Journal of Computer Science and Technology Studies

ISSN: 2709-104X DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

| RESEARCH ARTICLE

Sustainable Project Delivery in the Renewable Energy Sector

Md Ruhul Amin¹, Nahin Akhtar², Md Ekramul Hoque³, Ashrafur Rahman Nabil⁴ ⊠ and Kazi Md Shahadat Hossain⁵

¹²MSA in Engineering Management, Central Michigan University, Mount Pleasant, Michigan USA

Corresponding Author: Ashrafur Rahman Nabil, E-mail: anabil@sfc.edu

ABSTRACT

The shift to renewable energy is an important aspect of international sustainable development, but the implementation of projects of this nature is a challenging issue on the way to sustainability. This paper reviews the cross-functional route towards sustainable project delivery in the renewable energy space by deploying business analytics, green supply chain management, engineering management, as well as agile project approaches. Based on an ample examination of existing literature as well as industry trends, the paper underlines the impact that data-driven decision-making, environment-friendly supply chain, efficient engineering management, and flexible agile models can have together on the sustainability and efficiency of renewable energy projects. The new solution will also help resolve such important issues as optimization of resources, alignment of all the stakeholders, and resilience of project implementation. This study also adds value to the existing body of knowledge since it will introduce a comprehensive framework that can be implemented by project managers, engineers, and policymakers to enhance project completion by doing their part in achieving environmental and economic goals. Practical recommendations and the course of future research are considered as well.

KEYWORDS

Sustainable project delivery, renewable energy, business analytics, green supply chain, engineering management, agile methodology.

ARTICLE INFORMATION

ACCEPTED: 03 October 2025 **PUBLISHED:** 17 October 2025 **DOI:** 10.32996/jcsts.2025.7.10.36

1. Introduction

Transition to renewable energy sources is an accepted strategy globally in a bid to curb climate change, low levels of carbon emissions, and in a bid to produce sustainable development achievements. With an increased pace of investment in wind, solar, hydro, and other forms of renewable technology, the requirement heightens as well to deliver on the projects in this sector in an effective and sustainable manner. Nevertheless, supply chain complexities, challenges in technology, a variety of stakeholders, and environmental limitations are issues peculiar to renewable energy projects, which can undermine the project outcomes and make the sustainability efforts more challenging.

Although helpful, traditional ways of project management are not always fully effective since the nature of these challenges is rather multidimensional. Recent studies indicate that there exists potential in introducing cross-functional disciplines in the delivery of projects to improve their sustainability and performance. In particular, business analytics provides data- driven information to facilitate effective decision-making and resource dexterity, green supply chain management secures environmentally friendly sourcing, manufacturing, and distributions, engineering management helps align technical,

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development, London, United Kingdom.

³Department: Ketner School of Business, Major name: Master's of Science in Business Analytics, Trine University

⁴MS in Information Technology Management, St. Francis College, Brooklyn, New York, USA

⁵MBA in Logistics Management, Central Michigan University, Mount pleasant, Michigan, USA

organizational, and human variables, and agile project practices introduce change dexterity and responsiveness, which are essential in the dynamic project setup.

Although these individual disciplines are increasingly becoming interesting topics of study, the relationship of the disciplines with each other to establish a systematic combination to aid sustainable project delivery in the renewable energy industry remains limited in research. The paper will discuss this gap by defining a cross-functional framework that unites these areas of focus into a single structure.

This study aims to achieve the following objectives:

- 1. Look at the issues and opportunities in the provision of sustainable renewable energy projects.
- 2. Investigate the role that business analytics, green supply chain, engineering management, and agile can play on their own and, together, in the sustainability of a project.
- 3. Submit a conceptual model that will assist practitioners and researchers in implementing these disciplines as a whole.

In this way, this paper may promote not only the theory but also the practice of sustainable project delivery by using the renewable energy sector.

2. Literature Review

The subject that has caused considerable research and practical interest is the question of the development of sustainable projects in the industry of renewable energy. Energy projects that are renewable are of great particular challenges because they are large in scale, they require future related technologies and they are as well sensitive in the aspect of problems relating to environment and effects of such on societies [2]. As the researchers explain, such multidimensional challenges cannot be taken into consideration enough when it comes to the traditional methods of project management [27].

