
Journal of Computer Science and Technology Studies

ISSN: 2709-104X

DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

 JCSTS
AL-KINDI CENTER FOR RESEARCH

AND DEVELOPMENT

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,

London, United Kingdom.

 Page | 165

| RESEARCH ARTICLE

Event-Driven Architecture in Financial Systems: Performance Metrics and Resilience

Patterns from the Real Wallet Platform

Srikanth Pulicherla

Independent Researcher, USA

Corresponding Author: Srikanth Pulicherla, E-mail: dev.srikanthp@gmail.com

| ABSTRACT

This article demystifies Event-Driven Architecture (EDA), a paradigm where software components communicate through event

production and consumption rather than direct requests. The introduction explores EDA's conceptual foundations, historical

evolution, and value proposition compared to traditional request-response models. Core components and patterns are

examined, including event producers/consumers/brokers, event streams/stores, Command Query Responsibility Segregation,

event sourcing, and messaging patterns. Implementation considerations cover technology stack selection, schema design,

consistency challenges, error handling, and observability requirements. A detailed case study of the Real Wallet platform

illustrates EDA principles in action, demonstrating how a commission payment system orchestrates complex financial workflows

across specialized subsystems while maintaining loose coupling, scalability, and resilience. The article presents EDA as an

architectural methods particularly suited for modern distributed systems requiring adaptability, fault tolerance, and independent

evolution of components.

| KEYWORDS

Event-Driven Architecture, Distributed Systems, Message Patterns, Microservices, System Resilience.

| ARTICLE INFORMATION

ACCEPTED: 03 October 2025 PUBLISHED: 06 October 2025 DOI: 10.32996/jcsts.2025.7.10.17

1. Introduction to Event-Driven Architecture

The software engineering landscape has witnessed a fundamental paradigm transformation with the emergence of Event-Driven

Architecture (EDA), which radically alters interaction patterns among components in contemporary distributed frameworks. EDA

introduces a novel communication framework wherein system elements interact through discrete event notifications—specific

signals indicating meaningful occurrences or state alterations within the application domain. These notification mechanisms

eliminate the necessity for direct component awareness, instead facilitating state transmission and significant activity

propagation across the entire application ecosystem. The architectural foundation supporting EDA comprises critical messaging

structures, including subscription-publication models, communication channels, and event-responsive processors, collectively

establishing the infrastructure necessary for creating systems characterized by minimal coupling and autonomous evolutionary

capabilities [1].

Tracing the conceptual origins of EDA reveals roots extending to early distributed computing innovations during the 1970s-

1980s period, though widespread implementation remained limited until the proliferation of sophisticated web architectures and

microservice paradigms in the early 2000s. The progressive decomposition of monolithic software structures into discrete,

independently deployable functional units exposed the inherent limitations of tightly integrated request-response interaction

models. This architectural evolution catalyzed the development of specialized message-oriented intermediary technologies

designed to support non-blocking communication between distributed system elements. The event-centered approach

manifested as an elegant solution addressing persistent challenges in distributed computing: maintaining consistent data states,

Event-Driven Architecture in Financial Systems: Performance Metrics and Resilience Patterns from the Real Wallet Platform

Page | 166

orchestrating multifaceted operational sequences, and ensuring system durability within increasingly fragmented computational

environments where conventional synchronous methodologies demonstrated significant inadequacies [2].

Conventional request-response architectural models typically implement blocking communication patterns requiring clients to

directly engage specific services while awaiting processing completion. Despite offering straightforward implementation

advantages, this methodology creates substantial inter-component dependencies, necessitating comprehensive knowledge

regarding service endpoints and expected response structures. Conversely, EDA establishes separation between event generators

and processors through specialized intermediary routing mechanisms. This architectural distinction significantly enhances system

adaptability, as individual components require familiarity only with standardized event formats rather than comprehensive

knowledge of the complete system architecture. The isolation mechanisms inherent in event channel implementation provide

enhanced failure containment and graceful performance degradation during partial system disruptions—characteristics proving

especially valuable within extensive distributed environments where component failures represent anticipated operational

conditions rather than exceptional circumstances [1].

