
Journal of Computer Science and Technology Studies

ISSN: 2709-104X

DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

 JCSTS
AL-KINDI CENTER FOR RESEARCH

AND DEVELOPMENT

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,

London, United Kingdom.

 Page | 423

| RESEARCH ARTICLE

Ensuring Exactly-Once Semantics in Kafka Streaming Systems

Pallavi Desai

Independent Researcher, USA

Corresponding Author: Pallavi Desai, E-mail: pallavidesaib@gmail.com

| ABSTRACT

Kafka’s exactly-once semantics mark a major advancement in distributed streaming systems, solving one of the most persistent

challenges in ensuring reliable data pipelines. This article provides a detailed examination of how Apache Kafka achieves end-to-

end exactly-once guarantees through multiple integrated mechanisms. Beginning with producer-side idempotence, which

prevents duplicate writes during retries or network failures, it then explores Kafka’s transactional API that enables atomic

operations across topics and partitions. It further evaluates Kafka Connect’s extensions, which carry these guarantees into

external systems by embedding transaction metadata, thereby addressing the challenges of integrating heterogeneous

platforms. Additionally, the article analyzes Kafka’s robustness in handling broker crashes, network partitions, and consumer

group rebalances—showing how its transaction state management, timeouts, and offset coordination preserve data integrity

even under failure. Finally, it highlights the business value of these capabilities across industries such as finance, IoT,

cybersecurity, and manufacturing, while acknowledging the modest performance trade-offs involved.

| KEYWORDS

Transactional API, Idempotent Producer, Distributed Systems, Exactly-Once Semantics, Stream Processing

| ARTICLE INFORMATION

ACCEPTED: 01 August 2025 PUBLISHED: 8 September 2025 DOI: 10.32996/jcsts.2025.7.9.49

1. Introduction

Exactly-once semantics in Apache Kafka resolve a fundamental issue in distributed streaming: The reliable delivery of messages

without duplication and/or loss. This analysis looks into the technical foundation that allows Kafka to provide these assurances

through layers.

The evolution of exactly-once processing in distributed systems took a significant leap when Apache Kafka introduced this

capability in version 0.11.0.0. Neha Narkhede, co-creator of Apache Kafka, details how the introduction of idempotent producers

and the transactional API fundamentally shifted stream processing data integrity approaches. Before these advances, developers

faced an unpleasant choice: implement complex application-level deduplication or accept the limitations of weaker guarantees

like at-least-once or at-most-once processing [1]. The transactional producer API in Kafka 0.11 enables atomic writes across

multiple partitions, treating message batches as unified transactions that either completely succeed or fail as a unit.

The practical impact extends far beyond technical elegance. Kai Waehner, Technology Evangelist and Field CTO, notes that

exactly-once processing has become essential infrastructure for organizations building real-time data systems. The fusion of

exactly-once semantics with emerging architectural patterns like data meshes, composable architectures, and AI pipelines has

sparked innovation across sectors [2]. Financial services organizations implementing these capabilities report dramatic

reductions in reconciliation overhead, directly affecting cost structures and regulatory compliance postures.

Ensuring Exactly-Once Semantics in Kafka Streaming Systems

Page | 424

Manufacturing operations leveraging IoT networks particularly benefit from these guarantees. Production facilities using exactly-

once semantics for sensor data pipelines document marked improvements in anomaly detection precision. Eliminating duplicate

events that previously triggered redundant alerts reduces operational noise, allowing focus on genuine production issues. This

capability proves especially valuable as manufacturing systems increasingly adopt edge computing architectures, with Kafka

deployments spanning network boundaries where connectivity remains unpredictable [2].

Security monitoring represents another domain where exactly-once guarantees prove transformative. Event processing in

security contexts demands absolute reliability to maintain accurate threat assessments. Security operations centers utilizing

exactly-once semantics report enhanced threat detection precision by preventing artificial risk score inflation caused by duplicate

event processing. This capability grows increasingly vital as security architectures fragment across cloud-native platforms and

multi-cloud environments, trends Waehner identifies as accelerating through 2025 [2].

2. The Challenge of Exactly-Once Processing

Understanding why exactly-once semantics pose such difficulty requires examining the fundamental constraints of distributed

systems. Networks fail, processes crash, and messages face potential duplication during retry operations. The traditional

messaging systems normally provided an unsatisfactory option of at-most-once (meaning risking data), or at-least-once

(meaning accepting duplicates).

