
Journal of Computer Science and Technology Studies

ISSN: 2709-104X

DOI: 10.32996/jcsts

Journal Homepage: www.al-kindipublisher.com/index.php/jcsts

 JCSTS
AL-KINDI CENTER FOR RESEARCH

AND DEVELOPMENT

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,

London, United Kingdom.

 Page | 263

| RESEARCH ARTICLE

Codeless Automation Adoption for Manual Testers: A Pathway to Agile QA

Transformation

Balraj Govindaraj

Independent Researcher, USA

Corresponding Author: Bhanudeepti Chinta, E-mail: balrajgovind01@gmail.com

| ABSTRACT

Software teams embracing codeless automation systems find new pathways for manual testers facing the Agile revolution.

Quality assurance veterans, despite holding extensive product expertise, frequently hit roadblocks when confronting script-based

tools like Selenium or Cypress. The complexity demands programming skills that many testers never developed during careers

focused on user experiences and business logic validation. Meanwhile, sprint cycles keep shrinking, release frequencies

accelerate, and manual-only approaches buckle under mounting pressure. Codeless platforms break this stalemate through

visual interfaces anyone can navigate—drag-and-drop elements replace coding syntax, record-playback features capture

interactions directly, and business-language commands substitute for programming constructs. When organizations implement

these solutions thoughtfully, following structured transition phases, test teams maintain their invaluable domain wisdom while

gaining automation's efficiency. The framework presented maps this journey, revealing how visual automation design naturally

matches testers' mental models, reducing cognitive barriers and preserving institutional knowledge that took years to develop.

| KEYWORDS

Codeless automation, Manual testing, Agile transformation, Quality assurance, Test democratization

| ARTICLE INFORMATION

ACCEPTED: 01 August 2025 PUBLISHED: 03 September 2025 DOI: 10.32996/jcsts.2025.7.9.31

1. Introduction

1.1 The Evolution of Testing in Modern Software Development

Over the past decade, a decisive shift transformed software creation. Organizations have abandoned phase-gate waterfall

processes—formerly the dominant paradigm—and they have embraced both Agile delivery models and DevOps integration

strategies. The traditional six-month release cycles with separate, rigid testing phases gradually disappeared across the industry.

Development teams now operate in environments where code deployment happens continuously, sometimes multiple times

daily, fundamentally changing how quality must be verified [1]. This acceleration creates unprecedented challenges for

conventional testing approaches.

Beyond methodology shifts, the financial impact of this transformation proves substantial. Each defect escaping to production

carries greater cost implications as market expectations for software quality continue rising. Organizations successfully

implementing automated testing frameworks document significant reductions in post-release defects and customer-reported

issues [2]. The fundamental position of quality assurance within development cycles shifted markedly, evolving from a terminal

verification stage performed after development completion to an integral engineering discipline embedded throughout the

entire development continuum.

Codeless Automation Adoption for Manual Testers: A Pathway to Agile QA Transformation

Page | 264

1.2 The Manual Tester's Dilemma

Most manual testers now face a career crossroads that grows more urgent each quarter. Job boards increasingly showcase

automation skills as mandatory requirements rather than optional bonuses [2]. Testing professionals who built careers

meticulously validating business logic and user experiences suddenly find their expertise undervalued unless paired with

programming knowledge. The job market paints a complicated picture, though. Manual-only positions gradually disappear while

technical recruiting teams struggle to fill roles requiring both deep product understanding and automation capabilities [1].

Salary surveys highlight widening compensation gaps between traditional testers and automation specialists, adding financial

strain to professional uncertainty [2]. Daily work becomes increasingly overwhelming as regression testing demands multiply

with each sprint. The testing burden grows heavier while deadlines tighten. Manual testers find themselves working evenings

and weekends just to maintain existing coverage levels. Project timelines frequently slip when testing bottlenecks delay

deployments, putting quality teams squarely in the critical path and under mounting pressure [1].

