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| ABSTRACT 

An architecture for privacy-preserving federated learning that can classify chest X-ray pictures of tuberculosis (TB) in 

decentralized healthcare settings. The suggested solution protects patient privacy and ensures regulatory compliance by 

facilitating the cooperative training of ML models across many healthcare organizations without necessitating direct access to 

private patient data. A structured data pre-processing pipeline is implemented, including initial inspection, image resizing to 

224×224 pixels, normalization, and class balancing using Synthetic Minority Oversampling Technique (SMOTE) to manage non-

IID distributions across federated clients. The federated setup simulates realistic clinical environments where each node holds a 

portion of the dataset and only shares model updates with the central server. The ResNet deep learning model is deployed as 

the primary classifier and its performance is evaluated against Dense Net and Squeeze Net using four key evaluation metrics: 

accuracy, precision, recall, and F1-score. Compared to the comparison models, the suggested ResNet model achieves better 

performance according to accuracy (96.7%), precision (96.8%), recall (98.0%), and F1-score (97.4%). Squeeze Net achieved a rate 

of 94.18% accuracy and Dense Net 94%. This framework's integration with cloud-based platforms increases its scalability and 

real-time applicability. It offers a secure, scalable, and high-performance solution for tuberculosis (TB) diagnosis in healthcare 

environments through the use of federated learning and big data analytics. The results validate its potential as a foundation for 

broader applications in privacy-aware medical AI systems. 
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1. Introduction 

A great deal of data has been produced by electronic health records (EHRs), diagnostic imaging, mobile health applications, and 

wearable sensors as a result of the digitalization of healthcare systems.  The statistics presented here have the ability to greatly 

enhance clinical decision-making, facilitate early diagnosis, and pave the way for customized treatment plans [1][2]. Privacy concerns, 

questions of data ownership, and issues with regulatory compliance are all magnified by the delicate nature of healthcare data.  

Traditional ML approaches that depend on consolidating huge datasets into one place are hindered by strict regulations like GDPR 

and HIPAA, which impose limits on the centralization of medical data. 

The use of big data in healthcare is much esteemed both domestically and internationally [3]. To put it in perspective, certain 

industrialized nations' platforms are more developed than others.  Despite the fact that medical data has a wealth of useful 

information that can revitalize fields like public health and health management, there is a growing concern about privacy breaches 

due to the increasing complexity and heterogeneity of healthcare data. Big data analytics, on the other hand, is a crucial tool for 

handling and understanding massive amounts of medical data [4][5]. Big data in medicine enables high-dimensional pattern 
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recognition, population-level trend analysis, and predictive modeling for diseases such as diabetes, cardiovascular conditions, and 

cancer [6][7]. However, centralizing big data from distributed healthcare providers introduces concerns regarding data breaches, 

operational costs, and institutional reluctance to share proprietary or sensitive patient information [8]. It emphasized the necessity 

of privacy-conscious and decentralized learning systems that would be capable of utilizing big data without going against moral or 

legal norms. 

Model training could occur on client devices, local institutional servers but within the decentralized approach of FL, the only data 

shared with a central aggregator would be model parameters, rather than raw data. This configuration allows shared learning with 

high data security [9][10]. Various ML and DL models have been adapted for FL in healthcare [11], including Logistic Regression for 

binary classification tasks SVM for pattern recognition, and DT for interpretable risk assessment [12]. Further sophistication uses 

Multilayer Perceptron (MLPs) and structured data, CNNs in the case of medical imaging, and LSTM networks to analyze sequential 

data like ECG or vital signs in patients [13]. Training such models in a federated setting avoids analytical value of distributions of the 

local data and maintains patient privacy. 

The versatility of FL can lead to the training of ML algorithms to learn based on productions across many client-side data in a 

succession of running iterations [14]. Federated learning, in conjunction with big data analytics, can give rise to privacy-safe, scalable, 

collaborative intelligence at distributed healthcare settings [15]. It enables real applications like sharing of diagnostic models 

between different hospitals, patient monitoring using AI via the edge device, and sharing multi-institutional research data without 

jeopardizing sensitive patient data [16][17]. Furthermore, this connection facilitates the creation of powerful prediction models for 

early illness identification, individualized treatment recommendations, and hospital resource efficiency. By enabling institutions to 

contribute to model training while retaining data locally, federated learning not only addresses legal and ethical constraints but also 

enhances model generalization by learning from diverse and non-IID datasets across heterogeneous healthcare systems. 