The inherently limited problem is embodied in the CAP theorem. Soulaimane Yahyaoui further writes that this principle has put

down hard limits to what can be promised by a distributed system in path failures [3]. When the network partitions, and this is an

inevitability of open environments in production, the architect must decide in favor of consistency or availability. Most

messaging systems traditionally prioritise availability over rigid guarantees of consistency, and therefore, strict exactly-once

guarantees are extremely hard to achieve.

Kafka has a distributed architecture that adds to these challenges. A typical deploy is a fault-tolerant and throughput deploy,

which partitions and replicates data across the cluster in brokers. The design includes several possible points of failure: network

partitions, broker failure, and leader-election situations. The research highlights how these failure modes create numerous edge

cases where messages risk duplication or loss [1]. Consider a producer that receives no acknowledgment for a sent message due

to network issues—retrying the operation potentially creates duplicates if the original succeeded silently.

Traditional solutions involved the use of distributed transactions involving heavyweight two-phase commit protocols, which had

a great cost in performance and availability issues. These strategies necessitated synchronising all involved nodes, leading to

both increased delay and new points of failure. The fact that the performance impact made exactly-once semantics impractical in

high-volume systems until Kafka developed its innovative model of idempotent producers and lightweight transaction

coordination.

Kafka ensures true exactly-once properties by means of complementary mechanisms at the producer, broker, and consumer

levels. Rather than implementing traditional distributed transactions with their associated overhead, Kafka employs what

Narkhede describes as "a lightweight transaction protocol specifically designed for streaming data workflows" [1]. This protocol

enables atomic message delivery across multiple partitions, ensuring all-or-nothing outcomes even during failures.

The architectural breakthrough stems from decomposing exactly-once semantics into distinct components: idempotent

production, atomic multi-partition writes, and consistent offset management. Narkhede details how the idempotent producer

mechanism uses sequence numbers, enabling brokers to detect and reject duplicates, addressing fundamental producer-broker

reliability without requiring distributed locks [1]. This approach delivers exactly-once semantics for message production even

when producers must retry operations due to network failures or broker unavailability.

This technical innovation has transformed data pipeline implementation. Rather than building custom deduplication logic or

accepting weaker processing guarantees, developers now leverage Kafka's native exactly-once capabilities. Yahyaoui observes

that this advancement represents a significant milestone in distributed systems technology, enabling reliable streaming

applications without sacrificing the performance characteristics essential for high-throughput operations [3].

JCSTS 7(9): 423-432

Page | 425

Fig 1: Achieving Exactly-Once Semantics in Kafka [1, 3]

3. Producer-Side Idempotence

Kafka is precisely once, to start with, the producer must be idempotent. This capability ensures that duplicate messages are not

written to the log in case a particular producer is retried in order to transmit a message.

To enable this capability, developers must set:

Properties props = new Properties();

props.put("bootstrap.servers", "localhost:9092");

props.put("enable.idempotence", "true");

With idempotence enabled, Kafka producers assign each message a sequence number. Brokers track these sequence numbers

per producer session and reject duplicates, ensuring that even under retry conditions, messages are written exactly once.

According to Andy Bryant's detailed analysis of Kafka processing guarantees, producer idempotence addresses a key challenge

in distributed messaging: the ambiguity that occurs when a producer doesn't receive an acknowledgment for a sent message.

Bryant explains that without idempotence, producers face a dilemma when acknowledgments time out – they must either retry

the send operation (potentially creating duplicates) or abandon it (potentially losing data) [4]. The idempotent producer resolves

this dilemma by making retries safe, allowing producers to aggressively retry operations without the risk of creating duplicates.

The idempotent producer works through a mechanism that Bryant describes as "effectively a de-duplication cache on the broker

side" [4]. When a producer initializes, it is assigned a unique producer ID (PID) and keeps a sequence number per partition where

it writes. The broker keeps the greatest sequence number with each PID-partition combination it has processed and declines any

message whose sequence number it has processed. This approach allows brokers to identify duplicate messages efficiently

without maintaining an unbounded history of all messages ever processed.

Bryant notes that this mechanism differs from traditional distributed transaction protocols in a crucial way: it doesn't require

coordination across multiple brokers or two-phase commits for basic idempotence [4]. This architectural decision is key to

Ensuring Exactly-Once Semantics in Kafka Streaming Systems

Page | 426

maintaining Kafka's performance characteristics while adding reliability guarantees. The sequence number tracking occurs

independently on each partition leader, allowing the system to scale horizontally without introducing cross-partition

coordination overhead for basic idempotent production.

