural, urban, and underserved areas by providing real-time visibility into availability |  |
| Patient Empowerment        | Patients make informed decisions, choose best-fit services, and reduce unnecessary visits.                      |  |
| Family & Caregiver Support | Reduces logistical burden, financial strain, and stress for families and                                        |  |

| Social Effect Dimension                 | Description / Impact                                                                                                            |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
|                                         | caregivers                                                                                                                      |  |
| Trust & Transparency                    | Builds societal trust by providing reliable, validated operational information                                                  |  |
| Reduced Stress & Anxiety                | Wait-time predictability alleviates emotional burden for patients and families.                                                 |  |
| Health Literacy Improvement             | Dashboards and portals educate patients on appropriate service use, improving long-term health literacy.                        |  |
| Equity in Specialized Services          | Ensures disadvantaged populations gain fairer access to specialists, imaging, and elective surgery slots                        |  |
| Community Resilience                    | Strengthens preparedness during crises (e.g., pandemics, disasters) by supporting the rapid, equitable distribution of patients |  |
| Professional Satisfaction               | Enhances clinician morale through better resource balance and reduced burnout                                                   |  |
| Public Confidence in the Health System  | Transparent nationwide data strengthens faith in healthcare institutions and the government.                                    |  |
| Crisis Communication & Social Stability | Reduces panic and misinformation by providing real-time authoritative updates.                                                  |  |
| Policy & Governance Benefits            | Enables socially responsible decision-making and evidence-based public health communication.                                    |  |
| Digital Divide (Challenge)              | Recognizes that limited digital access for some populations must be addressed to avoid exacerbating inequities.                 |  |

Table 6: Social Effects Summary

#### 9. Long-Term Outlook

The long-term trajectory of HealthNavAl extends beyond immediate efficiency improvements:

- Evolution into a national and global health infrastructure for crisis management
- Integration with smart cities and public infrastructure
- Cross-sectoral expansion to social care ecosystems
- Adoption of federated learning for continuous improvement
- Incorporation of climate-conscious optimization strategies
- Democratization through personal AI health navigation agents
- Catalyzation of new global interoperability standards

#### 10. Conclusion

The transition from fragmented, localized wait-time applications to a unified, national, Al-driven patient navigation ecosystem represents a transformative step in healthcare delivery. HealthNavAl embodies this transition by integrating real-time operational data, predictive modeling, equitable routing, and system-wide dashboards. Through coordinated action across policy, healthcare, community, public health, and technology stakeholders, HealthNavAl can deliver shorter waits, more equitable access, reduced costs, improved workforce sustainability, and resilient healthcare systems prepared for both daily operations and future crises.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

**Publisher's Note:** All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers.

#### References

[1] NSW Health, "Emergency Department waiting times in major NSW hospitals," NSW Health, 2025. [Online]. Available: <a href="https://www.emergencywait.health.nsw.gov.au/">https://www.emergencywait.health.nsw.gov.au/</a>