1.1 Motivation with Contribution 

The exponential growth of healthcare data, driven by digital diagnostics and imaging technologies, has made data-driven decision-

making increasingly important in clinical environments. However, traditional centralized machine learning approaches pose 

significant risks to patient privacy, violate regulatory constraints, and lack scalability across multiple medical institutions. The ongoing 

worldwide epidemic of TB highlights the need of developing diagnostic tools that are both smart and privacy-conscious, able to 

make use of dispersed data without jeopardizing personal patient information. A new paradigm called FL has recently surfaced as a 

viable option for collaborative model training over distributed nodes that maintain data locality. Motivated by this, their study aims 

to apply FL to large-scale TB chest X-ray datasets, addressing the dual challenges of diagnostic accuracy and data confidentiality in 

healthcare systems.  This research primarily contributes to the following areas: 

• Developed a secure and privacy-aware federated learning architecture tailored for distributed TB chest X-ray classification 

across multiple healthcare nodes, ensuring compliance with data protection standards. 

• A comprehensive preprocessing pipeline is implemented, including image resizing, normalization, and SMOTE-based class 

balancing to handle non-IID data distribution. 

• The federated environment is used to train and assess the proposed ResNet model, which is then compared to Dense Net 

and Squeeze Net models. 

• The suggested ResNet model's efficacy in TB chest X-ray classification inside a federated learning framework, surpassing 

Dense Net and Squeeze Net in every important evaluation measure (accuracy, precision, recall, and F1-score) on a consistent 

basis. 

• The architecture proves that federated learning may help with scale implementation in clinical contexts, maintain privacy of 

patient data, and provide good diagnostic results. 

1.2 Significance and Novelty 

This research proposes a novel FL framework for TB chest X-ray classification that prioritizes privacy preservation and scalability in 

distributed healthcare environments. Contrary to traditional centralized models, which require the exchange of sensitive patient data 

with a single server, the proposed solution allows collaborative model training across several institutions while maintaining secrecy. 

The framework incorporates client-specific preprocessing, including image resizing, normalization, and SMOTE-based balancing to 

address data heterogeneity and imbalance across non-IID clients. It also integrates deep convolutional models such as ResNet within 

a federated setting, achieving superior performance compared to Dense Net and Squeeze Net. large-scale data processing and real-

time model training. This combined focus on federated deep learning, big data handling, and secure, scalable deployment makes 

the proposed approach a practical and novel solution for modern privacy-aware healthcare systems. 

1.3 Structure of Paper  

The remainder of the document is structured as follows: Subsequently, Section II examines relevant literature on healthcare federated 

learning. Section III presents the suggested approach. Section IV covers the main points covered, as well as the experimental findings 

and a comparison of the models. Section V offers a concise overview of the subject and proposes potential research directions. 
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2. Literature Review 

The use of FL for precise, private, and scalable healthcare analytics is reviewed in this section. Table I summarizes the examined 

papers, emphasizing important datasets, techniques, conclusions, and future directions that are pertinent to federated healthcare 

systems. 

Zhou et al. (2025) FL has emerged as a key enabler of privacy-preserving distributed model training in edge computing 

environments, crucial for service-oriented applications such as personalized healthcare Federated Learning (RCFL) framework 

designed to enhance privacy protection and communication efficiency in edge-based service environments. RCFL integrates a global 

privacy-preserving mechanism with an innovative privacy encoding strategy that minimizes privacy risks over multiple data releases 

while significantly reducing communication overhead. The proposed framework’s theoretical analysis demonstrates its ability to 

maintain differential privacy across numerous interactions, ensuring robust model convergence and efficiency. Experimental results 

using MNIST and CIFAR-10 datasets reveal that RCFL can lower the MPLA success rate from 88.56% [18]. 

Rampone, Ivaniv and Rampone (2025) federated learning-based healthcare model leveraging MIMIC-III dataset achieving a high 

accuracy of 95% ROC-AUC while preserving patient privacy. By integrating cloud platforms like Databricks and Google Cloud Storage 

with scalable tools such as Apache Spark and MLlib, the model processes over 1.6 million records in just 0.16 seconds. The results 

highlight the feasibility of real-time, privacy-preserving analytics, making federated learning a powerful solution for secure, 

distributed healthcare and IoMT environments [19]. 

