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| ABSTRACT 

Technology nodes below 2nm pose a whole new set of challenges, primarily concerning power, performance, area (PPA) 

optimization, and routing complexity. Sequential elements such as flip-flops and latches are the leading contributors to dynamic 

power consumption and are among the major timing bottlenecks, while dense metal stacks cause resistance and congestion 

issues that limit manufacturability. This work presents a unified machine learning framework that enables optimum sequential 

elements use and metal layer assignment with a design automation process. The framework uses graph neural networks (GNN) 

to learn the topological patterns of netlist structures for property extraction and applies reinforcement learning agents to make 

instantaneous decisions for real-time metal allocation over voltage/clocks, routing congestion maps, IR drop limitations, and 

timing criticality weights. For high-dimensional embeddings of raw feature data, simulation traces, toggle patterns ,and physical 

layout characteristics are converted to a graph node structure through feature engineering techniques and utilized for semantic 

clustering. The joint cost function mitigates timing degradation, IR drop penalties, register count, and routing congestion. 

Adaptive weights allow for distinct tuning for joins and improve usability. Showing implementations in TSMC N2 technology 

means that there were significant improvements in the following: flip-flop reductions, setup violations severity, improved routing 

congestion, overall design robustness, and complete management of metal layer assignments. The framework works with 

existing EDA tool chains through further TCL scripting or Python APIs without altering functional correctness or other 

manufacturing alteration elements. 
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1. Introduction and Problem Statement 

1.1 Technology Scaling Challenges at 2nm Node and Below 

The semiconductor industry's shift to sub-2nm technology nodes is a significant transition that adds an additional high level of 

complexity in the design optimization process. Sophisticated process technologies, including gate-all-around transistor 

architectures, increase the potential for variability and parasitic coupling effects while increasing the accuracy needed in design 

closure processes [1]. These scaling difficulties, along with traditional design optimization processes, are conducive to a more 

complicated optimization platform that aisneeded to address the more complicated interdependencies between power, 

performance, area, and reliability constraints. 

 

1.2 Sequential Element Redundancy and Power Overhead in Advanced Designs 

Sequential logic elements proliferate in modern digital designs due to pipelining requirements, control logic implementations, 

and interface protocol specifications, often resulting in unnecessary redundancy. This proliferation creates excessive clock tree 

loading, elevated dynamic power consumption, and increased timing complexity that becomes particularly problematic in 
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advanced nodes where power density constraints are stringent and timing margins are reduced. Traditional design flows lack the 

intelligence to identify and eliminate non-essential sequential elements while maintaining functional correctness and timing 

performance. 

 

1.3 Metal Layer Congestion and Electromigration Issues 

Metal layer allocation in advanced technology nodes presents multifaceted challenges encompassing routability, thermal 

management, and electromigration reliability. Dense local routing on lower metal layers exacerbates congestion bottlenecks, 

while improper power network strapping across metal layers increases IR drop risks and thermal hotspots. The selection of 

optimal metal layers requires comprehensive awareness of net criticality, layout density patterns, and electrical constraints, with 

electromigration concerns becoming particularly acute in narrow metal lines carrying high current densities. 

 

1.4 Limitations of Traditional Heuristic-Based Design Flows 

Conventional electronic design automation tools rely primarily on rule-based heuristics and predetermined optimization 

sequences that struggle to adapt to dynamic interactions present in advanced technology nodes. These traditional 

methodologies operate with fixed priority schemes and limited visibility into global design impacts, resulting in suboptimal 

solutions when faced with complex tradeoff scenarios. The heuristic-based approaches lack the capability to learn from design 

patterns and typically address sequential optimization and metal layer planning as independent problems, missing opportunities 

for synergistic improvements. 