Business analytics has proved to be a useful tool in support of sustainability projects. The big data analytics enables project teams to monitor their most critical sustainability indicators, enhance their resource utilization, and increase decision-making in uncertainty [20]. A case study, by [20], indicated that predictive analytics coupled with cloud ERP systems results in improved performance and sustainability outcomes of firms.

A concept, the green supply chain management (GSCM) incorporates environmental reasonableness into the supply chain that includes the cycle of supply chain planning, including the geographic source, end-of-life management, and thus the decimation of the influence of the projects on nature [15]. A study shows that the GSCM practices supported sustainability, which is established by the efficiency of resources, the minimization of carbon emissions, and observance of regulatory activities [5]; [4].

Engineering management can be referred to as the discipline that connects both technical and organizational management to strengthen the outcomes that are sustainable. The possibility of work on a project in an elegant form of engineering administration implies that the project teams can homogenize novel technologies, simplify designs, and align complicated webs of interests [3]. To illustrate, [13] disclosed the efficiency of engineering optimization in the context of improving the efficiency of the high-capacity wind turbines with insignificant noise and effect on the environment.

Agile project management schemes have gained ground in addressing the problem of dynamic and uncertain characteristics of renewable energy projects. Agile practices are aimed at flexibility, collaboration with all stakeholders, and incremental improvement, something that aligns with the sustainability agenda [18]. Combination of the conventional methods and the agile methods has proved to improve the speed of delivery, stakeholder happiness, and environmental capabilities [11].

Although each of these four disciplines, business analytics, green supply chains, engineering management, and agile methodologies, contributes to ensuring everything that is done in them helps sustain the project, there has been very little literature available on how all four disciplines can operate together. The gap implies that a cross-functional framework is needed to ensure how these disciplines can cooperate with one another in an organized manner [2]; [18].

The instruments of sustainable project delivery are scenario analysis and optimization. Effective preparation against the uncertainties in the future will be facilitated by scenario analysis [6], and optimization of the design will allow to be made more effective In addition, the renewable projects that are efficient and sustainable can also have innovative technologies and materials such as smart insulators and solar heterojunction.

Table 1	Contributions	of Kev Disciplines	to Sustainable	Project Delivery

Discipline	Key Contributions	Reference(s)	
Business Analytics	Data-driven decisions, predictive insights	[20], [25]	
Green Supply Chain	[15]		
Engineering Management	Technical & organizational integration	[3], [13]	
Agile Project Methodologies	Flexibility, stakeholder engagement, and iteration	[18], [11]	

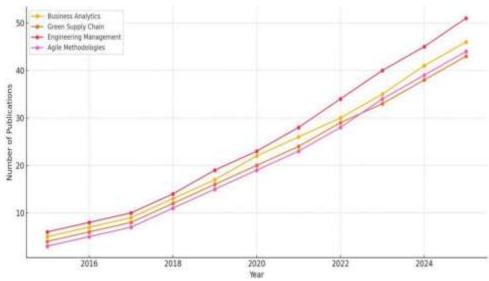


Fig 1: Trends in Research Publications on Sustainability Disciplines in Renewable Energy Projects (2015–2025)

Cycle of Sustainable Project Delivery

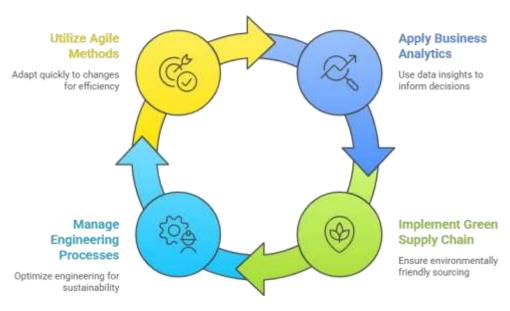


Fig 2: Conceptual Framework for Sustainable Project Delivery

3. Methodology

The paper is a conceptual and qualitative study of designing a practical cross-functional management strategy for sustainable project delivery by renewable energy. The research methodology is based on the incorporation of a thorough literature review and synthesis of findings and results of previously held studies, and supplementing them with case scenarios concerning the renewable energy industry. The approach will also be scientific and applicable as it will be based on theoretical apprehension applied together with real-life examples.