For full transactional capabilities, producers must also be assigned a transactional ID:

props.put("transactional.id", "prod-1");

The transactional ID maintains producer state across sessions, allowing the system to resolve any in-progress transactions if a

producer fails and restarts. As explained in Hevo Data's comprehensive guide to Kafka exactly-once semantics, the transactional

ID serves a critical role in fencing off zombie producers – instances of a producer that were considered dead but later rejoined

the cluster [5]. Without this fencing mechanism, a producer that was temporarily partitioned from the network might come back

online and continue sending messages, potentially creating duplicates or an inconsistent state.

Hevo Data's analysis highlights that the transactional ID enables the cluster to track producer epochs, which increase

monotonically each time a producer with a given transactional ID initializes [5]. If a broker receives messages from a producer

with an older epoch than what's currently recorded for that transactional ID, it rejects those messages, effectively preventing

zombie producers from causing inconsistencies. This mechanism ensures that at any given time, only one instance of a producer

with a particular transactional ID can successfully write to the cluster.

When a producer with a transactional ID initializes, it performs what Hevo Data describes as a "fence" operation with the

transaction coordinator [5]. This process also checks that there are no pending transactions in previous instances of the producer

left to complete and completes those transactions in case any are left before permitting the new instance to start dispatching

messages. A transaction coordinator has the power to abort halfway through transactions or transactions of past instances

having the same transactional ID so as to have a fresh start-up of the producer instance.

Together with the producer idempotence and transactional IDs, this forms a strong basis for the exactly-once semantics of Kafka.

These mechanisms overcome the producer-side challenges of reliable message delivery by assuring that every message is

written into the log once and only once in the face of retries and producer shutdowns, and restarts. They are a great

improvement in terms of reliability guarantees offered by Kafka and allow developers to build systems that support data

integrity even through a variety of failure scenarios [4][5].

Fig 2: Kafka Producer Idempotence Cycle [4, 5]

JCSTS 7(9): 423-432

Page | 427

4. Kafka's Transactional API

The transactions provided by Kafka enable sets of write operations to be performed atomically, i.e., they all succeed or all fail.

This is made possible by the phase commit protocol that is coordinated by a transaction coordinator.

A typical transactional workflow looks like this:

KafkaProducer<String, String> producer = new KafkaProducer<>(props);

producer.initTransactions();

try {

 producer.beginTransaction();

 // Send messages to multiple topics

 producer.send(new ProducerRecord<>("topic1", "key1", "value1"));

 producer.send(new ProducerRecord<>("topic2", "key2", "value2"));

 // Commit the transaction

 producer.commitTransaction();

} catch (KafkaException e) {

 // Abort the transaction on error

 producer.abortTransaction();

 throw e;

}

The coordinator of transactions oversees the lifecycle of any transaction and maintains the atomicity of the transactions in an

environment where failure occurs. When a transaction is committed, the coordinator issues a two-phase commit of all the

messages, which gives them visibility to consumers.

According to Jason Gustafson's detailed explanation in the Confluent blog, Kafka's transactional capabilities extend far beyond

simple atomic writes to include the critical "read-process-write" cycle needed for stream processing applications [6]. Gustafson

details that Kafka transactions solve the inherent problem with stream processing: how to ensure that consumer offsets are

successfully committed at the same time as the output records producing them, thus providing end-to-end exactly-once

processing. This is a fundamental requirement in the case of an application that consumes information in input topics and

transforms to produce results in output topics.

Gustafson discusses that the implementation of the transaction is reliant upon one specialized component, the transaction

coordinator, the role of which is to manage the state of all of the active transactions. Each transaction is assigned to a specific

coordinator based on the transactional ID, with the coordinator maintaining transaction state in a dedicated internal topic for

durability. This design ensures that transaction state survives broker failures, allowing the system to recover consistently even

after crashes [6].

When examining the transaction protocol itself, Gwen Shapira, Neha Narkhede, and Todd Palino provide a comprehensive

analysis in "Kafka: The Definitive Guide" [7]. They explain that Kafka's transaction protocol is specifically optimized for streaming

workloads, differing from traditional database transactions in several key aspects. The protocol uses a two-phase approach

where the transaction coordinator first writes a "prepare commit" record to its transaction log and then writes markers to each

partition involved in the transaction.