Mohanty, Dash and Tripathy (2024) privacy-preserving, decentralized learning strategies are necessary for NLP and ML problems 

because of increasing rules and regulations. Federated learning (FL) provides straightforward methods for multiple clients to work 

together to train a single global model that meets the objectives of all clients while protecting local data, offering continuous 

training, and building a useful platform to handle heterogeneous input from various models. a novel Improved-FLNLP and analyzes 

NLP workflow for smart healthcare with a special focus on FL. IFLNLP is an analytical framework for FL and NLP-based smart 

healthcare systems. the proposed approach, IFLNLP, yields the highest level of data privacy (98%) and cost effectiveness (95%), 

showing its strong privacy protection skills and better cost effectiveness as compared to NLP and FL-based system and comparatively 

better accuracy than the NLP-based system [20]. 

N, S and R (2024) Federated learning (FL) and its evolution path in healthcare. to scope a wide variety of healthcare applications in 

FL. Exactly what research direction is moving in interesting for research communities to guide their future course, uniquely focuses 

on examining numerous FL-based healthcare implementations, detailing their core methodologies and performance metrics, which, 

to their knowledge. Privacy-preserving collaborative distributed learning through federated learning in healthcare enhances research 

collaborations, thereby resulting in better-performing models [21]. 

Tan et al. (2023) the healthcare industry has made extensive use of ML and DL for big data analysis to guarantee computing efficiency 

while also protecting private information via data security and confidentiality. An optimized DSFedL framework is implemented via 

a data-sharing hub by assessing an accuracy-privacy loss function. This refers to the data-sharing function of the FedL model. Their 

optimized DSFedL has been tested on three open-source Cardiothoracic Databases (ICBHI, Cogware COVID-19, and MIT-BIH 

Arrhythmia) and found to be effective in simulating nonIID datasets. The results demonstrate an optimal outcome according to data 

security and efficiency [22]. 

Tiwari et al. (2023) federated learning (FL) can be better solutions for classification and privacy issues related to skin datasets. The 

collaboration of both in the medical field can be a significant contribution. Federated learning-based deep learning was applied to 

a publicly available dataset consisting of 10 different skin diseases. Various deep learning models were applied, and privacy concerns 

were preserved with a federated learning approach, the dataset was enhanced with several image augmentation strategies. several 

models were used and after observation, it was found that the Inception Net outperformed and produced a better accuracy rate of 

91% [23]. 

Hegde, Shenoy and Venugopal (2023) ML/ DL techniques to EHR can make the healthcare system smarter. However, the main issue 

is that preserving the patient’s privacy is paramount, Federated Learning (FL) approach is used to build a smart healthcare system 

and maintain the patient’s privacy. This study compares the ANN and Logistic Regression (LR) in the FL environment. FL-ANN and 

FL-LR framework is designed with three hospitals and is executed independently with diabetes and CKD (chronic kidney disease) 

datasets. These frameworks are done based on the performance metrics and the FL Process Time. The outcome is that the FL-LR 

framework outperforms FL-ANN concerning FL-Process Time. The FL-LR with CKD dataset results in a better accuracy of 92% with 

FL Process Time of 10.5 seconds [24]. 

Several recent studies have investigated an application of FL techniques within the healthcare domain, demonstrating significant 

advancements in achieving privacy-preserving distributed model training while maintaining high predictive accuracy across 

decentralized clinical environments. A variety of models, including ensemble approaches such as RF, XGBoost, and federated neural 

networks, have been employed to address challenges related to data imbalance and heterogeneity inherent in electronic health 

records. In particular, certain frameworks leverage federated clustering and anomaly detection mechanisms to identify rare disease 
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patterns across multiple data silos. Additionally, other approaches emphasize the effectiveness of FL-integrated deep learning 

models and logistic regression, further enhanced by the incorporation of differential privacy and secure aggregation protocols to 

support real-time, privacy-compliant medical decision-making. Despite these promising outcomes, key challenges remain, including 

the need to handle non-IID data distributions, improve model interpretability, and ensure scalability across diverse healthcare 

infrastructures. Furthermore, ongoing research highlights the importance of developing robust FL architectures that combine 

temporal health data analysis with explainable AI (XAI) methodologies to foster transparency, clinical trust, and ethical deployment 

in real-world healthcare systems. 

Table 1: Comparative Analysis of Recent Studies on Federated Learning in Big Data Healthcare 

Author(s) Datase

t 

Methodology Key Findings Advantages Limitations Future Work 

Zhou et al. 