 

1.5 Opportunity for AI/ML-Driven Optimization Approaches 

Recent advancements in artificial intelligence and machine learning present unique opportunities to disrupt semiconductor 

design optimization through intelligent automation [2]. Graph neural networks have the ability to learn complex topological and 

other structural patterns in netlist representations, and reinforcement learning can be utilized for adaptive decision-making 

based on evolving design criteria. Furthermore, machine learning models can process the vast amounts of design data to spot 

underlying patterns and dependencies, which traditional heuristical approaches often fail to discover, allowing optimization 

algorithms to learn continuously, and without limits, consistently adapting to the complexities of designs and technologies. 

 

2. Prior Work and Technical Foundation 

2.1 Sequential Circuit Optimization: Formal Verification, Retiming, and Clock Control 

Sequential circuit optimization relies on three primary techniques that have shaped modern digital design practices. Formal 

verification methods employ satisfiability checking algorithms to guarantee functional equivalence during circuit modifications, 

ensuring design integrity throughout optimization processes. Retiming algorithms systematically move storage elements across 

logic boundaries to minimize critical path delays and reduce overall register requirements [3]. Clock control mechanisms insert 

conditional gating logic to prevent unnecessary switching in idle circuit portions, directly reducing dynamic power consumption. 

These foundational approaches encounter scalability limitations when applied to contemporary designs containing extensive 

sequential logic networks. 

 

Technique Primary Objective 
Computational 

Complexity 
Design Stage 

Functional 

Verification 

Required 

Formal 

Methods 

Equivalence 

Verification 
Exponential Post-Synthesis Yes 

Retiming 
Critical Path 

Optimization 
Polynomial Synthesis/Physical Yes 

Clock Gating 
Dynamic Power 

Reduction 
Linear RTL/Synthesis Partial 

Sequential 

Pruning 

Area/Power 

Optimization 
NP-Complete Physical Design Yes 

Table 1: Sequential Logic Optimization Techniques Comparison [3] 
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2.2 Physical Routing Strategies in Commercial Design Software 

Current industry-standard design automation platforms implement metal layer assignment through algorithmic rules that 

prioritize completion rates and manufacturing compliance. Power grid networks receive allocation to thick upper metal layers, 

while signal routing is distributed across the remaining layers based on local congestion measurements. Vertical connection 

minimization guides inter-layer routing decisions to control parasitic effects and fabrication complexity. Design rule constraints 

specify geometric limitations, including minimum dimensions and spacing requirements that restrict routing flexibility. These 

deterministic approaches cannot accommodate dynamic optimization requirements or balance competing design objectives 

effectively. 

 

2.3 Computational Intelligence in Circuit Design Automation 

Artificial intelligence integration within circuit design tools addresses complexity challenges that exceed traditional optimization 

capabilities [4]. Supervised learning models predict circuit delays, estimate power consumption, and forecast routing congestion 

with enhanced accuracy compared to analytical methods. Classification algorithms support design exploration by identifying 

optimal parameter combinations based on performance criteria. Deep neural networks model complexnonlinearr relationships 

between design variables and circuit characteristics. Pattern recognition techniques group similar design configurations to 

inform optimization strategies. These computational methods demonstrate significant improvements but generally target 

isolated design problems rather than comprehensive system optimization. 

 

Application Domain ML Technique Input Features Output Prediction 
Accuracy 

Level 

Congestion 

Prediction 
Decision Trees 

Routing Density, Net 

Distribution 
Congestion Hotspots High 

Power Estimation Neural Networks 
Activity Factors, Gate 

Counts 

Dynamic/Static 

Power 
Very High 

Delay Modeling Regression Models 
Process Parameters, 

Layout Geometry 
Propagation Delays High 

Design Space 

Exploration 
Classification 

PPA Metrics, Design 

Constraints 
Feasible Solutions Medium 

Placement 

Optimization 

Reinforcement 

Learning 

Netlist Topology, 

Timing Constraints 

Component 

Positions 
High 

Table 2: Machine Learning Applications in EDA Domain Classification [4] 