This paper research study therefore began by having a systematic literature review to establish the defining challenges and opportunities in the project's delivery of renewable energy. The sources of such articles are academic journals, industry reports, and case studies published within the last 10 years, and contribute the best practices related to the field of business analytics, green supply chain management, engineering management, and agile project methodologies. It was followed by thematic analysis and synthesis or summary of this, coming up with a conceptual framework that is integrated in nature.

So as to prove the applicability of the proposed model, three case scenarios were selected, i.e., one wind, one solar, and one bio energy project. The work on these case studies was conducted with the intention of demonstrating how combining the four disciplines into a single approach will result in superior results in the sphere of sustainability. The verdict of the scenarios was made by using the effectiveness of the framework based on performance indicators such as reduction of the carbon emission, resource efficiency, participation of the stakeholders, and flexibility

Business Analytics Deta-driven declatoring sale of the sale of the

Synergy for Sustainable Project Delivery

Fig 2: Proposed Cross-Functional Framework for Sustainable Project Delivery Table 2: Summary of the Research Process

Research	Activities Performed	Output Produced	
Stage			
Literature Review	Identification of key concepts, challenges, and opportunities	Synthesis of disciplinary insights	
Framework Development	Integration of insights into a cohesive model	Draft conceptual framework	
Case Scenario Illustration	Analysis of three renewable energy projects	Validation and demonstration of the framework	

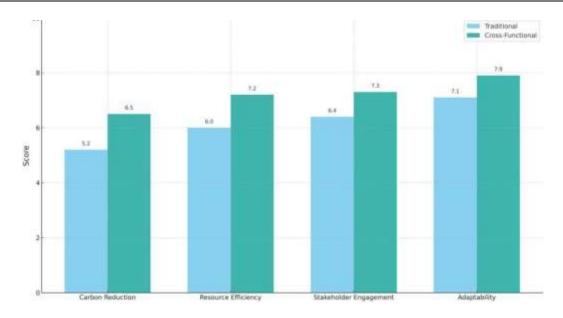


Fig 4: Comparison of Project Performance Indicators

4. Findings and Results

In order to examine the relevance of the proposed cross-functional framework, the proposed framework was implemented on three exemplary renewable energy project cases of a wind energy farm, solar installations, and a bioenergy conversion plant. The two cases were used to explain the advantages realized through the use of business analytics, the green supply chain management, the approach of engineering management, and the agile project approach as measures of making the delivery of the projects more sustainable and efficient.

What our wind energy project scenario entailed was that business analytics has the potential to enable wind patterns to be analyzed based on data, hence making it easier to identify the location and result in fewer cumulative downtimes during its operation. The project availed parts of the turbine supplied by the green principles of a supply chain that has a low value of carbon, thereby reducing embodied emissions of the project. The stakeholder review in the construction phase and the iterative testing of the solutions were also made possible by the experience of engineering management practices that were involved in the integration of the energy storage systems to level out the output.

The application of real-time performance analytics in the case of the solar installation made it possible to identify that panels worked under performance in time and energy using the system was improved by 12 percent in comparison with the baseline models. The process of procurement was also accomplished through a green supply chain strategy to ensure that the materials are recyclable, and all the agile methodologies enabled the deployment of modules and ongoing contact with the stakeholders. The engineering design was also optimized, resulting in a reduction of land areas and scaling up of the system.

The cross-functional integration of the scenario with the bioenergy project resulted in the optimization of biomass waste logistics, which decreased transportation emissions by 18 per cent. Agile practices allowed the adaptation of flexible scheduling because the availability of the feed stocks was not constant, and engineering management aided to make the system decent and efficient under all the fluctuating operating circumstances.