(2025) 

MNIST, 

CIFAR-

10 

RCFL 

framework 

with privacy 

encoding and 

communicatio

n optimization 

Maintains 

differential privacy; 

reduces 

communication 

overhead; lowers 

MPLA success rate 

from 88.56% 

High privacy 

protection; 

efficient 

communication 

Limited to 

image 

datasets; not 

validated in 

real healthcare 

data 

Apply RCFL to real-

world healthcare 

data and more 

diverse edge 

scenarios 

Rampone, 

Ivaniv & 

Rampone 

(2025) 

MIMIC-

III 

FL model with 

Spark, MLlib, 

Databricks, 

and GCP 

95% ROC-AUC; 

processes 1.6M 

records in 0.16 sec 

High scalability 

and accuracy; 

cloud 

integration 

Focuses only 

on structured 

clinical data 

Extend to 

image/EHR 

integration and test 

in live hospital 

settings 

Mohanty, 

Dash & 

Tripathy, 

(2024) 

NLP in 

Smart 

Healthc

are 

IFLNLP: 

Improved FL 

framework for 

NLP 

98% data privacy; 

95% cost 

effectiveness; better 

accuracy than 

standalone NLP 

Strong privacy & 

cost 

performance in 

NLP 

Limited 

comparison 

with other FL-

NLP models 

Extend to 

multilingual health 

NLP and cross-

institution 

collaboration 

T N, S and 

R (2024) 

Multipl

e 

healthc

are FL 

studies 

Systematic 

analysis of FL 

evolution in 

healthcare 

FL enhances 

collaborative 

research and 

privacy-preserving 

model development 

Comprehensive 

overview for 

future guidance 

Lacks original 

experimentatio

n 

Deeper empirical 

benchmarking of 

proposed directions 

Tan et al. 

(2023) 

ICBHI, 

Coswar

a 

COVID-

19, 

MIT-

BIH 

DSFedL: 

Optimized FL 

with accuracy-

privacy 

tradeoff 

function 

Handles non-IID 

data efficiently with 

good privacy and 

accuracy 

Balanced 

tradeoff 

between security 

and 

performance 

Simulated 

datasets only 

Apply DSFedL to 

real-world clinical 

datasets 

Tiwari et al. 

(2023) 

Skin 

Disease 

Dataset 

FL with Deep 

Learning + 

Image 

Augmentation 

Inception Net 

achieved 91% 

accuracy; privacy 

preserved 

Effective model 

and 

augmentation 

strategy 

Results limited 

to 

dermatology 

domain 

Explore other 

modalities like 

radiology and 

oncology 

Hegde, 

Shenoy & 

Venugopal 

(2023) 

Diabete

s and 

CKD 

dataset

s 

FL-ANN and 

FL-LR across 

three hospitals 

FL-LR achieves 92% 

accuracy with faster 

training (10.5s) 

Strong privacy 

with 

performance 

comparison 

Limited to two 

disease types 

and small 

network 

Extend to federated 

multi-disease 

diagnosis with 

hybrid models 

 

3. Methodology 

A privacy-preserving federated learning architecture for tuberculosis chest X-ray classification in a dispersed healthcare setting is 

outlined in the suggested technique, as shown in Figure 1. To start, the TB chest X-ray dataset is acquired. Then, there is a structured 

data preparation phase where the images are inspected first, resized to 224×224 pixels, and normalized to ensure that the intensity 

values of images are consistent. To address data imbalance, particularly within non-IID client distributions, SMOTE is employed. The 

dataset is then split into training, validation, and testing sets while preserving class ratios. Federated learning presents advantages 
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regarding the confidentiality of patient data, as it allows keeping client-specific data at the local level and keeping global model 

updates synchronized in a secure manner. ResNet is used as the main model in classification, and the comparison of its performance 

is made with Dense Net and Squeeze Net because of its better feature extraction. The metrics applied to measure the model are F1-

score, recall, accuracy and precision. In this federated architecture, the potential of deep learning to be applied to large healthcare 

data and retain privacy and scalability were shown, thus enabling real-time diagnostics in multi-institutional medical systems. 

 

Fig. 1. Flowchart for Healthcare Using Federated Learning Models 

3.1 Data Collection 

The data used in this study was on publicly accessible websites like Kaggle that provided a large number of medical images that 

played a critical role in determining the effectiveness and scalability of the recommended models in a Big Data healthcare 

environment.  As an illustration, the chest X-ray dataset about TB has 7000 images, 3500 with a normal result and 3500 that exhibit 

symptoms of tuberculosis. This enables the models to effectively distinguish healthy instances and those affected by tuberculosis. 

The dataset also forms a good basis to verify the model's ability to scale and perform accurate and privacy-preserving diagnoses as 

the size and variety of the data are quite resembles the situation in large-scale data environments frequently encountered in real-

world healthcare analytics. 