The strategic advantages of EDA transcend purely architectural considerations, delivering substantive benefits across multiple

operational dimensions. The reduced coupling between system elements allows differential evolutionary pacing among services

without necessitating coordinated modifications throughout the entire application landscape. Using an asynchronous processing

model leads to better utilization of resources and allows independent scaling of each component according to its processing

requirements. Lightweight event contracts and an overall reduced coupling between services for asynchronous communication

greatly improve long-term maintainability by allowing it to modify, expand, and swap out any one part of the system without

jeopardizing the system's overall integrity. This architecture complements applications that are required to adapt constantly

based on changing business needs, while providing operational and performance stability according to varying processing needs

[2].

Component Key Characteristics Implementation Considerations

Event Producers

Generate discrete notifications in

response to state changes; remain

unaware of consumers; maintain

separation of concerns

Domain-specific event generation; event

schema design; validation and

enrichment; idempotent event

production

Event Brokers

Route events between producers and

consumers; guarantee ordered delivery;

provide persistence; manage subscription

patterns

Technology selection (Kafka, RabbitMQ,

EventBridge); partition strategy;

throughput capacity; disaster recovery

mechanisms

Event Consumers

Subscribe to specific event types; process

events independently; implement

domain-specific business logic

Idempotent processing; scaling based on

event volume; replay capabilities; dead-

letter handling

Event

Streams/Stores

Maintain time-ordered sequences;

support multiple concurrent consumers;

provide immutable event history; enable

system reconstruction

Retention policies; partitioning

strategies; schema evolution; snapshot

mechanisms; data governance

Observability

Infrastructure

Trace event flows across service

boundaries; monitor processing backlogs;

track latency and throughput; correlate

distributed logs

Correlation ID propagation; custom

dashboards; anomaly detection;

business-level metrics; performance

alerting

Table 1: Core Components of Event-Driven Architecture: Implementation Characteristics. [1, 2]

JCSTS 7(10): 165-173

Page | 167

2. Essential Elements and Patterns of Event-Driven Systems

The structure of event-driven architectures describes several dependent elements that combine to provide non-blocking

interaction and processing. The three main players in the event-driven interaction architecture are producers, consumers, and

intermediaries. Originators create notifications following status modifications or notable occurrences within their operational

domain, translating business-significant changes into discrete notification records. These notification sources function without

awareness of potential interested parties, thereby maintaining strict operational separation. Recipients, by contrast, register

interest in specific notification categories and implement domain-specific processing logic upon receiving relevant notifications,

handling them according to individualized requirements. Positioned between these endpoints exists the intermediary

mechanism—specialized middleware infrastructure receiving notifications from originators and directing them toward

appropriate recipients. This intermediary assumes responsibility for dependable message transmission, frequently offering

assurances regarding sequential delivery, persistence capabilities, and precisely-once processing guarantees essential for

maintaining system coherence. Contemporary notification-based service architectures leverage these fundamental building

blocks to establish frameworks wherein services interact predominantly through notifications rather than explicit instructions,

substantially enhancing resilience characteristics and evolutionary adaptability [3].

Notification sequences and repositories represent complementary methodologies for managing temporal notification data.

Notification sequences provide uninterrupted, chronologically arranged notification series that recipients process with negligible

delay. These sequences accommodate numerous independent recipients processing at individualized rates, enabling concurrent

handling and specialized processing of identical notification content across diverse system elements. Notification repositories,

alternatively, maintain notifications as unalterable records documenting all system modifications. This preservation establishes

comprehensive operational histories and enables complete system reconstruction from any historical reference point. The

integration of streaming capabilities with persistent storage creates the foundation for sophisticated information processing

patterns while guaranteeing complete information preservation despite transient system disruptions or processing interruptions.

The temporal characteristics inherent in these notification sequences naturally correspond with real-world business process

execution, rendering notification-oriented systems exceptionally suitable for modeling intricate domains with extensive historical

context. Notification sequences frequently implement segmentation strategies preserving sequential integrity within specific

aggregations while facilitating horizontal scalability throughout the broader system landscape [3].