 

2.4 Network-Based Learning and Decision Algorithms for Circuit Design 

Graph-structured neural networks naturally represent circuit topologies by encoding components as vertices and connections as 

directed edges. Neighborhood aggregation operations enable information propagation across circuit structures while preserving 

topological relationships. Feature learning mechanisms extract relevant patterns from local circuit configurations to guide global 

optimization decisions. Decision-making algorithms model circuit optimization as sequential choice problems where automated 

agents develop optimal strategies through environment interaction. Multi-objective reward structures encode competing design 

goals, including performance, area efficiency, power consumption, and manufacturing feasibility. These advanced computational 

frameworks outperform traditional heuristic methods in handling complex combinatorial optimization challenges. 

 

2.5 Limitations in Unified Design Optimization 

Contemporary optimization strategies isolate sequential logic modification from physical implementation planning, creating 

artificial boundaries between interdependent design decisions. Current methodologies lack comprehensive frameworks that 

simultaneously consider register placement effects on routing congestion and metal layer utilization impacts on timing 

performance. Sequential optimization operates without routing awareness, potentially generating configurations that create 

physical implementation difficulties. Physical planning algorithms ignore sequential element distribution consequences for clock 

network synthesis and power delivery design. This compartmentalized approach prevents comprehensive optimization that 

could achieve superior results through coordinated decision-making across design domains. 
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3. Technical Approach and Implementation Strategy 

3.1 Multi-Source Data Collection: Simulation Monitoring, Voltage Analysis, and Route Density Assessment 

Comprehensive data gathering operations extract information from diverse design verification sources to construct training 

repositories for algorithmic development. Dynamic behavior monitoring captures switching patterns across storage elements 

during representative benchmark execution, generating activity profiles and temporal relationships [5]. Voltage distribution 

assessment produces spatial maps revealing power delivery stress concentrations and thermal gradient locations throughout 

chip regions. Route density evaluation generates detailed measurements of interconnect utilization across multiple abstraction 

levels, pinpointing constraint areas that limit physical realization. Supplementary information streams encompass parasitic 

modeling outputs, delay verification summaries, and fabrication rule compliance reports that establish complete design 

characterization datasets. 

 

3.2 Attribute Construction for Storage Components and Interconnect Properties 

Data transformation processes convert raw design information into organized formats compatible with learning algorithm 

requirements through specialized encoding techniques. Storage element characterization includes activity frequency 

measurements, connectivity distribution patterns, delay sensitivity rankings, and geometric clustering indices calculated from 

coordinate positions. Interconnect attribute generation produces density distribution charts, layer consumption profiles, 

connection point statistics, and length measurements spanning routing hierarchies. Integration methods combine storage and 

interconnect properties through statistical correlation examination, revealing dependencies between register positioning choices 

and routing resource demands. Sequential encoding captures design modification patterns across optimization cycles to provide 

learning systems with convergence behavior information. 

 

3.3 Hybrid Learning Architecture: Gradient Boosting with Attention Mechanisms for Storage Optimization 

Storage optimization employs combined architectural strategies merging ensemble decision methods with attention-based 

processing frameworks [6]. Gradient boosting modules process structured attribute tables, including delay margin data, 

consumption estimates, and connectivity measurements through iterative refinement techniques. Attention processing units 

handle sequential patterns in activity information and design evolution using self-referencing mechanisms that identify extended 

relationships between circuit components. Integration layers merge outputs from architectural elements through adaptive 

weighting systems that modify based on design circumstances and optimization targets. Parallel attention heads enable 

simultaneous processing of different attribute categories while preserving computational efficiency for extensive circuit 

representations. 