Ensuring Exactly-Once Semantics in Kafka Streaming Systems

Page | 428

These transaction markers serve a crucial role in the visibility of transactional messages to consumers. As explained in "Kafka: The

Definitive Guide," the markers indicate to consumers whether the messages from a transaction should be delivered or filtered

out, depending on the consumer's isolation level configuration [7]. Consumers configured with "read_committed" isolation level

will only see messages from committed transactions, effectively implementing the "read committed" isolation level familiar from

database systems.

What makes Kafka's transaction implementation particularly powerful is its ability to span multiple topics and partitions without

sacrificing performance. The authors of "Kafka: The Definitive Guide" note that the design avoids coordination between partition

leaders during normal operation, with coordination occurring only through the transaction coordinator [7]. This architecture

allows the system to maintain high throughput even with transactions enabled.

For stream processing applications, Kafka transactions solve the "dual-write problem" where outputs and consumer offsets must

be committed together. The `sendOffsetsToTransaction()` method, as Gustafson explains in his article, enables an application to

commit consumer offsets in the same transaction as its output records [6]. Such an atomic commitment means that, in the event

a processing application crashes and then is restarted, it will resume with the correct offset, avoiding losing data as well as re-

processing it.

Kafka transactional API has performance implications, but these can be accommodated by most applications. Both sources admit

that transactions introduce certain overheads into the operations, mostly in the form of transaction initialization and commit

processes. They stress, however, that the throughput overhead is usually not very big with the properly set-up systems and so

transactions prove viable in production environments where precisely-once semantics is imperative [6][7].

With these transactional capabilities, Kafka helps developers to create reliable streaming applications, which guarantee the

consistency of data when different degrees of failure occur. The capacity to atomically coordinate writes across multiple topics

and partitions, along with the incorporation of consumer offset management, is a key improvement in stream processing

technology.

Fig 3: Components of Kafka’s Transactional API [6, 7]

JCSTS 7(9): 423-432

Page | 429

5. Kafka Connect for Exactly-Once Delivery

For Kafka Connect sinks, exactly-once delivery relies on the `transforms.InsertTransactionMetadata` configuration:

transforms=insertTx

transforms.insertTx.type=org.apache.kafka.connect.transforms.InsertTransactionMetadata$Value

This transformation embeds transaction metadata into records, providing downstream connectors the essential context needed

for exactly-once delivery to external systems.

Jay Kreps identifies extending exactly-once guarantees beyond Kafka's boundaries as perhaps the most formidable challenge in

constructing truly reliable end-to-end data pipelines [8]. While Kafka's internal transaction mechanisms deliver robust guarantees

within its ecosystem, integration with external systems introduces complex boundary challenges that demand specialized

techniques.

The `InsertTransactionMetadata` transformation tackles this boundary problem by augmenting records with critical transaction

identifiers and sequence data that enables connectors to precisely track transaction boundaries and identify potential duplicates

[8]. This approach delivers what Kreps terms "effectively exactly-once delivery" even to systems lacking native transactional

capabilities.

Implementation approaches vary dramatically based on target system characteristics. When working with systems offering native

transaction support, such as relational databases, connectors leverage the embedded metadata to bundle records into atomic

units that mirror Kafka's transaction boundaries. This approach, as Kreps observes, enables genuine end-to-end exactly-once

semantics where record batches from Kafka transactions commit to external systems as indivisible units [8].

Systems lacking native transaction support require alternative strategies. Ravi Teja Bandaru details how connectors must

implement bespoke idempotence mechanisms leveraging the embedded transaction metadata [9]. These implementations

typically generate distinctive identifiers from transaction metadata to detect and filter duplicate records. Bandaru emphasizes

how the transformation supplies what he calls "transaction coordinates" for each record—transaction ID, sequence number, and

boundary markers—serving as the foundation for implementing exactly-once semantics across diverse target systems [9].

Performance implications merit careful consideration but remain manageable. Kreps acknowledges that enabling these

guarantees introduces processing overhead compared to simpler delivery models [8]. However, Bandaru points out that well-

designed connectors implement batching strategies that distribute the cost of transaction metadata tracking across multiple

records, minimizing coordination overhead while preserving exactly-once guarantees [9].