1.3 The Technical Barrier to Automation

The path toward automation expertise feels impossibly steep for many established testers. Popular frameworks like Selenium

demand JavaScript proficiency, while Cypress requires understanding React component lifecycles - skills rarely developed during

careers spent validating business requirements and user experiences [2]. The cruel irony? These veteran testers hold invaluable

system knowledge but lack the coding foundation that automation frameworks demand.

Many attempt the transition, struggling through nights and weekends of self-study, only to abandon efforts months later when

progress stalls [2]. Companies report wildly inconsistent results when retraining manual testing staff, with success rates varying

dramatically based on team makeup and training approaches [1].

A troubling perception spreads through organizations - automation belongs exclusively to programming-savvy specialists while

traditional testers get sidelined despite their deep product understanding. Engineering leaders struggle with impossible choices:

sacrifice years of accumulated testing wisdom or delay critical automation initiatives. The growing divide threatens both quality

outcomes and team cohesion as organizations attempt to balance technical automation needs against preserving hard-won

domain expertise [2].

2. The Limitations of Manual Testing in Agile Environments

2.1 Velocity Constraints

Despite thoroughness, manual testing introduces notable constraints in Agile contexts. Hand-executed test sequences create

elongated feedback loops that delay deployments and undermine continuous delivery objectives. Enterprises implementing

Agile practices encounter substantial hurdles when manual verification becomes a constriction point within development

pipelines [3]. Time requirements for exhaustive manual validation frequently clash with rapid iteration targets, generating friction

between quality imperatives and delivery velocity. Sprint cycles contract across industries while release cadences accelerate,

rendering purely manual approaches progressively untenable and compelling organizations toward strategic testing

recalibration.

2.2 Regression Testing Challenges

Successive development iterations present regression risks, demanding verification of established functionality alongside novel

features. Manual practitioners face expanding test portfolios requiring repetitive execution. Research into testing methodologies

reveals that regression validation consumes excessive portions of quality assurance capacity within manual testing frameworks

[4]. This expanding verification scope produces nonlinear growth in testing effort with subsequent releases as the cumulative

functionality requiring validation increases per sprint. Repetition inherent in regression testing elevates error probability during

manual execution, particularly amid time constraints characteristic of Agile environments [3]. Quality departments report

diminished capacity for exploratory testing when regression dominates schedules. Concerning retention factors emerge as tester

engagement declines through repetitive execution tasks, introducing quality vulnerabilities and staff preservation difficulties [4].

2.3 Scalability and Consistency Issues

Enterprise-scale applications expose significant scalability limitations in manual testing approaches. These constraints materialize

across multiple dimensions, affecting quality outcomes and operational parameters. Manual testing groups struggle primarily

with sequential execution requirements, preventing concurrent validation across distributed environments [3]. This linear

processing restricts throughput while extending feedback intervals. Consistency presents equally critical challenges, with

documentation highlighting execution variability between individual testers and distinct test cycles [4]. Such inconsistency

JCSTS 7(9): 263-270

Page | 265

introduces result ambiguity, potentially obscuring actual application performance. Load simulation represents another area

where manual approaches prove inadequate, as performance evaluation requires concurrent synthetic transaction generation

exceeding manual capabilities. Cross-platform validation becomes mathematically impractical through manual means given

exponential scenario combinations across operating systems, browsers, and device configurations [3]. These limitations

collectively undermine quality assurance efficacy within accelerated delivery environments.

Limitation Type Impact Severity

Feedback Loops High

Regression Coverage Very High

Cross-Platform Testing Extreme

Tester Engagement Medium

Concurrent Execution High

Table 1: Manual Testing Constraints in Agile Development [3,4]

3. Codeless Automation: Bridging the Technical Divide

3.1 Conceptual Framework of Codeless Testing

Codeless automation systems fundamentally reshape test automation accessibility through intuitive interfaces that mask

underlying complexity. This architectural approach transforms quality assurance practices by abstracting technical

implementation details behind visual interaction models. Evidence suggests these platforms derive primary value from

eliminating technical prerequisites while preserving automation benefits, thus enabling the utilization of existing test expertise

without extensive programming education [5]. Core system designs incorporate abstraction layers converting high-level

interactions into executable scripts, effectively separating test design from implementation mechanics.