 

Component Architecture Type Input Processing Feature Learning Output Generation 

XGBoost Module 
Gradient Boosting 

Trees 

Structured 

Tabular Data 

Ensemble Feature 

Selection 
Binary Classification 

Transformer 

Module 

Attention 

Mechanism 

Sequential 

Patterns 

Self-Attention 

Encoding 

Context 

Representation 

Feature Fusion 

Layer 
Neural Network 

Multi-Modal 

Inputs 

Cross-Domain 

Correlation 
Unified Feature Vector 

Multi-Head 

Attention 
Parallel Processing 

Different Feature 

Aspects 

Simultaneous 

Learning 

Comprehensive 

Understanding 

Table 3: Hybrid Learning Architecture Components [6] 

 

3.4 Policy Learning System for Layer Assignment Decisions 

Layer assignment operations utilize strategy-based learning algorithms to execute sequential routing choices according to 

evolving design conditions and accumulated knowledge. Condition representation encodes current routing status, available layer 

capacity, density patterns, and electrical violation indicators as organized attribute collections. Decision options include discrete 

layer selection possibilities for individual connections, constrained by fabrication rules and manufacturing specifications. 

Objective evaluation balances competing goals, including length reduction, density mitigation, voltage improvement, and 

connection minimization through proportional combinations. Strategy network development uses actor-critic approaches with 

experience storage to ensure learning stability and prevent knowledge degradation during optimization sequences. 
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3.5 Unified Objective Formulation and Design Tool Coordination 

Integrated optimization coordinates storage and routing choices through composite objective formulations that represent 

interdependencies across design domains. Objective construction incorporates delay penalty terms, consumption increase 

factors, overhead measurements, and density violation scores with flexible weighting approaches that adapt according to design 

stage and priority specifications. Design tool coordination employs scripting protocols and programming interfaces to facilitate 

information transfer between learning components and commercial design platforms. Response mechanisms capture post-

optimization evaluation data to improve model accuracy and modify optimization approaches based on actual implementation 

results, guaranteeing continuous enhancement of decision effectiveness throughout design processes. 

 

4. Validation Setup and Platform Configuration 

4.1 Circuit Repository Assembly: Industrial Designs and Academic Testbenches 

Circuit validation employs heterogeneous design collections spanning commercial development projects and research-oriented 

implementations to establish comprehensive algorithmic assessment frameworks. Industrial circuit samples include 

communication protocol processors, encryption computation engines, and digital signal transformation blocks originating from 

production-ready intellectual property libraries with demanding operational specifications [7]. Academic testbench circuits 

encompass processor core implementations, memory controller architectures, and mathematical computation units derived from 

educational and research initiatives. Design characteristics vary from control-dominated structures containing extensive state 

machine logic to arithmetic-intensive implementations featuring complex datapath organizations. Repository diversity 

guarantees algorithmic robustness evaluation across distinct optimization scenarios, including critical timing constraints, energy 

efficiency targets, and silicon area limitations. 

 

4.2 Fabrication Process Characterization and Physical Implementation Rules 

Validation employs state-of-the-art manufacturing processes incorporating nanosheet device architectures that deliver enhanced 

gate control capabilities beyond conventional three-dimensional transistor geometries [8]. Process characteristics encompass 

multiple threshold voltage selections for dynamic power management, advanced metallization schemes for interconnect 

resistance reduction, and comprehensive layout restriction frameworks governing geometric feature specifications and proximity 

requirements. Manufacturing limitations include photolithographic resolution boundaries, plasma etching process tolerances, 

and surface planarization technique constraints that directly influence physical design optimization strategies. Process-

dependent considerations encompass mechanical stress phenomena in nanosheet device channels, inter-layer dielectric 

capacitance fluctuations, and heat dissipation challenges associated with elevated integration densities. 

