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| ABSTRACT 

This article addresses the critical challenge of detecting and mitigating performance regressions in machine learning models 

caused by platform-level changes. Unlike traditional software systems, ML models exhibit probabilistic behavior that can silently 

degrade when the underlying infrastructure evolves. The present a comprehensive framework for identifying and addressing 

these hidden regressions through environment fingerprinting, performance correlation analysis, and automated detection 

pipelines. Our methodology captures detailed execution contexts, establishes reproducible benchmarks, and implements 

continuous monitoring to maintain model integrity during infrastructure transitions. Through extensive experimentation across 

diverse ML workloads, we identify specific regression patterns including numerical precision shifts, memory access changes, and 

thread scheduling variations. We propose effective mitigation strategies, including infrastructure versioning, platform-aware 

model design principles, and continuous verification practices. This work bridges the gap between model development and 

infrastructure management, enabling organizations to evolve their technical platforms while maintaining consistent ML 

performance. 
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Introduction 

Machine learning systems in production environments face a unique challenge: they must simultaneously deliver consistent 

performance while adapting to evolving infrastructure. Unlike traditional software, where correctness is more discretely verifiable, 

ML systems exhibit probabilistic behavior that can silently degrade when underlying platforms change. This paper addresses the 

critical yet understudied problem of performance regressions triggered by platform-level modifications. 

Production ML systems typically operate within complex ecosystems comprising hardware infrastructure, operating systems, 

container technologies, orchestration frameworks, and numerous software dependencies. While the ML research community has 

extensively studied model architecture improvements and dataset quality, comparatively little attention has been paid to how 

changes in these foundational layers impact model behavior. Infrastructure engineers often implement platform updates, such as 

migrating to newer instance types, scaling cluster configurations, or upgrading library versions, without fully understanding their 

potential effects on model performance. 

Our work demonstrates that even seemingly inconsequential platform changes can introduce significant variations in model 

training dynamics and inference quality. These variations stem from subtle differences in numerical computations, memory access 

patterns, thread scheduling, and hardware optimizations that collectively influence the stochastic processes underlying modern 
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ML algorithms. When undetected, these regressions can lead to degraded user experiences, increased operational costs, and 

compromised business outcomes. 

This paper presents a comprehensive framework for detecting, monitoring, and mitigating ML performance regressions caused by 

platform-level changes. We propose techniques for capturing environment metadata, establishing reproducible benchmarks, 

implementing continuous monitoring pipelines, and designing platform-aware deployment strategies. Our approach enables 

organizations to evolve their infrastructure while maintaining model integrity and performance consistency. 

Platform-Induced Effects on ML Model Accuracy and Training Metrics 

The article reveals an important but often overlooked relationship between infrastructure changes and ML model quality metrics. 

While traditional ML research focuses extensively on model architecture and dataset quality, this paper demonstrates how 

seemingly minor platform modifications can significantly impact training dynamics and inference accuracy. The authors identify 

several specific mechanisms through which infrastructure changes affect model quality, including numerical precision shifts that 

alter gradient calculations during training, memory access pattern variations that influence batch processing consistency, and 

thread scheduling differences that affect the reproducibility of stochastic operations. These technical factors collectively influence 

the statistical processes underlying model training, potentially degrading convergence properties and final accuracy metrics. 

The experimental results across diverse ML workloads provide compelling evidence of this relationship. For computer vision 

classification (ResNet-50), natural language processing (BERT), and recommendation systems, the researchers documented 

measurable performance variations when transitioning between different infrastructure configurations. Notably, organizations 

implementing comprehensive MLOps practices with standardized environments achieved a 34% improvement in model accuracy 

and a 37% reduction in performance variability across deployment environments. This demonstrates that infrastructure quality 

directly influences model quality metrics, with inadequate documentation of execution environments accounting for 38% of 

performance inconsistencies in production systems. 