The structural foundation comprises interconnected technological elements enabling effective test creation without coding

requirements. Visual action builders permit drag-and-drop assembly of test procedures, while capture-replay mechanisms

transform application interactions into reproducible sequences. Business-oriented language processing allows scenario

descriptions using domain terminology rather than programming constructs, and graphical workflow editors facilitate

conditional logic implementation without scripting knowledge [6]. These combined technologies democratize automation access

across technical proficiency levels while preserving valuable domain knowledge.

3.2 Technological Landscape of Codeless Platforms

Market evolution has produced diverse codeless automation ecosystems offering varied approaches suited to different

organizational contexts. This diversification demonstrates category maturation as offerings expanded from specialized solutions

toward comprehensive enterprise platforms [5]. Technological differentiation reveals multiple strategies addressing automation

accessibility while supporting complex testing requirements.

Platform architectures vary considerably: some implement hybrid designs combining visual interfaces with scripting extensibility;

others employ flowchart methodologies aligning with business process modeling techniques. Cloud-native offerings provide

centralized management with automated maintenance features, while enterprise solutions deliver continuous testing integrated

with business workflows. Language-processing platforms convert plain text descriptions into executable procedures, whereas

others prioritize robust element identification, ensuring test resilience amid interface changes [6]. This ecosystem diversity

enables precise platform selection based on organizational testing maturity and specific technical requirements.

3.3 Enterprise Integration Capabilities

Contemporary codeless systems extend beyond basic test creation toward comprehensive integration features necessary for

production-scale quality operations. These capabilities ensure codeless automation functions effectively within existing

technology infrastructures. CI/CD pipeline integration enables automated execution within established development workflows,

while version control integration provides governance parity with application code [5].

Defect management synchronization establishes closed-loop quality processes, automatically updating issues based on test

outcomes. Analytics capabilities deliver visibility into coverage metrics and quality trends. Cross-platform execution orchestration

enables testing across diverse environments without manual intervention, addressing fundamental scalability constraints.

Advanced enterprise features include parallel execution frameworks, test data management, and environment provisioning

Codeless Automation Adoption for Manual Testers: A Pathway to Agile QA Transformation

Page | 266

systems [6]. These integration capabilities position codeless platforms as enterprise-grade quality solutions rather than

introductory tools, enabling robust quality practices while maintaining accessibility for non-programmers.

Fig 1: Codeless Automation Framework: Bridging the Technical Divide [5,6]

4. Leveraging Manual Testing Expertise in Codeless Environments

4.1 Transferable Skills from Manual Testing

Manual testing practitioners bring forth uniquely valuable competencies into codeless automation contexts. Years spent

validating applications yield profound domain knowledge and business process comprehension—expertise forming the bedrock

of effective testing regardless of execution methodology. Studies confirm contextual understanding of business operations as

fundamentally important for test case design across both manual and automated paradigms [7]. Such expertise spans beyond

mere technical function validation toward business impact assessment across varied user workflows and feature criticality

determinations.

The intimate application familiarity cultivated through direct interaction generates intuitive understanding of user journeys and

experience expectations. This user-centered viewpoint enables test scenario creation, validating both functional correctness and

usability aspects. Heuristic approaches toward test case design and boundary condition identification uncover potential failure

points often missing from technical specifications [8]. Seasoned manual testers develop pattern recognition faculties, allowing

anticipation of edge cases and system vulnerabilities. Defect detection, isolation, and documentation skills prove remarkably

transferable when analyzing automated test results and articulating findings toward development teams.