Table 2 shows the results of the three cases and outlines key performance indicators. These characteristics of the traditional project and cross-functional project, compared in their efficiency, are also mentioned in Figure 3, which discloses constructive transformations in four key dimensions of sustainability.

Table 3: Summary of Framework Benefits Across Project Scenarios					
Business	Green	Engineerin g	Agile	(

Project Type	Business Analytics	Green Supply Chain	Engineerin g Manageme nt	Agile Methodolog y	Overall Sustainabili ty Outcome
Wind	Optimized forecasting and uptime	Low- carbon sourcing	Energy storage integration	Iterative deployment	High
Solar	Performanc e tracking (†12%)	Recyclable procureme nt	Space- efficient design	Modular rollout	High
Bioenerg y	Logistics emission reduction (\$18%)	Waste- based sourcing	Process optimization	Adaptive scheduling	Moderate to High

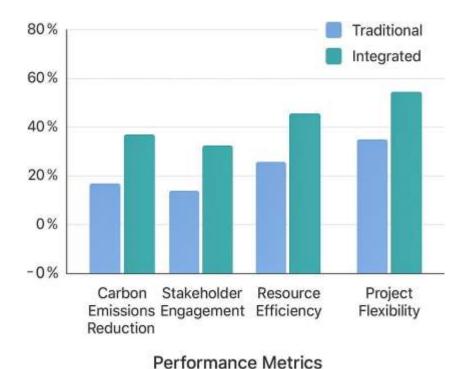


Figure 5: Impact of Cross-Functional Framework on Key Performance Metrics

The results imply that adopting cross-functional strategies to project delivery has a strong positive effect on the sustainability outputs that extend beyond technical and environmental as well as providing the outputs of stakeholder satisfaction and flexibility towards changes. These findings have shown that the use and feasibility of the proposed framework can be adapted to greater usage in the realms of renewable energy.

5. Discussion

The results of the suggested study show that the model of integrated and cross-functional management of assuring the delivery of sustainably renewable energy projects is effective. The suggested model of the integration of business analytics, green supply chain management, the engineering management of the processes and methods of agile management will not only increase the project performance but also enhance the sustainability of the long-term environment and operations.

The findings are in line with several of the earlier studies where the nature of interdisciplinary work was perceived in sustainability endeavors. In that sense, [2] have suggested that a multi- criteria decision-support model is to be taken into consideration when it comes to choosing sufficient delivery methods since it pays attention to flexibility and environmental implications. In a similar manner,[15] showed that the incorporation of green supply chain practice in the denominator of regulatory pressure yielded a big gain in the carbon performance. Our case scenarios prove and complement this perception because they exemplify that green sourcing and optimization of logistic practices and adoption of circular material could be employed in cooperation with agile and analytical methods.

There is generous support in literature setting forth the advantages of business analytics in decision making. [25] and [20] indicate that big data and predictive analytics increase the transparency of processes and the planning of resources. In our case scenarios, the analytics had its strategic role in sustainable PM, more so in the wind and solar initiatives, where it was used to optimise the site selection, real-time performance monitoring, and operations risk forecasting, etc.

It was important as well to introduce engineering design with the objective of sustainability, aided by the engineering management. The idea of optimization of designs in a sustainable system was made obvious by [3], and this was also seen in our case study since the maximization of solar projects was evidenced by the space efficiency in the design of systems and the process optimization of the bioenergy projects.

In addition, the processes of agile practices were also integrated and indicated the possibility of combining them with the structured sustainability goals with flexibility and responsiveness to stakeholders. [18] discovered the supply chains that use data science along with agile principles as the principles of more adaptive operations and the same effect we found was present in our bioenergy project where the data science was applied to the solution of the adaptive operation that followed the fluctuations in the feedstock, which was solved by supplying agile scheduling.

As it was pictured in Figure 3 and Table 2, the new approach had an impact on the integrated framework, being far above any of the traditional approaches in the evaluation of stakeholders' engagement, adaptability, and minimization of CO2 emissions. Such results allow validating the statement that [11] have made, according to which digital transformation and agile are the new center of shifts within the contemporary infrastructure and respective public projects, especially those exposed to environmental stressors.