The paper's proposed mitigation strategies further highlight this connection. Platform-resilient model design principles, including 

numerical stability techniques and mixed-precision training, demonstrated 41% less sensitivity to hardware transitions while 

maintaining comparable accuracy. Similarly, ensemble methods combined with containerized deployments showed particular 

robustness to infrastructure variations, improving model reproducibility by 81%. These findings bridge the artificial separation 

between model development and infrastructure management, establishing that maintaining consistent model accuracy requires 

systematic attention to the entire execution stack. By implementing environment fingerprinting, performance correlation analysis, 

and continuous verification, organizations can evolve their technical infrastructure while ensuring their ML models maintain both 

reliability and accuracy in production environments. 

Background and Related Work 

Sources of Platform-Induced Variability 

Based on our findings, we propose a comprehensive set of strategies to mitigate platform-induced regressions, beginning with 

infrastructure versioning and reproducibility techniques that enable consistent ML execution environments. 

 

Infrastructure standardization represents a critical foundation for reliable ML operations. Sridhar et al. investigated infrastructure 

reliability in cloud computing environments and found that version-controlled infrastructure definitions significantly improve 

deployment consistency. Their research demonstrates that infrastructure-as-code practices reduce configuration drift by 62% and 

improve reproducibility by 78% compared to manual configuration approaches. The researchers specifically note that "detailed 

infrastructure specifications are essential for reproducible deployments," with organizations implementing comprehensive 

infrastructure documentation experiencing 47% fewer unexpected performance variations [3]. Our approach builds upon these 

findings by developing comprehensive infrastructure templates that precisely define the complete ML execution environment, 

including immutable infrastructure definitions, exact dependency specifications, and system-level parameter enforcement. 

 

The implementation of reproducible environments enables systematic validation and troubleshooting for ML systems. Nazar et al. 

found that organizations implementing MLOps practices with standardized environments achieve a 71% improvement in model 

maintenance efficiency and a 42% reduction in deployment failures. Their research demonstrates that continuous integration 

pipelines with environment consistency checks reduce error rates by 43% and improve overall model performance stability by 27%. 

The researchers emphasize that "environment standardization represents a fundamental requirement for reliable ML operations," 

supporting our implementation of comprehensive infrastructure templates [4]. By enabling organizations to reconstruct identical 

environments for validation testing and troubleshooting, these practices significantly reduce unexplained performance variations 

and improve overall system reliability. 
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Platform-Aware Model Design 

We identified several model design principles that enhance resilience to platform changes, including numerical stability techniques, 

deterministic operations, ensemble approaches, and calibration methods that collectively reduce sensitivity to infrastructure 

variations. 

 

Platform-resilient model design requires the systematic implementation of numerical stability techniques. Sridhar et al. found that 

implementing stability-enhancing practices in distributed systems significantly improves reliability across heterogeneous 

environments. Their research shows that systems implementing comprehensive error handling and fault tolerance experience 73% 

fewer environment-related failures and 56% improved performance consistency. The researchers note that "resilient system design 

principles significantly improve service reliability across infrastructure transitions," supporting our implementation of platform-

aware design principles [3]. These techniques collectively address the implementation differences that frequently cause 

performance variations when transitioning between platform configurations. 

 

Ensemble methods and calibration techniques provide additional layers of resilience for production ML systems. Nazar et al. 

demonstrated that organizations implementing comprehensive MLOps practices achieve a 34% improvement in model accuracy 

and a 65% reduction in deployment time. Their analysis reveals that standardized testing frameworks significantly improve model 

reliability, with automated verification reducing performance variability by 37% across different deployment environments. The 

researchers emphasize that "continuous testing represents an essential component of reliable ML operations," supporting our 

implementation of comprehensive verification strategies [4]. Our experiments confirmed these findings, with models designed 

according to these principles exhibiting substantially less performance variation when deployed across different platform 

configurations. 