Operation Distinction represents a sophisticated architectural methodology complementing notification-oriented design

through explicit separation between information retrieval and modification operations. Within this pattern, modification

instructions and information requests operate against distinct data representations optimized for their specific functions. This

separation acknowledges the inherent asymmetry between modification and retrieval operations across most applications—

modifications typically incorporate complex validation mechanisms and business rules, while retrievals frequently require

specialized views optimized for particular usage scenarios. When integrated with notification-oriented principles, Operation

Distinction enables clear separation between authoritative notification sources and various specialized retrieval models derived

from these notifications. Each retrieval model undergoes independent optimization for specific query requirements, enhancing

performance characteristics and simplifying retrieval mechanisms while preserving singular authority regarding system state

modifications. This architectural approach delivers particular value within complex domains where structures optimized for

modification differ substantially from those required for efficient information retrieval, allowing each aspect to evolve according

to specific requirements without compromising counterpart functionality [3].

Historical preservation extends the immutability concept to its logical conclusion by maintaining comprehensive chronological

notification sequences as primary system records rather than merely current state representations. Within this pattern, any

entity's current state derives from replaying all historical notifications affecting that entity since inception. This methodology

yields substantial advantages: exhaustive audit capabilities, historical state reconstruction, and temporal query functionality. The

unalterable notification log serves as the definitive record resistant to retrospective modification, providing robust guarantees

regarding information integrity and auditability requirements. When applications require entity modifications, they append new

notifications to the repository rather than altering existing records. This additive-only model naturally aligns with distributed

system constraints while providing clear mechanisms for maintaining consistency across eventually-consistent boundaries.

Historical preservation additionally enables powerful diagnostic capabilities, allowing developers to recreate precise notification

sequences leading to specific system states, substantially simplifying the diagnosis of complex issues that might otherwise

remain difficult to reproduce [4].

Message sequencing and distribution patterns constitute the communication infrastructure within notification-oriented systems.

Message sequences establish point-to-point communication channels, ensuring reliable notification delivery between

components, even when originators and recipients operate at differing rates or experience temporary unavailability. These

sequences typically incorporate features including message persistence, delivery assurances, and specialized handling for

Event-Driven Architecture in Financial Systems: Performance Metrics and Resilience Patterns from the Real Wallet Platform

Page | 168

unprocessable messages. Distribution patterns extend this model by enabling one-to-many communication, where notifications

published to specific topics reach all interested subscribers. This pattern facilitates highly decoupled systems where additional

recipients can be introduced without modifying originators. The distinction between domain notifications and integration

notifications assumes particular importance within these messaging contexts—domain notifications represent meaningful state

changes within contained operational boundaries, while integration notifications facilitate communication across contextual

boundaries. Understanding these distinctions helps architects develop appropriate serialization, versioning, and routing

strategies addressing the divergent requirements between internal and cross-boundary communication patterns [3].

Fig. 1: Event-Driven Architecture: Components, Flows, and Patterns. [3, 4]

3. Implementation Considerations in Modern Backend Systems

The deliberate selection of technological infrastructure constitutes a pivotal determination when constructing notification-

oriented system architectures. The diverse ecosystem of notification streaming and messaging frameworks presents varied

alternatives with distinctive compromises regarding information throughput, response timing, coherence assurances, and

administrative intricacy. Substantial-capacity, elevated-throughput contexts frequently gravitate towards decentralized recording

platforms prioritizing lateral expandability and disruption resistance. Such frameworks characteristically deploy segmented

notification sequences with adjustable preservation directives and recipient collective semantics, facilitating concurrent

processing while preserving sequential guarantees within segments. Contemporary notification handling platforms seamlessly

integrate with computational intelligence frameworks, enabling instantaneous deduction on streaming information without

necessitating intermediate batch handling mechanisms. This convergence between streaming capabilities and computational

intelligence establishes powerful functionalities for instantaneous analytics, irregularity identification, and anticipatory

operations. For circumstances with modest throughput demands but sophisticated routing requirements, message coordination

systems supporting intricate routing arrangements and message transformation capabilities may prove advantageous. Cloud-

optimized notification routing services abstract substantial administrative complexity associated with coordinator infrastructure

management while delivering effortless integration with complementary managed services. The technology determination

process necessitates careful evaluation of considerations, including anticipated notification volume, response time sensitivity,

persistence requirements, and organizational technical proficiency to identify the most appropriate foundation for notification-

driven system architecture [5].