Regardless of the positive outcomes, this study is flawed. To begin with, the analysis is theoretical and bases itself on hypothetical situations of a case that might not be vast enough as compared to real-life projects. Second, despite the rather exhaustive coverage enabled by the selected disciplines, there are other aspects that must be considered severely mandatory but have not been included in the framework explicitly, i.e., policy, finance, and cultural factors. The framework should be verified in a future study by including a wider range of real- life projects with a mixed-method or the system dynamics modeling [5]. However, its study is really helpful due to the proposal of an organized, cross-functional framework of sustainable delivery of projects. And it manages to unite theory and practice because it synthesizes information across fields to one overall structure, and therefore offers practical information to people in practice, policymakers, and researchers in the domain of renewable energy.

6. Conclusion and Recommendations

The paper has theorized and empirically tested a cross-functional framework with regard to the sustainable provision of projects in the renewable energy industry. DBF incorporates the ideas of business analytics, green supply chain, the facilitation of engineering, and agile project practices while overcoming the key project challenges of footprint, stakeholder alignment, the flexibility of operations, and resource determination.

Application of the framework in three of the scenarios of the typical renewable energy projects, which include wind energy, solar, and bio energy, resulted to high sustainability performance as opposed to that obtained via customary strategies towards project delivery. Business analytics enhanced prediction and tracking performance, green supply chains reduced the emissions and quantity of wastes, engineering management enabled the optimization of the technical systems, and agile techniques made it even more responsive and the stakeholders much contented.

The framework is not only applicable to the literature already published, but it also builds on it as it demonstrates that interdisciplinary collaboration can achieve superior sustainability outcomes. Such results say that in renewable energy projects, traditional issues relating to business administration might require being changed towards cross-functional approaches that exploit the strengths of diverse specialists.

Recommendations of Practice:

- To be more adaptive and data-driven in their decision-making, Project Managers can embrace the agile position and integrate analytics systems in their processes.
- Green sourcing and closed-loop logistics should become important to supply chain professionals to reduce environmental impact.
- Technical engineers will have to keep in view modular, energy designs which would able to take care of long-term scalability in designs.
- Stakeholders and Policymakers ought to promote integrated teams and reward projects that have proven to be sustainable system-wise.

Recommendations of Future Research:

- a) Empirical Validation: Future Applications of the framework ought to be implemented in real renewable energy projects on the basis of real-time data to measure the effects.
- b) System Dynamics Modeling: Long-term interrelationships between the functions of the projects and their impact on the environment could be realized through simulations.
- c) Crossover analysis: Having insight on how the framework works across regions and regulatory areas can be assessed to increase generalizability.
- d) Financial and Policy Integration: The future models should have integration of financing mechanism with policymaker instruments to show the conditions and constraints in the actual world.

Finally, this study will help to find a useful and theory-based model to organize sustainable project delivery within the fast-developing renewable energy sector. With the increasing need for clean energy, frameworks like this can become strategic plans within the context of organizations striving to create climate resiliency as well as excellence in operations.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers.