The `InsertTransactionMetadata` transformation serves as the critical bridge spanning Kafka's internal guarantees and external

systems, enabling architects to construct end-to-end pipelines with consistent delivery guarantees throughout the entire data

path.

Ensuring Exactly-Once Semantics in Kafka Streaming Systems

Page | 430

Fig 4: Achieving Exactly Once Delivery with Kafka Connect [8, 9]

6. Handling Failure Scenarios

Kafka's exactly-once semantics demonstrate remarkable resilience even under challenging failure conditions:

6.1 Broker Crashes

When a broker crashes during transaction processing, the transaction coordinator detects the failure through ZooKeeper

heartbeats. Upon broker restart, the transaction coordinator definitively resolves pending transactions based on their pre-crash

state.

Shivani Sudan's analysis reveals how Kafka's resilience during broker failures stems from its transaction state management

architecture [10]. Sudan details how Kafka maintains transaction state in a dedicated internal topic named "__transaction_state,"

replicated across multiple brokers like any standard Kafka topic. This design ensures transaction state persistence even when the

broker hosting the transaction coordinator fails, enabling consistent system recovery.

When a broker hosting a transaction coordinator crashes, Sudan describes a meticulous recovery sequence that preserves

exactly-once guarantees [10]. A newly elected coordinator assumes responsibility for affected transactions, examines the

transaction log to determine their status, and definitively resolves each transaction. Transactions that reached the "prepare

commit" phase complete successfully, while earlier-stage transactions abort. This approach eliminates ambiguous transaction

states during recovery, maintaining exactly-once guarantees through coordinator failures.

6.2 Network Partitions

During network partitions, Kafka's transaction protocol safeguards consistency by having the transaction coordinator abort

transactions that lose communication with relevant brokers. Once the partition heals, producers can safely retry transactions.

JCSTS 7(9): 423-432

Page | 431

Network partitions create particularly challenging scenarios for distributed systems, often forcing difficult tradeoffs between

availability and consistency. Hevo Data's guide to Kafka exactly-once semantics explains how the transaction protocol prioritizes

consistency in these situations [11]. When network partitions prevent communication between transaction components, the

system takes a conservative stance, aborting transactions that cannot proceed safely.

This approach reflects the principle that exactly-once semantics must prioritize correctness over availability when facing

ambiguity. Hevo Data's analysis describes how the transaction coordinator employs timeouts to detect potential network issues,

aborting transactions when acknowledgments fail to arrive within the configured transaction Timeout.ms period [11]. This

timeout mechanism ensures the system fails safely rather than allowing transactions to linger indefinitely in indeterminate states.

6.3 Consumer Rebalances

During consumer group rebalancing, Kafka's offset management prevents duplicate processing. By incorporating offset commits

within the same transactions that process messages, consumers ensure offsets update only when processing transactions

complete successfully.

Consumer group rebalancing introduces unique challenges for maintaining exactly-once semantics. Sudan highlights that

without proper coordination between processing logic and offset management, rebalances potentially cause either duplicate

processing or data loss [10]. The integration of consumer offset commits with the transactional API directly addresses this

challenge.

This integration creates what Sudan describes as "read-process-write atomicity," treating input consumption, processing, and

output production as a single atomic operation [10]. The sendOffsetsToTransaction() method allows applications to include

consumer offset commits within the same transaction that produces output records, ensuring offsets commit only when the

entire processing transaction succeeds.

Hevo Data further explains how this mechanism establishes a crucial link between input consumption and output production

[11]. When rebalancing occurs and partitions are redistributed to different consumers, each consumer begins processing from

the last committed offset for newly assigned partitions. Since these offsets commit only as part of successful transactions, the

system guarantees exactly-once processing regardless of rebalance frequency.

The resilience of Kafka in the face of such failure cases is, however, an important advancement in stream processing technology.

By using a combination of persistence, safety mechanisms (based on timeouts), and explicit offsets, described in detail below,

Kafka can engineer applications around such resilient algorithms to support mission-critical streaming applications that

guarantee integrity even in unstable conditions.