Notification structure design and progression introduce distinctive challenges within notification-driven systems, where

notifications frequently outlast the services generating them. Effectively designed notification structures balance expressiveness

JCSTS 7(10): 165-173

Page | 169

with adaptability, capturing essential domain information while maintaining resilience against evolving business requirements.

Structure registries have emerged as critical infrastructure components, providing centralized administration of notification

formats and facilitating compatibility verification between generators and recipients. Compatible structure evolution typically

adheres to established patterns: incorporating optional attributes, expanding categorizations, and introducing new notification

types while preserving backward compatibility with existing recipients. More substantial changes may necessitate versioning

approaches, such as maintaining multiple structure versions during transition periods or implementing notification

transformations converting between versions. The distinction between notifications and directives assumes particular importance

within structure design—notifications represent accomplished occurrences appropriately named using past tense expressions,

while directives represent intentions suitably named using imperative expressions. Structure design should emphasize domain

semantics rather than technical implementation particulars, ensuring notifications capture the business significance of state

modifications rather than data storage mechanisms. This semantic methodology establishes more durable contracts between

services and diminishes coupling with implementation-specific details potentially subject to modification. Notification structures

should additionally consider diverse recipient requirements, potentially incorporating attributes irrelevant to certain recipients

but enabling significant functionalities for specific downstream services [6].

Coherence challenges naturally manifest within distributed notification-driven systems, where conventional atomic transactions

potentially span multiple independent services maintaining separate persistence mechanisms. These systems frequently adopt

eventual coherence models, where temporary inconsistencies between components remain acceptable provided the system

progressively converges toward a coherent state within reasonable timeframes. Various patterns have emerged addressing

coherence concerns, including the externalization pattern, which atomically preserves domain modifications alongside outbound

notifications within local transaction boundaries before asynchronously publishing notifications to external coordinators.

Progress tracking patterns monitor notification processing advancement across distributed components, enabling consistent

recovery following disruptions. Primary-secondary replication ensures consistent notification sequencing across distributed

nodes while providing failover capabilities. Preliminary recording logs provide durability assurances by persistently documenting

operations before application to primary data storage, establishing foundations for reliable historical preservation

implementations. Multi-step orchestration patterns coordinate complex processes across service boundaries, utilizing

compensatory transactions, maintaining business-level coherence despite technical transactions being unable to span multiple

services. Notification-transported state transfer reduces inter-service dependencies by incorporating sufficient context within

notifications, enabling processing without additional service interactions. These patterns acknowledge fundamental constraints

of distributed systems while providing practical approaches to maintaining business coherence within environments where

network partitions and partial failures represent expected rather than exceptional circumstances [7].

Malfunction handling and reattempt strategies assume heightened significance within notification-driven systems, where

processing failures require management without distributed transaction safeguards. Unprocessable notification repositories

capture notifications unsuccessfully processed after multiple reattempt efforts, preventing information loss while isolating

problematic messages for subsequent analysis and remediation. Reattempt strategies typically implement progressive delay

mechanisms with randomization, preventing concurrent recovery attempts during downstream service recovery. Processing

idempotence ensures repeated processing of identical notifications produces consistent outcomes, representing a critical

property when implementing reattempt logic or recovering from malfunctions. This idempotence may be achieved through

various techniques, including natural idempotence (where operations inherently permit repetition), idempotence identifiers

tracking previously processed notifications, or transactional filtering preventing duplicate processing. Circuit interruption

mechanisms prevent cascading malfunctions by temporarily suspending notification processing when downstream systems

demonstrate sustained failures, allowing recovery time before resuming normal operation. Problematic notification identification

recognizes notifications consistently triggering processing failures, routing them toward specialized handling procedures rather

than consuming system resources through ineffective reattempt efforts. These patterns require complementary operational

practices, including comprehensive alerting regarding processing backlogs, automated recovery mechanisms, and utilities for

replaying notifications from specific temporal points when necessary for recovering from failures or processing errors [5].