- [2] National University Health System (NUHS), "New digital features help patients make informed decisions and reduce guesswork on ED wait times," NUHS News, 2025. [Online]. Available: <a href="https://www.nuhs.edu.sg/about-nuhs/news-and-stories/news-and-stories-details/new-digital-features-help-patients-make-informed-decisions-and-reduce-guesswork-on-emergency-department-wait-times</a>
- [3] Claire Morley et al., "Emergency department crowding: A systematic review of causes, consequences, and solutions," PLOS ONE, 2018. [Online]. Available: <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203316">https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203316</a>
- [4] AMN Healthcare / Merritt Hawkins, "2025 Survey of Physician Appointment Wait Times," AMN Healthcare, 2025. [Online]. Available: <a href="https://www.amnhealthcare.com/amn-insights/physician/whitepapers/2025-survey-of-physician-appointment-wait-times/">https://www.amnhealthcare.com/amn-insights/physician/whitepapers/2025-survey-of-physician-appointment-wait-times/</a>
  <a href="https://online.flippingbook.com/view/83050962/42/">https://online.flippingbook.com/view/83050962/42/</a>
- [5] Canadian Institute for Health Information (CIHI), "Wait times for priority procedures in Canada, 2025," CIHI, 2025. [Online]. Available: https://www.cihi.ca/en/wait-times-for-priority-procedures-in-canada-2025
- [6] CIHI, "Wait times for MRI scan (indicator)," CIHI, updated Mar. 2025. [Online]. Available: <a href="https://www.cihi.ca/en/indicators/wait-times-for-mri-scan">https://www.cihi.ca/en/indicators/wait-times-for-mri-scan</a>
- [7] OECD, "Waiting times for elective surgery," in Health at a Glance 2023: OECD Indicators, Paris: OECD Publishing, 2023. [Online]. Available: https://www.oecd.org/en/publications/2023/11/health-at-a-glance-2023\_e04f8239/full-report/waiting-times-for-elective-surgery\_68501edc.html
- [8] HL7, Situational Awareness for Novel Epidemic Response (SANER) FHIR Implementation Guide v1.0.1, 2025. [Online]. Available: <a href="https://build.fhir.org/ig/HL7/fhir-saner/">https://build.fhir.org/ig/HL7/fhir-saner/</a>
- [9] U.S. CDC, "NHSN Connectivity Initiative: Hospital Bed Capacity Project," CDC NHSN, 2025. [Online]. Available: <a href="https://www.cdc.gov/nhsn/bed-capacity/index.html">https://www.cdc.gov/nhsn/bed-capacity/index.html</a>
- [10] American Medical Association, "Why patients are having difficulties getting a doctor's appointment," AMA, Jun. 7, 2024. [Online]. Available: <a href="https://www.ama-assn.org/press-center/ama-speeches/bruce-scott-md-why-patients-are-having-difficulties-getting-doctor">https://www.ama-assn.org/press-center/ama-speeches/bruce-scott-md-why-patients-are-having-difficulties-getting-doctor</a>
- [11] Mary Chris Jaklevic, "In the U.S., wait times to see a doctor can be agonizingly long," Health Journalism, Aug. 7, 2024. [Online]. Available: <a href="https://healthjournalism.org/blog/2024/08/in-the-u-s-wait-times-to-see-a-doctor-can-be-agonizingly-long/">https://healthjournalism.org/blog/2024/08/in-the-u-s-wait-times-to-see-a-doctor-can-be-agonizingly-long/</a>
- [12] Interoperability Challenges in Health Tech: The Gaps and Solutions. Forbes Oct 2024 [Online]. Available <a href="https://www.forbes.com/councils/forbestechcouncil/2024/10/08/interoperability-challenges-in-health-tech-the-gaps-and-solutions/">https://www.forbes.com/councils/forbestechcouncil/2024/10/08/interoperability-challenges-in-health-tech-the-gaps-and-solutions/</a>
- [13] Institute for Healthcare Policy & Innovation, University of Michigan Wait times for emergency hospitalization keep getting higher. Published Aug 4 2025. [Online]. Available: <a href="https://ihpi.umich.edu/news-events/news/wait-times-emergency-hospitalization-keep-getting-higher">https://ihpi.umich.edu/news-events/news/wait-times-emergency-hospitalization-keep-getting-higher</a>
- [14] American College of Emergency Physicians (ACEP), "Emergency Department Boarding Crisis," ACEP, Jan. 2024. [Online]. Available: <a href="https://www.acep.org/boarding">https://www.acep.org/boarding</a>
- [15] U.S. National Highway Traffic Safety Administration (NHTSA), "National EMS Assessment," NHTSA, 2023. [Online]. Available: <a href="https://www.ems.gov/">https://www.ems.gov/</a>
- [16] NHS England, Monthly Operational Statistics January 2025, Jan. 9, 2025. [Online]. Available: <a href="https://www.england.nhs.uk/long-read/monthly-operational-statistics-january-2025/">https://www.england.nhs.uk/long-read/monthly-operational-statistics-january-2025/</a>
- [17] World Wide Web Consortium (W3C), Web Content Accessibility Guidelines (WCAG) 2.1, W3C Recommendation, Jun. 5, 2018. [Online]. Available: <a href="https://www.w3.org/TR/WCAG21/">https://www.w3.org/TR/WCAG21/</a>
- [18] Economic Benefits of reduced waiting times for elective surgeries. A systematic Literature Review, Feb 2025. [Online] Available: <a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC11930346/">https://pmc.ncbi.nlm.nih.gov/articles/PMC11930346/</a>
- [19] Arogyaswamy, S., Vukovic, N., Keniston, A. *et al.* The Impact of Hospital Capacity Strain: a Qualitative Analysis of Experience and Solutions at 13 Academic Medical Centers. *J GEN INTERN MED* **37**, 1463–1474 (2022). <a href="https://doi.org/10.1007/s11606-021-07106-8">https://doi.org/10.1007/s11606-021-07106-8</a>
- [20] Felix Parker , Fardin Ganjkhanloo, Diego A. Martínez, Kimia Ghobadi. Optimal Hospital Capacity Management During Demand Surges. arXiv:2403.15738v2 [cs.CY] 29 Mar 2024. https://arxiv.org/pdf/2403.15738
- [21] Berkeveld, E., Rhebergen, M.D.F., Bloemers, F.W. *et al.* Patient coordination during the COVID-19 pandemic in the Amsterdam region: effects on capacity utilization and patient flow. *BMC Health Serv Res* **25**, 266 (2025). <a href="https://doi.org/10.1186/s12913-025-12311-w">https://doi.org/10.1186/s12913-025-12311-w</a>
- [22] Samantha Calder-Sprackman, Edmund S. H. Kwok, Renee Bradley, Jeffrey Landreville, Jeffrey J. Perry, Lisa A. Calder. *et al.* Availability of Emergency Department Wait Times Information: A Patient-Centered Needs Assessment. 22 April 2021. <a href="https://doi.org/10.1155/2021/8883933">https://doi.org/10.1155/2021/8883933</a>
- [23] British Medical Association, NHS diagnostics data analysis. Last Updated Jan 2025. <a href="https://www.bma.org.uk/advice-and-support/nhs-delivery-and-workforce/pressures/nhs-diagnostics-data-analysis">https://www.bma.org.uk/advice-and-support/nhs-delivery-and-workforce/pressures/nhs-diagnostics-data-analysis</a>
- [24] Office of National Statistics, Accident and Emergency wait times across UK:2024. Released Data 28 Feb 2024. [Online]. Available: <a href="https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthcaresystem/articles/accidentandemergencywaittimesacrosstheuk/2024-02-28">https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthcaresystem/articles/accidentandemergencywaittimesacrosstheuk/2024-02-28</a>
- [25] Government of Western Australia Department of Health, Emergency Department, Monthly Report. July 2025. Available: <a href="https://www.health.wa.gov.au/Reports-and-publications/Emergency-Department-activity/Emergency-Department-Monthly-Report">https://www.health.wa.gov.au/Reports-and-publications/Emergency-Department-activity/Emergency-Department-Monthly-Report</a>
- [26] Australian Institute of Health and Welfare, ED waiting times overview. Emergency department waiting time statistics by triage category in 2023–24. Available: <a href="https://www.aihw.gov.au/hospitals/topics/emergency-departments/waiting-times">https://www.aihw.gov.au/hospitals/topics/emergency-departments/waiting-times</a>
- [27] Australian Institute of Health and Welfare. Waiting times by surgical specialty 2023-2024. Available: <a href="https://www.aihw.gov.au/hospitals/topics/elective-surgery/waiting-times-by-surgical-specialty-waiting-times-by-intended-procedure">https://www.aihw.gov.au/hospitals/topics/elective-surgery/waiting-times-by-surgical-specialty-waiting-times-by-intended-procedure</a>
- [28] The Age News. 'Working in the dark': Patients wait almost a year for medical scans. Reported May 10, 2025. [Online]. Available: https://www.theage.com.au/national/victoria/working-in-the-dark-patients-wait-almost-a-year-for-medical-scans-20250507-p5lxev.html