 

Parameter 
TSMC N2 

Specification 
Design Impact 

Constraint 

Type 

Optimization 

Relevance 

Transistor 

Architecture 

Gate-All-Around 

Nanosheet 

Improved Electrostatic 

Control 
Physical High 

Metal Layers 
12-Layer Stack (M1-

M12) 

Routing Resource 

Availability 
Electrical Very High 

Minimum 

Feature Size 

Sub-2nm Critical 

Dimensions 
Layout Density Limitations Geometric High 

Power Supply 

Voltage 

Multiple VDD 

Options 

Power/Performance 

Tradeoffs 
Electrical Medium 

Design Rule 

Complexity 

Advanced DRC 

Requirements 

Manufacturing 

Constraints 
Process High 

Table 4: Technology Node Specifications and Design Constraints [8] 

 

4.3 Software Tool Environment Assembly: Commercial Implementation and Verification Systems 

Implementation platform construction utilizes established industry software solutions configured for advanced technology node 

design optimization and verification workflows. Logic synthesis and physical realization operations integrate comprehensive rule 

validation, temporal analysis capabilities, and energy consumption estimation functionalities within cohesive development 

environments. Verification infrastructure encompasses electromagnetic field computation engines for parasitic parameter 

extraction, thermal distribution modeling systems for temperature profiling, and durability evaluation platforms for current 
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density assessment. System configuration incorporates specialized optimization procedures, design limitation specifications, and 

process library characterization datasets, enabling precise circuit behavior modeling across diverse operational scenarios. 

 

4.4 Algorithm Implementation Environment: Computational Framework Assembly and Training Infrastructure 

Learning algorithm deployment utilizes established computational platforms optimized for diverse algorithmic methodologies 

and hardware acceleration configurations. Deep learning implementations leverage graphics processing unit acceleration for 

efficient gradient computation and concurrent matrix operations throughout model development cycles. Conventional learning 

algorithms employ central processing unit-optimized implementations for tabular data manipulation and ensemble technique 

execution. Platform integration facilitates efficient information transfer between algorithmic components while preserving 

computational performance during optimization sequences. Training infrastructure encompasses distributed processing 

capabilities for extensive dataset manipulation and parameter optimization across multiple algorithmic variations. 

 

4.5 Quality Measurement Standards and Correctness Validation Procedures 

Assessment methodology defines comprehensive evaluation criteria capturing optimization effectiveness across multiple design 

targets and quality characteristics. Quality measurements encompass timing convergence achievement rates, energy 

consumption decreases, silicon utilization enhancements, and interconnect completion statistics documented across varied 

circuit implementations. Validation procedures include functional accuracy confirmation through behavioral simulation testing, 

manufacturing viability assessment using layout rule verification, and performance comparison against established optimization 

baselines. Statistical reliability analysis ensures dependable performance evaluation while accommodating process fluctuations 

and measurement variability. Validation approach incorporates cross-validation methodologies, preventing algorithm overfitting 

and generalization capability assessment across different circuit classifications and process variations. 

 

5. Performance Evaluation and Algorithmic Assessment 

5.1 Register Architecture Refinement: Component Reduction and Constraint Resolution 

Register architecture optimization yields considerable enhancements in circuit efficiency through systematic component 

elimination and constraint violation resolution. Component reduction strategies successfully decrease register populations while 

preserving circuit functionality and maintaining operational specifications [9]. Constraint violations associated with setup timing 

requirements exhibit substantial resolution through strategic register positioning and selective elimination techniques that 

identify superfluous storage components without degrading critical path performance. Clock distribution network loading 

experiences corresponding reductions, contributing to diminished dynamic power requirements and enhanced distribution 

efficiency. Optimization success rates demonstrate variability across circuit categories, with state machine implementations 

showing greater component reduction potential than arithmetic processing blocks. 

 

5.2 Metal Stack Resource Management: Utilization, Redistribution, and Density Control 

Metal stack resource coordination achieves superior allocation patterns across hierarchical conductor layers, producing 

enhanced completion rates and mitigated density concentrations. Utilization redistribution transfers routing demands from 

saturated lower conductors to available upper layers, establishing balanced consumption characteristics throughout the 

conductor hierarchy [10]. Density control mechanisms eliminate localized bottleneck formations through strategic net 

assignment procedures that balance electrical characteristics with fabrication requirements. Connection point reduction 

accompanies enhanced layer allocation, diminishing parasitic impedance and strengthening signal transmission quality. Resource 

coordination benefits maintain consistency across varied circuit scales and layout arrangements. 