Supervision and perceptibility present distinctive challenges within notification-driven architectures, where request flows span

multiple asynchronous processing stages without direct causal connections within traditional request documentation. Distributed

pathway tracing emerges as an essential capability, propagating correlation identifiers across service boundaries, reconstructing

complete notification paths through the system. Notification flow supervision tracks crucial metrics, including throughput,

response timing, error frequencies, and processing backlogs throughout the entire notification pipeline, providing advanced

warning regarding developing issues. Recipient delay metrics highlight processing postponements, potentially indicating

performance problems or resource limitations. Unprocessable notification queue supervision identifies patterns within failed

processing attempts, potentially signaling systemic issues requiring attention. Documentation correlation aggregates related log

entries across multiple services, reconstructing operation sequences triggered by individual initiating notifications. Specialized

Event-Driven Architecture in Financial Systems: Performance Metrics and Resilience Patterns from the Real Wallet Platform

Page | 170

visualization instruments for notification flows help administrators understand complex relationships between generators,

coordinators, and recipients, providing insights regarding bottlenecks and processing anomalies. These perceptibility practices

enable administrators to comprehend system behavior, diagnose issues, and validate notifications flowing through the system as

expected, despite processing spanning multiple independent services with asynchronous communication patterns. The most

sophisticated notification-driven systems implement comprehensive measurement systems enabling both technical and

business-level insights, connecting technical metrics with supported business processes, providing context-aware operational

information displays [6].

Fig. 2: Implementation Considerations in Modern Backend Systems. [6, 7]

4. Case Study: Real Wallet Platform

The commissioning structure within the Real Wallet ecosystem exemplifies advanced notification-centric architectural

methodologies through its monetary compensation framework, orchestrating sophisticated financial procedures across various

specialized operational components. The architectural foundation incorporates domain-focused construction principles,

segmenting the payment handling domain into distinct contextual boundaries encompassing transaction acquisition, financial

recording, taxation computation, regulatory adherence, and participant communication. Each operational boundary functions as

an autonomous service with dedicated information persistence mechanisms, interacting with alternative boundaries

predominantly through a unified notification infrastructure. This infrastructure incorporates segmented notification distribution

technologies, ensuring sequential delivery within transactional constraints while accommodating concurrent processing across

disparate user financial profiles. The framework leverages procedural coordination to administer extended operational

sequences spanning multiple services, guaranteeing complex monetary transactions advance through necessary procedural

stages despite potential service disruptions or processing interruptions. State alterations within these procedures generate

notifications driving subsequent processing activities, establishing a composite architecture merging procedural coordination

with notification-driven communication. This structural methodology provides essential disruption management capabilities for

monetary transactions, incorporating automated reattempt mechanisms, temporal limitation handling, and compensatory

transactions, preserving information consistency despite partial system disruptions. The platform's notification-driven foundation

enables implementation of currency movement restrictions, regulatory verification, and fraudulent activity identification as

JCSTS 7(10): 165-173

Page | 171

independent considerations integrating through shared notification infrastructure rather than rigid service-to-service

connections that would restrict independent evolution and capacity expansion [8].

The notification pathway for payment handling demonstrates how intricate organizational procedures can be divided into

discrete operational stages coordinated through notifications. The sequence initiates when external mechanisms generate

TransactionInitiated notifications containing commission payment specifications. The transaction acquisition service processes

these notifications, performs validation, augmentation, and deceptive activity identification, subsequently publishing

TransactionAuthorized notifications. These notifications trigger simultaneous processing across multiple downstream services:

the financial recording service documents the monetary transaction, the taxation service calculates and reserves appropriate tax

quantities, and the communication service prepares notifications for payment recipients. Each service publishes completion

notifications—FinancialEntryDocumented, TaxReservationCalculated, and CommunicationQueued—consumed by a coordination

service tracking overall payment progression. The notification-centric payment architecture fundamentally transforms traditional

payment processing approaches, replacing conventional monolithic batch processing with responsive, instantaneous procedures

that adapt to fluctuating transaction volumes. Cloud-optimized deployment frameworks support this transformation, with

containerized services expanding elastically according to current processing requirements. The notification infrastructure

implements precise processing semantics for financial transactions, ensuring commission payments avoid duplication or loss

despite infrastructure disruptions or deployments. This architecture enables consolidated payment status visualization across

multiple processing stages while permitting specialized service independent evolution, accelerating innovation while preserving

stringent reliability requirements essential within financial ecosystems [9].