- [29] Canadian Medical Association, Patients, providers suffer as ERs are overwhelmed yet again: CMA. Published on Jan 11, 2024. [Online]. Available: <a href="https://www.cma.ca/about-us/what-we-do/press-room/patients-providers-suffer-ers-are-overwhelmed-yet-again-cma">https://www.cma.ca/about-us/what-we-do/press-room/patients-providers-suffer-ers-are-overwhelmed-yet-again-cma</a>
- [30] Canadian Medical Association, Why are ER times so long in Canada? Available: <a href="https://www.cma.ca/healthcare-for-real/why-are-er-times-so-long-canada">https://www.cma.ca/healthcare-for-real/why-are-er-times-so-long-canada</a>
- [31] Fraser Institute, Canadians continue to experience long waits for MRIs and CT scans [Online]. Available: <a href="https://www.fraserinstitute.org/commentary/canadians-continue-experience-long-waits-mris-and-ct-scans">https://www.fraserinstitute.org/commentary/canadians-continue-experience-long-waits-mris-and-ct-scans</a>
- [32] AMN health care, 2025 Survey of Physician Appointment wait times and Medicare and Medicaid acceptance rates. [Online]. Available: <a href="https://online.flippingbook.com/view/83050962/">https://online.flippingbook.com/view/83050962/</a>
- [33] Average Emergency Room Waiting Times by State & Country for 2024 in United States. [Online]

Available: https://www.flyreva.com/blog/average-emergency-room-wait-times/

- [34] Anna Fleck, Statista Healthcare: How Long Do Patients Have to Wait? Sept 17, 2024. [Online] Available: <a href="https://www.statista.com/chart/33079/average-waiting-times-for-a-doctors-appointment/">https://www.statista.com/chart/33079/average-waiting-times-for-a-doctors-appointment/</a>
  Available: <a href="https://www.statista.com/chart/33079/average-waiting-times-for-a-doctors-appointment/">https://www.statista.com/chart/33079/average-waiting-times-for-a-doctors-appointment/</a>
- [35] American Hospital Association: Tackling the Surgical Backlog. 2023. [Online] Available: <a href="https://www.aha.org/system/files/media/file/2023/02/ASA SurgicalBacklog exedialogue Feb2023.pdf">https://www.aha.org/system/files/media/file/2023/02/ASA SurgicalBacklog exedialogue Feb2023.pdf</a>
- [36] Vesta Teleradiology, The Silent Strain: How Radiologist Shortages Are Impacting Patient Wait Times Nationwide. [Online]. Available: <a href="https://vestarad.com/the-silent-strain-how-radiologist-shortages-are-impacting-patient-wait-times-nationwide/#:~:text=Limited%20growth%20in%20federally%20funded,Delayed%20imaging%20results%20can:</a>
- [37] NHS A&E wait times, Live reporting for 120 hospitals. [Online] Available: https://www.aandewaittimes.uk/