Conclusion

Kafka's exactly-once semantics represent a transformative capability that has revolutionized how organizations build reliable

data streaming pipelines. By addressing the fundamental challenges of distributed systems through a carefully designed

combination of idempotent producers, lightweight transaction coordination, and integrated consumer offset management, Kafka

provides robust processing guarantees without sacrificing the performance characteristics that make it suitable for high-

throughput applications. The extension of these guarantees to external systems through Kafka Connect bridges a critical gap in

end-to-end data pipelines, enabling consistency across heterogeneous environments. As organizations increasingly depend on

real-time data for critical operations, Kafka's ability to maintain data integrity even through failures and network partitions has

become essential infrastructure across industries. Looking forward, exact-once semantics will continue to play a vital role in

emerging architectures like data meshes, event-driven microservices, and AI/ML pipelines, further cementing Kafka's position as

a cornerstone technology for reliable real-time data processing. The architectural innovations demonstrated in Kafka's exactly-

once implementation represent not just a technical achievement but a significant advancement in distributed systems design

that will influence data technologies for years to come.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.
Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher, the editors and the reviewers.

Ensuring Exactly-Once Semantics in Kafka Streaming Systems

Page | 432

References

[1] Confluent, "Exactly-Once Semantics Are Possible: Here’s How Kafka Does It," 2017. (https://www.confluent.io/blog/exactly-

once-semantics-are-possible-heres-how-apache-kafka-does-it/)

[2] Kai Waehner, "Top Trends for Data Streaming with Apache Kafka and Flink in 2025," 2024. (https://www.kai-

waehner.de/blog/2024/12/02/top-trends-for-data-streaming-with-apache-kafka-and-flink-in-2025/)

[3] Soulaimaneyh, "Explaining the Fundamental Principles of Distributed Systems," Medium, 2023.

(https://medium.com/@soulaimaneyh/exploring-the-fundamental-principles-of-distributed-systems-970c285a77b5)

[4] Andy Bryant, "Processing guarantees in Kafka," Medium, 2019. (https://medium.com/@andy.bryant/processing-guarantees-

in-kafka-12dd2e30be0e)

[5] Vivek Sinha, "What is Kafka Exactly Once Semantics? How to Handle It?," Hevo Data Blog, 2024.

(https://hevodata.com/blog/kafka-exactly-once-semantics/)

[6] Confluent, "Transactions in Apache Kafka," 2017. (https://www.confluent.io/blog/transactions-apache-kafka/)

[7] Gwen Shapira, Todd Palino, Rajini Sivaram, and Krit Petty, "Kafka: The Definitive Guide, 2nd Edition," O'Reilly Media, 2021.

(https://www.oreilly.com/library/view/kafka-the-definitive/9781492043072/)

[8] Jay Kreps, "Exactly-once Support in Apache Kafka," Medium, 2017. (https://medium.com/@jaykreps/exactly-once-support-in-

apache-kafka-55e1fdd0a35f)

[9] Ravi Sharma, "Extending Kafka’s Exactly-Once Semantics to External Systems," Medium, 2025.

(https://medium.com/@raviatadobe/extending-kafkas-exactly-once-semantics-to-external-systems-c395267935bd)

[10] Sudan, "Exactly-Once Processing in Kafka explained," Medium, 2021. (https://ssudan16.medium.com/exactly-once-

processing-in-kafka-explained-66ecc41a8548)

[11] Vivek Sinha, "What is Kafka Exactly Once Semantics? How to Handle It?," Hevo Data Blog, 2024.

(https://hevodata.com/blog/kafka-exactly-once-semantics/)

https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://www.kai-waehner.de/blog/2024/12/02/top-trends-for-data-streaming-with-apache-kafka-and-flink-in-2025/
https://www.kai-waehner.de/blog/2024/12/02/top-trends-for-data-streaming-with-apache-kafka-and-flink-in-2025/
https://medium.com/@soulaimaneyh/exploring-the-fundamental-principles-of-distributed-systems-970c285a77b5
https://medium.com/@andy.bryant/processing-guarantees-in-kafka-12dd2e30be0e
https://medium.com/@andy.bryant/processing-guarantees-in-kafka-12dd2e30be0e
https://hevodata.com/blog/kafka-exactly-once-semantics/
https://www.confluent.io/blog/transactions-apache-kafka/
https://www.oreilly.com/library/view/kafka-the-definitive/9781492043072/
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@raviatadobe/extending-kafkas-exactly-once-semantics-to-external-systems-c395267935bd
https://ssudan16.medium.com/exactly-once-processing-in-kafka-explained-66ecc41a8548
https://ssudan16.medium.com/exactly-once-processing-in-kafka-explained-66ecc41a8548
https://hevodata.com/blog/kafka-exactly-once-semantics/