Integration mechanisms connecting financial recording, communication, and taxation components demonstrate how

notification-centric architectures facilitate minimal coupling between specialized components. The financial recording

component maintains authoritative financial records, documenting credits and debits across various account categories while

ensuring balance accuracy. When processing commission payments, the financial system consumes TransactionAuthorized

notifications, creates necessary accounting entries, and publishes FinancialEntryDocumented notifications referencing created

financial records. The taxation component similarly consumes TransactionAuthorized notifications but concentrates on taxation

implications, calculating withholding amounts according to jurisdiction-specific regulations and publishing

TaxReservationCalculated notifications. The communication component operates distinctively, consuming notifications from

both financial and taxation systems to generate comprehensive payment communications incorporating both net payment

amounts and taxation withholding details. This notification-transported state transfer pattern reduces direct dependencies

between services, as each service incorporates sufficient contextual information within published notifications, enabling

subsequent processing without requiring additional service-to-service interface calls. This loosely coupled integration strategy

establishes system-wide resilience, as temporary unavailability within individual subsystems doesn't prevent others from

continuing operations. The notification streams connecting these subsystems implement persistent messaging with delivery

assurances, ensuring processing ultimately completes despite services experiencing temporary unavailability or scaling

operations. This reliability foundation enables the platform to satisfy strict regulatory requirements regarding financial

recordkeeping while maintaining the adaptability necessary for accommodating evolving business requirements [10].

Performance characteristics from the Real Wallet platform demonstrate the scalability advantages of a notification-centric

architecture within financial systems. By decomposing monolithic payment processes into independent, notification-driven

services, the platform achieved substantial improvements regarding information throughput, response timing, and resource

utilization. The asynchronous processing model enables each subsystem to expand independently according to specific resource

requirements and processing characteristics. The platform implements segmentation strategies, distributing processing

workloads across multiple service instances while preserving transactional boundaries, enabling horizontal expansion without

compromising information consistency. Temporal separation between workflow stages prevents resource competition between

different processing phases, enabling more efficient computing resource utilization compared with synchronous processing

models. The notification-centric architecture additionally facilitates a gradual transition from established systems, with

notification adapters bridging between conventional batch processes and contemporary real-time processing models. This

incremental modernization approach enabled platform transition regarding critical financial functions without disrupting

ongoing operations. Performance evaluation under various capacity conditions demonstrated the architecture's capability to

handle unpredictable transaction volumes through elastic expansion, with automatic resource allocation during peak periods and

contraction during reduced activity periods to optimize infrastructure expenses. The platform's cloud-optimized deployment

model complements this elasticity, utilizing containerized services rapidly deployable across multiple availability regions,

ensuring continued operation despite regional infrastructure disruptions [8].

Resilience methodologies implemented within the Real Wallet platform demonstrate how notification-centric architectures

maintain system reliability despite individual component disruptions. The platform implements circuit protection mechanisms

Event-Driven Architecture in Financial Systems: Performance Metrics and Resilience Patterns from the Real Wallet Platform

Page | 172

that monitor error frequencies within downstream service communications, temporarily suspending new requests when error

thresholds exceed acceptable limits to prevent cascading disruptions. The architecture acknowledges that distributed system

disruptions represent inevitable rather than exceptional circumstances, designing accordingly with patterns preserving

information consistency and business continuity despite partial system unavailability. Each financial transaction implements

persistent execution contexts surviving service restarts, ensuring in-progress transactions resume from recent consistent states

rather than requiring manual intervention or creating duplicate processing. Historical preservation provides additional resilience

capabilities, with notification logs serving as authoritative records reconstructing service states following disruptions. The

platform implements comprehensive observability through distributed pathway tracing following transactions across service

boundaries, custom measurements tracking, processing timing, and error frequencies, and structured documentation facilitating

troubleshooting across distributed components. Regional duplication regarding both services and notification streams enables

disaster recovery with minimal information loss, while active-active deployment models allow continued operation despite

significant infrastructure disruptions. These resilience methodologies collectively establish payment systems maintaining financial

integrity despite adverse conditions, progressively reducing non-essential functions during partial disruptions while preserving

core payment processing capabilities [10].