4.2 Augmenting Manual Testing Strengths

Codeless platforms magnify these established capabilities by converting conceptual test scenarios into executable workflows

without programming prerequisites. Examination of teams transitioning toward automation indicates visual approaches offer

substantially more accessible pathways compared to traditional coding methods [7]. This accessibility represents a fundamental

JCSTS 7(9): 263-270

Page | 267

transformation in leveraging existing quality expertise. Where traditional automation erected barriers excluding domain experts

from participation, codeless systems democratize automation access.

Data-driven testing implementation without scripting complexity represents a significant capability enhancement. Accessible

interfaces for parameterization and external data integration enable sophisticated scenario creation without programming

knowledge. Reusable component architecture aligned with business processes amplifies efficiency and maintainability [8].

Support for modular design through shared object repositories and standardized action sequences proves particularly valuable

amid frequent application changes characteristic of Agile environments.

4.3 Cognitive Benefits of Visual Automation Design

Visual interfaces provide cognitive advantages, aligning with established mental models, facilitating smoother transitions toward

automation. Technology adoption research confirms that tools matching existing mental frameworks demonstrate higher

implementation success rates [7]. Test representation as visual flows mirrors manual test thinking patterns, creating natural

alignment between conceptualization and implementation. This correspondence reduces learning curves associated with

automation adoption.

Direct manipulation interfaces diminish cognitive load versus programming environments. Traditional coding requires

maintaining multiple mental contexts simultaneously, creating substantial barriers for many manual testers. Visual interaction

with test components eliminates abstract code manipulation [8]. Immediate feedback accelerates learning cycles while reducing

error rates during automation creation. Execution visualization enhances understanding of system behavior during test runs,

facilitating efficient troubleshooting when failures occur. These visualization capabilities parallel observational techniques

traditionally employed during manual test execution.

Transferable Skill Value in Automation

Domain Knowledge Critical

User Journey Expertise High

Heuristic Testing Very High

Defect Isolation Significant

Pattern Recognition Essential

Table 2: Leveraging Manual Testing Expertise in Codeless Environments [7,8]

5. Implementation Framework for Agile QA Transformation

5.1 Phase 1: Strategic Assessment and Platform Selection

The transition to codeless automation begins with methodical evaluation of organizational requirements and potential solutions.

This critical initial phase establishes the foundation for successful transformation by ensuring alignment between organizational

needs and technological capabilities. Research on automation adoption highlights the importance of a thorough assessment

before implementation to prevent costly mistakes and ensure sustainable results [9]. The evaluation should commence with a

comprehensive analysis of application testing needs across all relevant platforms and technologies, including web, mobile, API,

and database testing requirements. This analysis ensures that selected tools can address the full spectrum of testing needs rather

than creating isolated solutions.

Following requirements analysis, organizations should conduct a systematic evaluation of candidate platforms using

standardized criteria aligned with their specific testing contexts. Key evaluation dimensions should include platform capabilities,

integration potential, usability factors, and long-term maintenance considerations [10]. This structured evaluation approach

ensures objective comparison across potential solutions and mitigates the risk of selection based on marketing claims rather

than actual capabilities. Limited-scope proof of concept implementation on critical business workflows validates that theoretical

capabilities translate to actual performance in the specific technology and business context. The initial phase concludes with the

measurement of usability and learning curve for existing testers, providing crucial insight into the accessibility of the platform for

the testing team.

5.2 Phase 2: Knowledge Transfer and Initial Implementation

Following platform selection, focus shifts to capability development and initial application. This phase establishes the foundation

of skills and practices that will support broader implementation. Studies of successful automation transitions emphasize that

proper training and knowledge sharing are essential for team adoption and effective tool utilization [9]. The phase begins with

Codeless Automation Adoption for Manual Testers: A Pathway to Agile QA Transformation

Page | 268

structured role-specific training programs tailored to diverse team capabilities. These programs should recognize the varying

technical backgrounds and learning styles within testing teams, providing appropriate learning pathways for different team

members.