 

Improvement Category Improvement Percentage 

Configuration Drift Reduction 62% 

Reproducibility Improvement 78% 

Reduction in Unexpected Performance Variations 47% 

Model Maintenance Efficiency Improvement 71% 

Deployment Failure Reduction 42% 

Error Rate Reduction 43% 

Model Performance Stability Improvement 27% 

Environment-Related Failure Reduction 73% 

Performance Consistency Improvement 56% 

Model Accuracy Improvement 34% 

Deployment Time Reduction 65% 

Performance Variability Reduction 37% 

Table 1: Impact of Platform-Aware Practices on ML System Reliability [3, 4] 

Methodology 

Environment Fingerprinting 

We propose a comprehensive environment fingerprinting approach that captures the complete execution context of ML workloads. 

This extends beyond traditional model versioning to include hardware specifications, system configuration, software dependencies, 

and execution parameters. 

Infrastructure quality assessment frameworks provide a foundation for comprehensive environment fingerprinting in ML systems. 

Ogunbodede et al. developed a systematic approach to measuring infrastructure components across multiple dimensions, 
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identifying 14 key metrics that significantly impact computational performance. Their framework demonstrates that inadequate 

infrastructure documentation accounts for 38% of performance inconsistencies in production systems, with organizations 

implementing comprehensive fingerprinting experiencing 42% fewer unexplained performance variations. The researchers 

specifically note that "the absence of detailed infrastructure specifications creates significant blind spots in system monitoring and 

troubleshooting," highlighting the importance of capturing the complete execution context for ML workloads [5]. Our approach 

builds upon this foundation by extending traditional model versioning to include detailed hardware specifications (CPU/GPU 

models, memory configurations), system configuration details (OS version, kernel parameters), software dependency tracking, and 

runtime execution parameters. 

The implementation of environment fingerprinting requires systematic integration points throughout the ML lifecycle. Our 

approach aligns with the findings of Nazar et al., whose research on MLOps implementation demonstrates that organizations 

capturing detailed environment information achieve 71% better reproducibility rates compared to those using traditional 

deployment methods. Their study shows that comprehensive metadata collection improves troubleshooting efficiency by 53% and 

reduces mean time to resolution for environment-related issues by 68%. The researchers emphasize that "proper documentation 

of execution environments represents a fundamental requirement for reliable ML deployments," supporting our implementation 

of collection hooks at multiple levels of the ML lifecycle [6]. By storing this comprehensive fingerprint alongside model artifacts in 

a versioned repository, we enable precise reconstruction of execution environments for verification and troubleshooting. 

Performance Correlation Framework 

To identify relationships between platform changes and model performance, we developed a correlation framework that analyzes 

training dynamics, validation metrics, and inference characteristics using statistical techniques to detect significant deviations when 

platform components change. 

The relationship between infrastructure quality and performance metrics requires sophisticated correlation analysis. Ogunbodede 

et al. found that infrastructure variations produce measurable impacts across multiple performance dimensions, with their meta-

analysis revealing correlation coefficients ranging from 0.32 to 0.57 between infrastructure quality and system reliability. Their 

review demonstrates that infrastructure quality explains approximately 15-24% of performance variability in computational 

systems, with the strongest correlations observed in data-intensive applications. The researchers note that "establishing causal 

relationships between infrastructure changes and performance outcomes requires rigorous statistical analysis across multiple 

metrics," which directly informs our approach to performance correlation [5]. Our framework implements this insight by analyzing 

training dynamics (learning curves, gradient statistics), validation metrics (accuracy, precision, recall), and inference characteristics 

(latency distributions, resource utilization patterns) to create a comprehensive performance profile. 

Statistical techniques form the foundation of reliable regression detection in complex systems. Our implementation aligns with the 

methodological approach recommended by Nazar et al., whose research shows that organizations implementing statistical 

monitoring for ML systems experience 43% fewer undetected performance regressions compared to those using threshold-based 

monitoring alone. Their study demonstrates that parametric statistical tests identify 76% of significant performance deviations, 

while non-parametric methods capture an additional 14% of edge cases that would otherwise go undetected. The researchers 

specifically advocate for "comprehensive statistical analysis across multiple performance dimensions to ensure robust regression 

detection," supporting our implementation of both parametric tests (t-tests) and non-parametric methods (Kolmogorov-Smirnov 

tests) [6]. This multi-faceted statistical approach enables our framework to accommodate various data characteristics and identify 

subtle performance shifts that might otherwise go unnoticed. 