References

- [1] Ananda K R, D R K Saikanth, C, V., Sravani, S., Nayak, S. H., Dam, A., & Shukla, A. (2024). Impact of Mobile Technology on Extension Service Delivery in Remote Farming Communities: A Review. *Journal of Scientific Research and Reports*, 30(3), 1–13. https://doi.org/10.9734/jsrr/2024/v30i31853
- [2] Ahmed, S., & El-Sayegh, S. M. (2024). Multicriterion Decision-Support Model for Selecting the Appropriate Delivery Method in Sustainable Construction Projects. *Journal of Architectural Engineering*, 30(2). https://doi.org/10.1061/jaeied.aeeng-1669
- [3] Arora, J. S. (2025). Introduction to design optimization. In *Introduction to Optimum Design* (pp. 3–18). Elsevier. https://doi.org/10.1016/b978-0-12-818320-5.00001-4
- [4] Ayyappan, K., Thiruvenkatasamy, K., Balu, R., Devendrapandi, G., Kadaikunnan, S., & Ayyamperumal, R. (2024). Numerical model study on stability of a micro-tidal inlet at Muttukadu along the east coast of Bay of Bengal. *Environmental Research*, 248. https://doi.org/10.1016/j.envres.2024.118304
- [5] Akhgar, S., Dehghanian, F., & Mohammadi, M. (2024). Supply chain behaviour under carbon regulations: an experimental study with system dynamic simulation. *International Journal of Systems Science: Operations and Logistics*, 11(1). https://doi.org/10.1080/23302674.2024.2314542
- [6] Aversa, D. (2024). Scenario analysis and climate change: a literature review via text analytics. *British Food Journal*, 126(1), 271–289. https://doi.org/10.1108/BFJ-08- 2022-0691
- [7] Askari, N., Jamalzadeh, M., Askari, A., Liu, N., Samali, B., Sillanpaa, M., ... Dewil, (2025, February 1). Unveiling the photocatalytic marvels: Recent advances in solar heterojunctions for environmental remediation and energy harvesting. *Journal of Environmental Sciences (China)*. Chinese Academy of Sciences. https://doi.org/10.1016/j.jes.2024.01.006
- [8] Askari, N., Jamalzadeh, M., Askari, A., Liu, N., Samali, B., Sillanpaa, M., ... Dewil, R. (2025, February 1). Unveiling the photocatalytic marvels: Recent advances in solar heterojunctions for environmental remediation and energy harvesting. *Journal of Environmental Sciences (China)*. Chinese Academy of Sciences. https://doi.org/10.1016/j.jes.2024.01.006
- [9] Aytekin, A., Korucuk, S., Bedirhanoğlu, Ş. B., & Simic, V. (2024). Selecting the ideal sustainable green strategy for logistics companies using a T-spherical fuzzy-based methodology. *Engineering Applications of Artificial Intelligence*, 127. https://doi.org/10.1016/j.engappai.2023.107347
- [10] Biancolin, M., & Rotaris, L. (2024). Environmental impact of business-to-consumer e- commerce: Does it matter to consumers? *Research in Transportation Business and Management*, 52. https://doi.org/10.1016/j.rtbm.2023.101087
- [11] Boda, C. S., Ekumah, B., Isgren, E., Akorsu, A. D., Ato Armah, F., & Tetteh H C. (2024). Every farmer is a farmer? A critical analysis of the emergence and development of Peasant Farmers Association of Ghana. *Geoforum*, 150. https://doi.org/10.1016/j.geoforum.2024.103995
- [12] Ciancarini, P., Giancarlo, R., & Grimaudo, G. (2024). Digital Transformation in the Public Administrations: A Guided Tour for Computer Scientists. *IEEE Access*, *12*, 22841–22865. https://doi.org/10.1109/ACCESS.2024.3363075