Establishment of internal mentorship and champion networks represents a critical success factor for codeless automation

adoption. These networks provide ongoing support beyond initial training, creating sustainable knowledge-sharing mechanisms

within the organization. The roadmap for successful implementation highlights the importance of identifying early adopters who

can help guide others through the transition process [10]. Selective conversion of high-value manual test cases to automated

workflows provides tangible early success while building team capabilities. This focused approach targets test scenarios with

high execution frequency or significant business impact to demonstrate clear value from automation. The phase concludes with

iterative feedback collection and process refinement, ensuring that implementation adapts to organizational realities.

5.3 Phase 3: Standardization and Architecture Development

With initial implementation validated, the approach expands to establish sustainable practices that will support enterprise-scale

automation. This phase begins with the development of standardized component libraries and reusable test assets. These

modular components establish the technical foundation for efficient test creation and maintenance by reducing duplication and

enabling consistent approaches across test suites. Best practices in test automation architecture emphasize the importance of

building reusable components that can be maintained centrally and used across multiple test scenarios [9].

Implementation of consistent naming conventions and metadata structures ensures navigability and maintainability as

automation scale increases. These standardization elements create a shared language for test assets, supporting collaboration

and knowledge transfer across team members. Automation implementation guidance stresses that standardized frameworks and

consistent practices significantly reduce maintenance overhead and improve long-term sustainability [10]. Integration with

existing CI/CD infrastructure and deployment pipelines enables automated test execution triggered by code changes, providing

rapid feedback on quality impacts. The phase concludes with documentation of organizational best practices and governance

standards, codifying the approaches and decisions that have proven effective during initial implementation.

5.4 Phase 4: Scaled Implementation and Performance Measurement

The final phase focuses on organizational expansion and quantifiable outcomes, ensuring that automation initiatives deliver

measurable business value. This phase begins with the definition of key performance indicators for automation effectiveness.

These metrics should encompass both technical measures and business outcomes to provide a comprehensive view of

automation benefits [9]. Systematic migration of regression test suites to the codeless platform provides comprehensive

coverage of existing functionality while efficiently leveraging automation capabilities. This migration should prioritize test

scenarios based on execution frequency, stability requirements, and business criticality.

Integration of automated testing into release validation processes ensures that automation becomes an integral component of

quality governance rather than a parallel activity. Testing experts recommend establishing clear gates in the release pipeline

where automated tests must be executed and passed before proceeding to the next stage [10]. This integration establishes

automated test execution as a formal requirement in release processes, creating organizational accountability for test execution

and results. The implementation framework concludes with continuous improvement through metrics-driven iterative

enhancement. This ongoing refinement ensures that automation approaches evolve with changing application architectures,

business requirements, and testing methodologies, recognizing that transformation represents an ongoing journey rather than a

destination.

JCSTS 7(9): 263-270

Page | 269

Fig 2: Four-Phase Roadmap for Codeless Automation Implementation in Agile Environments [9,10]

Conclusion

Adopting codeless automation transcends mere technological change, representing instead a strategic necessity for quality

leadership amid digital transformation. This article resolves the longstanding tension between domain expertise and technical

requirements. Organizations gain unique opportunities by preserving hard-won testing wisdom while embracing modern

practices. Manual testers find enhanced capabilities rather than replacement, extending influence through accessible automation

tools. Far beyond technical solutions alone, codeless platforms establish human-centered strategies aligning quality processes

with both business imperatives and workforce development. The quality assurance future exists not in false choices between

manual expertise versus automation efficiency, but through thoughtful integration via accessible tools that democratize technical

capabilities without sacrificing domain knowledge. For quality leaders navigating transformation initiatives, codeless approaches

offer viable pathways toward balanced, sustainable testing strategies serving both immediate quality needs and long-term

organizational objectives.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.
Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher, the editors and the reviewers.