Automated Regression Detection Pipeline 

Building on the environment fingerprinting and performance correlation components, we developed an automated pipeline for 

continuous regression detection that includes baseline establishment, change detection, verification testing, and analysis with 

alerting capabilities. 

Automated monitoring systems significantly improve the detection and mitigation of infrastructure-related performance issues. 

Ogunbodede et al. found that organizations implementing systematic infrastructure monitoring identify 76% of potential 

performance issues before they impact end users, compared to just 23% for organizations relying on manual checks. Their analysis 

demonstrates that automated infrastructure quality assessment reduces mean time to detection for performance regressions by 

64% and improves overall system reliability by 37%. The researchers emphasize that "continuous monitoring of infrastructure 

components represents a best practice for maintaining consistent system performance," directly supporting our implementation 

of an automated regression detection pipeline [5]. Our approach operationalizes this insight through systematic baseline 

establishment, continuous change detection, automated verification testing, and statistical analysis with alerting capabilities. 

The integration of regression detection with existing deployment workflows enhances operational efficiency and reliability. Nazar 

et al. observed that organizations implementing MLOps practices with integrated testing achieve a 65% reduction in deployment 
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time while improving model quality by 34%. Their research demonstrates that continuous integration pipelines with automated 

verification reduce error rates by 43% and improve overall model performance stability by 27%. The researchers note that "seamless 

integration between testing frameworks and deployment pipelines represents a critical success factor for maintaining model 

performance," which directly informs our pipeline's integration with existing CI/CD systems and infrastructure-as-code workflows 

[6]. This integration enables immediate feedback when platform modifications impact model performance, allowing organizations 

to address potential issues before they affect production systems. 

Metric Improvement Percentage 

Reduction in Unexplained Performance Variations 42% 

Contribution to Performance Inconsistencies 38% 

Improvement in Reproducibility Rates 71% 

Improvement in Troubleshooting Efficiency 53% 

Reduction in Mean Time to Resolution 68% 

Explanation of Performance Variability (Lower Range) 15% 

Explanation of Performance Variability (Upper Range) 24% 

Reduction in Undetected Performance Regressions 43% 

Detection of Significant Performance Deviations 76% 

Detection of Additional Edge Cases 14% 

Early Detection of Potential Performance Issues 76% 

Early Detection of Potential Performance Issues 23% 

Reduction in Mean Time to Detection 64% 

Improvement in Overall System Reliability 37% 

Reduction in Deployment Time 65% 

Improvement in Model Quality 34% 

Table 2: Performance Improvements from ML Environment Monitoring and Testing Approaches [5, 6] 

 

Experimental Setup and Results 

Experimental Design 

To evaluate our framework, we conducted experiments across three representative ML workloads: computer vision classification 

(ResNet-50 model trained on ImageNet), natural language processing (BERT-base model fine-tuned for sentiment analysis), and a 

recommendation system (matrix factorization model trained on a commercial product dataset). For each workload, we 

systematically varied platform components, including hardware variations, container runtime changes, library updates, and system 

configuration changes. 

The design of comprehensive experiments for ML systems requires careful consideration of workload diversity and environmental 

variations. Zhong et al. conducted extensive evaluations of deep learning workloads across heterogeneous computing 

environments, examining performance variations in 8 deep learning applications deployed on four different hardware platforms. 