Fig. 3: Real Wallet Platform: Performance Benefits of Event-Driven Architecture. [9, 10]

5. Conclusion

Event-Driven Architecture offers transformative benefits for modern backend systems, fundamentally changing how components

interact by replacing direct coupling with event-based communication. The decoupling of producers from consumers creates

systems that can evolve independently, scale efficiently, and gracefully handle partial failures. As demonstrated through the Real

Wallet platform case study, EDA enables complex domain processes to be decomposed into discrete, specialized services that

communicate through well-defined events, creating systems that are both more flexible and more resilient than traditional

architectures. Looking forward, the convergence of event streaming with technologies like machine learning, edge computing,

and serverless platforms will further expand EDA's capabilities and application domains. Organizations adopting EDA should

emphasize strong event design practices, invest in robust observability solutions, and implement appropriate consistency

patterns that acknowledge the fundamental constraints of distributed systems. Future advancements in schema evolution, real-

time analytics integration, and standardized patterns will continue to enhance the maturity and accessibility of event-driven

methods, making them increasingly central to the architecture of responsive, scalable, and adaptable systems.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher, the editors and the reviewers.

JCSTS 7(10): 165-173

Page | 173

References

[1] Adam B, (2020) Building Event-Driven Microservices, O'Reilly Media, Inc., 2020. https://www.oreilly.com/library/view/building-event-driven-

microservices/9781492057888/

[2] Ben S, (2018) Designing Event-Driven Systems, O'Reilly Media, 2018. https://www.oreilly.com/library/view/designing-event-driven-

systems/9781492038252/

[3] Chris R, (2023) Book: Microservices patterns," Microservices.io. https://microservices.io/book

[4] Gregor H, Bobby W, (2003) Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions, Addison-Wesley

Professional, 2003. https://www.oreilly.com/library/view/enterprise-integration-patterns/0321200683/

[5] Mark R, (2015) Software Architecture Patterns, O'Reilly Media, 2015.

https://theswissbay.ch/pdf/Books/Computer%20science/O'Reilly/software-architecture-patterns.pdf

[6] Naresh K, (n.d) Harnessing cloud-based microservices for payments revolution, TCS BaNCS. https://www.tcs.com/what-we-do/products-

platforms/tcs-bancs/articles/transforming-payments-with-cloud-microservices-architecture

[7] Rajesh K P, and Steef-Jan W, (2025) Designing Resilient Event-Driven Systems at Scale, InfoQ, 2025. https://www.infoq.com/articles/scalable-

resilient-event-systems/

[8] TensorFlow, (2023) Robust machine learning on streaming data using Kafka and Tensorflow-IO, TensorFlow Documentation, 2023.

https://www.tensorflow.org/io/tutorials/kafka

[9] Tim I, (2025) Building Resilient Event-Driven Architecture for Finance with Temporal, Temporal Technologies, 2025.

https://temporal.io/blog/building-resilient-event-driven-architecture-for-finserv-with-temporal

[10] Unmesh J (2023) Catalog of Patterns of Distributed Systems, Martin Fowler's Website, 2023. https://martinfowler.com/articles/patterns-of-

distributed-systems/

https://www.oreilly.com/library/view/building-event-driven-microservices/9781492057888/
https://www.oreilly.com/library/view/building-event-driven-microservices/9781492057888/
https://www.oreilly.com/library/view/designing-event-driven-systems/9781492038252/
https://www.oreilly.com/library/view/designing-event-driven-systems/9781492038252/
https://microservices.io/book
https://www.oreilly.com/library/view/enterprise-integration-patterns/0321200683/
https://theswissbay.ch/pdf/Books/Computer%20science/O'Reilly/software-architecture-patterns.pdf
https://www.tcs.com/what-we-do/products-platforms/tcs-bancs/articles/transforming-payments-with-cloud-microservices-architecture
https://www.tcs.com/what-we-do/products-platforms/tcs-bancs/articles/transforming-payments-with-cloud-microservices-architecture
https://www.infoq.com/articles/scalable-resilient-event-systems/
https://www.infoq.com/articles/scalable-resilient-event-systems/
https://www.tensorflow.org/io/tutorials/kafka
https://temporal.io/blog/building-resilient-event-driven-architecture-for-finserv-with-temporal
https://martinfowler.com/articles/patterns-of-distributed-systems/
https://martinfowler.com/articles/patterns-of-distributed-systems/