 

5.3 Circuit Electrical Characteristics: Supply Network Enhancement and Fabrication Compliance 

Circuit electrical optimization produces meaningful advances in power delivery effectiveness and manufacturing specification 

adherence across evaluated implementations. Supply network enhancement achieves substantial decreases in maximum voltage 

drop magnitudes through optimized distribution routing and conductor layer selection strategies. Fabrication compliance 

improvements emerge from strategic routing selections that reduce spacing infractions, dimension violations, and density 

specification failures. Current density evaluation reveals considerable reductions in migration risk factors across high-current 

transmission paths and power distribution structures. Supply network optimization exhibits particular success in performance-

demanding implementations with substantial current delivery specifications. 

 

5.4 Circuit Timing Characteristics: Delay Margin Enhancement and Path Optimization 

Circuit timing evaluation demonstrates comprehensive advances across multiple temporal metrics, including negative slack 

reduction and maximum delay minimization. Path optimization accomplishes notable delay decreases through coordinated 

storage component positioning and conductor layer selection methodologies. Setup timing enhancements emerge from 

reduced clock distribution variation and optimized signal transmission that minimizes delay fluctuations across timing-sensitive 
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paths. Hold timing adherence benefits from enhanced clock distribution balance and decreased interconnect impedance in 

storage component connections. Timing optimization success exhibits strong relationships with circuit complexity levels and 

initial violation magnitudes. 

 

5.5 Method Reliability Evaluation: Optimization, Balance, and Application Scope 

Method reliability assessment reveals critical insights regarding optimization compromises, model applicability, and scaling 

characteristics across different implementation scenarios. Optimization balance examination shows that storage component 

reduction may extend combinational processing depth in specific circuit arrangements, necessitating careful equilibrium 

between component quantity and timing characteristics. Model applicability evaluation demonstrates potential specialization 

risks when training collections lack adequate implementation variety or operational condition coverage. Scaling assessment 

indicates method effectiveness increases proportionally with implementation complexity while preserving reasonable 

computational demands. Cross-verification outcomes demonstrate consistent performance across different fabrication processes 

and implementation approaches, although effectiveness fluctuates with particular circuit features and constraint hierarchies. 

 

6. Conclusion 

This work presents a comprehensive framework that jointly optimizes sequential elements and metal layer usage in advanced 

semiconductor physical design through artificial intelligence and machine learning techniques. The unified optimization strategy 

demonstrates substantial improvements in register utilization efficiency, routing congestion mitigation, timing closure 

enhancement, and electrical performance characteristics across diverse circuit implementations. Graph neural networks 

effectively capture topological patterns in circuit structures while reinforcement learning agents adapt dynamically to evolving 

design constraints and optimization objectives. The integration of semantic embeddings for sequential element characterization 

enables intelligent clustering and elimination of redundant components without compromising functional correctness. Metal 

layer allocation strategies successfully balance competing objectives, including wirelength minimization, congestion reduction, 

and IR drop improvement through multi-dimensional reward functions. Implementation results validate the effectiveness of 

machine learning-driven design automation in managing increasing complexity at advanced technology nodes while preserving 

manufacturability and reliability requirements. Future extensions include ECO-aware reoptimization capabilities that learn from 

post-signoff corrections, multi-die integration for chiplet architectures, and real-time embedding within commercial EDA tools 

for live optimization during design iterations. The demonstrated framework establishes a foundation for intelligent design 

automation that addresses fundamental challenges in next-generation semiconductor development through coordinated 

optimization across multiple design domains. 
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