Codeless Automation Adoption for Manual Testers: A Pathway to Agile QA Transformation

Page | 270

References

[1] Ashwini Nadiger et al., "World Quality Report 2023-24," Capgemini [Online]. Available: https://www.capgemini.com/wp-

content/uploads/2023/11/WQR_2023_FINAL_WEB_CG.pdf

[2] Abhaya, "A Comparative Guide to Automation and Manual Testing," Medium, 2023. [Online]. Available:

https://medium.com/@abhaykhs/a-comparative-guide-to-automation-and-manual-testing-84ec105ef78c

[3] Linh Chu Dieu, "Revolutionizing Software Delivery: How Test Automation Elevates Agile Methodologies," SmartDev, 2024.

[Online]. Available: https://smartdev.com/revolutionizing-software-delivery-how-test-automation-elevates-agile-methodologies/

[4] Ms. Monika Gupta and Dr. R. K. Bathla, "Comparative Study of Software Testing Technique using Manual and Automated

Way," International Journal of Scientific Research in Science and Technology, 2022. [Online]. Available:

https://www.researchgate.net/publication/367006035_Comparative_Study_of_Software_Testing_Technique_using_Manually_and_

Automated_Way

[5] Aakanksha Dixit, "Why No-Code Test Automation is Vital for Businesses in 2023," Opkey, 2023. [Online]. Available:

https://www.opkey.com/blog/why-no-code-test-automation-is-vital-for-businesses

[6] Pooja Potghan, "A Comprehensive Guide to Codeless Automation: Basics, Benefits, and Approaches," QED42, 2022. [Online].

Available: https://www.qed42.com/insights/a-comprehensive-guide-to-codeless-automation-basics-benefits-and-approaches

[7] Charles Paul, "Transitioning from Manual Testing to Automated Testing in a Continuous Integration Setup," Researchgate,

2024. [Online]. Available:

https://www.researchgate.net/publication/385351737_Transitioning_from_Manual_Testing_to_Automated_Testing_in_a_Continuo

us_Integration_Setup

[8] Vijay Kanade, "What Is Test Automation? Meaning, Approaches, Methodologies, Tools, and Benefits," Spiceworks, 2024.

[Online]. Available: https://www.spiceworks.com/tech/devops/articles/what-is-test-automation/

[9] Neha Vaidya, "A Comprehensive Guide to Software Test Automation," Testgrid, 2025. [Online]. Available:

https://testgrid.io/blog/test-automation/

[10] Parinay Singh, "Roadmap for Automation Testing: Mastering Automation Testing for Beginners," Internshala Training.

[Online]. Available: https://trainings.internshala.com/blog/roadmap-for-automation-testing/

B.

https://www.capgemini.com/wp-content/uploads/2023/11/WQR_2023_FINAL_WEB_CG.pdf
https://www.capgemini.com/wp-content/uploads/2023/11/WQR_2023_FINAL_WEB_CG.pdf
https://medium.com/@abhaykhs/a-comparative-guide-to-automation-and-manual-testing-84ec105ef78c
https://smartdev.com/revolutionizing-software-delivery-how-test-automation-elevates-agile-methodologies/
https://www.researchgate.net/publication/367006035_Comparative_Study_of_Software_Testing_Technique_using_Manually_and_Automated_Way
https://www.researchgate.net/publication/367006035_Comparative_Study_of_Software_Testing_Technique_using_Manually_and_Automated_Way
https://www.opkey.com/blog/why-no-code-test-automation-is-vital-for-businesses
https://www.qed42.com/insights/a-comprehensive-guide-to-codeless-automation-basics-benefits-and-approaches
https://www.researchgate.net/publication/385351737_Transitioning_from_Manual_Testing_to_Automated_Testing_in_a_Continuous_Integration_Setup
https://www.researchgate.net/publication/385351737_Transitioning_from_Manual_Testing_to_Automated_Testing_in_a_Continuous_Integration_Setup
https://www.spiceworks.com/tech/devops/articles/what-is-test-automation/
https://testgrid.io/blog/test-automation/
https://trainings.internshala.com/blog/roadmap-for-automation-testing/