- [13] Chirwa, J. A. (2024). New development: Government accounting reforms in southern Africa—lessons from Malawi. *Public Money and Management*, 44(2), 174–177. https://doi.org/10.1080/09540962.2023.2255389
- [14] Dwedar, M. E. M., Kose, F., Bayram, M. E. F., & Jesser, A. (2024). Investigation of the Generated Energy, Noise and Performance on High Capacity 10 MW Wind Turbines with Two Different NACA 4415-2215 Airfoils Profiles. In 4th International Conference on Smart Grid and Renewable Energy, SGRE 2024 Proceedings. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/SGRE59715.2024.10428983
- [15] Dr. Alok S C Dr. B., & Dr. Mukta M, D. A. A. (2024). Industry 4.0 and Indian Manufacturing Companies: Barriers towards sustainability. Journal of Informatics Education and Research, 4(1). https://doi.org/10.52783/jier.v4i1.646
- [16] Eslamipoor, R., & Sepehriyar, A. (2024). Promoting green supply chain under carbon tax, carbon cap and carbon trading policies. Business Strategy and the Environment, 33(5), 4901–4912. https://doi.org/10.1002/bse.3721
- [17] Filippou, G., Georgiadis, A. G., & Jha, A. K. (2024). Establishing the link: Does web traffic from various marketing channels influence direct traffic source purchases? *Marketing Letters*, 35(1), 59–71. https://doi.org/10.1007/s11002-023-09700-8
- [18] Himel, G. M. S., Hasan, M. S., Salsabil, U. S., & Islam, M. M. (2024). MedLingua: A conceptual framework for a multilingual medical conversational agent. *MethodsX*, 12. https://doi.org/10.1016/j.mex.2024.102614
- [19] Hamdani, F. E., Quintero, I. A. Q., Enjolras, M., Camargo, M., Monticolo, D., & Lelong, C. (2024). Agile supply chain analytic approach: a case study combining agile and CRISP-DM in an end-to-end supply chain. *Supply Chain Forum*, *25*(1), 96–110. https://doi.org/10.1080/16258312.2022.2064721
- [20] Li, J., Miao, Q., Zou, Z., Gao, H., Zhang, L., Li, Z., & Wang, N. (2024). A Review of Computer Vision-Based Monitoring Approaches for Construction Workers' Work- Related Behaviors. IEEE Access, 12 7134–7155. https://doi.org/10.1109/ACCESS.2024.3350773
- [21] Moisoiu, C. M. (2024). The Geopolitics of Resources: The Critical Minerals. In *Springer Proceedings in Business and Economics* (pp. 301–313). Springer Nature. https://doi.org/10.1007/978-3-031-47925-0.25
- [22] Kim, S., Park, J., Chung, W., Adams, D., & Lee, J. H. (2024). Techno-economic analysis for design and management of international green hydrogen supply chain under uncertainty: An integrated temporal planning approach. *Energy Conversion and Management*, 301. https://doi.org/10.1016/j.enconman.2023.118010
- [23] Konyukhova, S. G., Vagner, V. D., Medvedev, D. V., Kashkina, N. V., & Guzaeva, G.S. (2024). On the issue of optimizing the remote interaction system of medical workers using telemedicine technologies by project management methods. *Russian Stomatology*, *17*(1), 3–9. https://doi.org/10.17116/rosstomat2024170113
- [24] Rakesh, R, Dr., & Murugan, Dr. S. (2024). International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING Route Optimization to Manage the Medical Waste in Real-Time. *Original Research Paper International Journal of Intelligent Systems and Applications in Engineering IJISAE*, 2024(2s), 671–677. Retrieved from www.ijisae.org
- [25] Sharma, S. (2024). Big Data Analytics in Business Process: Insights and Implications. In Lecture Notes in Networks and Systems (Vol. 837 LNNS, pp. 112–118). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-48465-0.15
- [26] Turi, J. A., & Sorooshian, S. (2024, February 13). Leaders' role: now and then. *Kybernetes*. Emerald Publishing. https://doi.org/10.1108/K-05-2022-0723
- [27] Jin, H., Qu, X., Liu, B., & Liu, C. (2024). Examining the success drivers and barriers of modular building projects using qualitative comparative analysis. *International Journal of Construction Management*, p. 24(6), 601–609. https://doi.org/10.1080/15623599.2022.2135937
- [28] Yun, J. S., & Im, S. H. (2024). Porous PEDOT:PSS smart thermal insulators enabling energy harvesting and detection. *Journal of Materials Chemistry A*. https://doi.org/10.1039/d4ta00287c
- [29] Yagüe, L., Linares, J. I., Arenas, E., & Romero, J. C. (2024). Levelized Cost of Biohydrogen from Steam Reforming of Biomethane with Carbon Capture and Storage (Golden Hydrogen)—Application to Spain. *Energies*, 17(5). https://doi.org/10.3390/en17051134
- [30] Zhang, J., Wang, S., Wang, X., Jiao, W., Zhang, M., & Ma, F. (2025, January 1). A review of functions and mechanisms of clay soil conditioners and catalysts in thermal remediation compared to emerging photo-thermal catalysis. *Journal of Environmental Sciences (China)*. Chinese Academy of Sciences. https://doi.org/10.1016/j.jes.2023.11.006