Their research demonstrated that infrastructure variations can significantly impact model training time, with performance 

differences ranging from 11.46% to 42.31% across different hardware configurations for identical workloads. The researchers 

specifically note that "the choice of infrastructure significantly impacts the training performance of deep learning models," which 

directly informed our experimental design across multiple ML application domains [7]. By systematically varying platform 
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components, including hardware configurations, container runtimes, library versions, and system settings, our methodology 

enables a comprehensive assessment of regression patterns across the ML deployment stack. 

The implementation of controlled experimental conditions ensures reliable identification of platform-induced variations. 

Majmundar et al. established best practices for MLOps implementation that achieve significant improvements in model quality 

and deployment efficiency through systematic testing and validation. Their research on MLOps maturity models demonstrates that 

organizations implementing comprehensive testing frameworks experience 67% faster issue resolution and 42% higher model 

performance stability compared to those using ad-hoc approaches. The researchers emphasize that "comprehensive testing 

frameworks are essential for maintaining model quality across different environments," supporting our implementation of repeated 

trials across systematically varied platform configurations [8]. This methodical approach enables us to isolate and quantify the 

specific impacts of platform changes on model performance across diverse ML workloads. 

Observed Regressions 

Our experiments revealed several significant regression patterns, including numerical precision shifts, memory access pattern 

changes, thread scheduling variations, library implementation differences, and resource contention effects. These patterns 

manifested as measurable performance degradations across different workloads and platform transitions. 

The identification of specific regression patterns provides critical insights for ML system reliability. Zhong et al. documented 

performance variations across different hardware configurations for deep learning workloads, finding that memory bandwidth 

limitations created significant bottlenecks that impacted model convergence speed. Their detailed analysis revealed that the choice 

of accelerator device could introduce performance variations of up to 13.8 times for identical workloads, with particularly 

pronounced effects observed in memory-intensive operations. The researchers note that "the memory hierarchy and bandwidth 

significantly impact the training performance of large-scale models," which directly aligns with our observations of memory access 

pattern impacts on model convergence [7]. These findings highlight the importance of systematic testing when transitioning 

between infrastructure generations to identify potential performance regressions before they impact production systems. 

The manifestation of platform-induced regressions across different layers of the ML stack presents significant operational 

challenges. Majmundar et al. observed that organizations implementing comprehensive MLOps practices experience 21% fewer 

production incidents and 47% faster mean time to recovery compared to traditional approaches. Their analysis demonstrated that 

standardized environments significantly improve reproducibility, with containerization reducing environment-related issues by 

78% in surveyed organizations. The researchers emphasize that "standardized deployment pipelines are essential for maintaining 

consistent model performance," supporting our findings regarding the impact of container runtime variations and library 

implementation differences [8]. These observations highlight the complex interactions between platform components and ML 

system behavior, underscoring the need for comprehensive regression detection approaches that span the entire execution stack. 

 

Metric Value/Range 

Performance Difference Range (Lower) 11.46% 

Performance Difference Range (Upper) 42.31% 

Issue Resolution Improvement 67% 

Model Performance Stability Improvement 42% 

Reduction in Production Incidents 21% 

Improvement in Mean Time to Recovery 47% 

Reduction in Environment-Related Issues 78% 

Table 3: Impact of Infrastructure Variations and MLOps Practices on ML System Performance [7, 8] 
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Mitigation Strategies 

Based on our findings, we propose a comprehensive set of strategies to mitigate platform-induced regressions: 

Infrastructure Versioning and Reproducibility 

Based on our findings, we propose a comprehensive set of strategies to mitigate platform-induced regressions, beginning with 

infrastructure versioning and reproducibility techniques that enable consistent ML execution environments. 

Infrastructure standardization represents a critical foundation for reliable ML operations. Wei et al. investigated scalable deep 

learning systems and found that standardized infrastructure templates significantly improve deployment reliability across 

heterogeneous environments. Their research demonstrates that infrastructure-as-code approaches reduce environment-related 

deployment failures by 56% compared to manual configuration methods. The researchers specifically note that "versioned 

environment specifications are essential for reproducible machine learning," with 73% of surveyed organizations reporting that 

standardized infrastructure definitions reduced troubleshooting time for environment-related issues [9]. Our approach builds upon 

these findings by developing comprehensive infrastructure templates that precisely define the complete ML execution 

environment, including immutable infrastructure definitions, exact dependency specifications, and system-level parameter 

enforcement. 

The implementation of reproducible environments enables systematic validation and troubleshooting for ML systems. Khan et al. 

found that containerization technologies provide substantial benefits for ML deployment consistency, with their survey of 

containerized ML implementations showing a 67% reduction in "works on my machine" issues following container adoption. Their 

research demonstrates that container-based standardization improves deployment success rates by 78% and reduces cross-

environment performance variability by 43% compared to traditional deployment methods. The researchers emphasize that 

"containerization enables consistent execution across development, testing, and production environments," supporting our 

implementation of comprehensive infrastructure templates [10]. By enabling organizations to reconstruct identical environments 

for validation testing and troubleshooting, these practices significantly reduce unexplained performance variations and improve 

overall system reliability. 

Platform-Aware Model Design 

We identified several model design principles that enhance resilience to platform changes, including numerical stability techniques, 

deterministic operations, ensemble approaches, and calibration methods that collectively reduce sensitivity to infrastructure 

variations. 

Platform-resilient model design requires the systematic implementation of numerical stability techniques. Wei et al. found that 

implementing numerical stability practices such as gradient clipping and mixed-precision training substantially improves model 

portability across computing environments. Their research shows that models implementing mixed-precision training demonstrate 

41% less sensitivity to hardware transitions while maintaining comparable accuracy. The researchers note that "numerical stability 

techniques are critical for consistent performance across heterogeneous computing environments," supporting our 

implementation of comprehensive stability practices [9]. These techniques collectively address the floating-point implementation 

differences that frequently cause performance variations when transitioning between platform configurations. 

Ensemble methods and calibration techniques provide additional layers of resilience for production ML systems. Khan et al. 

demonstrated that containerized model ensembles provide significant stability benefits when deployed across different 

infrastructure environments. Their analysis reveals that standardized container environments improve model reproducibility by 

81%, with containerized ensembles showing particular robustness to infrastructure variations. The researchers emphasize that 

"standardized execution environments significantly improve model reliability in production settings," supporting our 

implementation of platform-aware design principles [10]. Our experiments confirmed these findings, with models designed 

according to these principles exhibiting substantially less performance variation when deployed across different platform 

configurations. 

Performance Metric Improvement Percentage 

Reduction in Environment-Related Deployment Failures 56% 

Reduction in Troubleshooting Time 73% 

Reduction in "Works on My Machine" Issues 67% 

Improvement in Deployment Success Rates 78% 
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Reduction in Cross-Environment Performance Variability 43% 

Reduction in Hardware Transition Sensitivity 41% 

Improvement in Model Reproducibility 81% 

Table 4: Effectiveness of Mitigation Strategies for Platform-Induced ML Regressions [9, 10] 

Conclusion  

The article demonstrates that platform-level changes represent a significant yet underappreciated source of ML model regressions 

in production environments. By implementing comprehensive environment fingerprinting, statistical correlation analysis, and 

automated regression detection, organizations can substantially reduce unexpected performance variations when evolving their 

infrastructure. Our experimental results across diverse ML workloads confirm that seemingly minor platform modifications can 

introduce measurable performance degradations through subtle numerical, memory, and scheduling differences. The mitigation 

strategies we propose—including immutable infrastructure definitions, dependency pinning, numerical stability techniques, and 

continuous verification—provide practical approaches for maintaining model integrity throughout infrastructure transitions. This 

work bridges the artificial separation between model development and infrastructure management, establishing a foundation for 

building ML systems that maintain their performance despite the constantly changing platform landscape upon which they 

depend. By adopting these platform-aware practices, organizations can confidently evolve their technical infrastructure while 

ensuring the reliability and consistency of their production ML systems. 
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