 

Fig. 2. Sample Image of the Dataset Utilized 

Figure 2 shows several photos from the dataset to highlight how diverse it is and how it may be used in a healthcare Big Data setting: 
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Fig. 3. Histogram for Grayscale Pixel Intensity Distribution of a Chest X-ray Image 

The grayscale intensity distribution of a TB chest X-ray image, where the majority of pixels fall within the higher intensity range (150–

250), indicates a brighter image with clear anatomical structures in Figure 3. Lower counts in the darker pixel ranges (0–100) suggest 

minimal noise or underexposed regions. This contrast-rich distribution supports effective feature extraction during deep learning-

based classification. Such histogram analysis is essential in the preprocessing phase to ensure consistent image quality across 

distributed clients. 

3.2 Data Preprocessing 

Data preprocessing involved inspecting the TB Chest X-ray dataset for class distribution, image quality, and consistency. To make 

sure that deep learning models were given uniform input, all photos were first normalized and then scaled to 224×224 pixels. SMOTE 

was applied to balance the TB-positive and normal cases among the federated clients with class imbalance. The data was further 

partitioned into training, validation and testing to arrive at clean, balanced, and structural data that federated model training. Key 

steps in data preprocessing include: 

• Initial Inspection: Initial inspection involved reviewing the dataset for class distribution, image quality, and format 

consistency. This step ensured there were no corrupted or mislabeled files and confirmed equal representation of TB-positive 

and normal cases.  

• Image Resizing: To guarantee compatibility with common deep learning models like ResNet, the chest x-ray pictures were 

scaled to 224×224 pixels. This resizing step standardizes input dimensions, enabling efficient batch processing and stable 

model training. 

3.3 Normalization 

To ensure that the model converges more smoothly when training, normalization is an essential preprocessing step that uniformly 

adjusts the pixel values. For image data, pixel intensities (originally ranging from 0 to 255) typically normalized to a [0, 1] range using 

Equation (1). 

 

 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  (1) 

 

where x is the original pixel value. This transformation reduces the impact of varying image intensities and helps the neural network 

learn more efficiently. It also ensures numerical stability in gradient-based optimization algorithms. 

3.4 Class Imbalance Using SMOTE 

During the preprocessing step, SMOTE was used to reduce data imbalance.  In order to decrease class bias while maintaining data 

distribution features, SMOTE generates synthetic samples that efficiently improve the representation of minority classes. The 

balanced client configuration after preprocessing proved that the model could withstand a certain level of infrastructure and data 

heterogeneity, as shown in the SMOTE research. Both the pre- and post-SMOTE distributions of client data are shown in Figure 4.  
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Fig. 4. Client Data Distribution Before and After SMOTE 

The original biased distribution is shown in the left subplot. Clients 2, 5, and 8 had much reduced data representation.  Next, it can 

see the balanced distribution after SMOTE preparation in the right subplot.  This will guarantee that the data distribution is unaltered 

after SMOTE. 

3.5 Data Splitting 

The dataset was split into 70% for training, 15% for validation, and 15% for testing to ensure effective model evaluation. This stratified 

split maintains class distribution across all subsets, supporting balanced learning and unbiased performance measurement. 

3.6 Classification Equation of Proposed Model Resnet in Healthcare System 

ResNet's high performance is applicable to a wide range of tasks, including picture classification, picture creation, visual 

identification, NLP, voice recognition, and user prediction [25]. The residual unit's fundamental structure is shown in Figure 5. H(x) is 

the Input Value’s underlying mapping after two branches, whereas F(x) is the Input Value’s residual mapping following two weight 

layers. It is evident that by using an identity function as the shortcut link, the Residual Unit shifts the problem from fitting the 

relationship among H(x) and x to the relationship among F(x) and x.  

 

Fig. 5. ResNet Architecture 

The ReLU activation function, which is either an identity function or a constant function of 0, is used as the activation function prior 

to the output layer of the residual unit in the residual network.  In order to facilitate learning, it combined several leftover 

components. To begin with, let's pretend that the ReLU activation functions shown in Figure 5 are identity functions in Equation (2). 

 𝑥𝑙+1 =  𝑥1 + 𝐹(𝑥1, {𝑊1})  (2) 

 

where 𝑥1 denotes the input of the 𝑙𝑡ℎ ResNet unit, and  𝑊1denotes the weights. 𝑥𝑙+1  and 𝐹(𝑥1, {𝑊1})  stand for an output that is 

directly forward propagated and the residual mapping that has to be learnt from the  𝑙𝑡ℎ  ResNet unit, respectively 

Equation (3) may then be used to describe the residual network's forward propagation process. 

 

 𝑥𝐿 =  𝑥1 + ∑ 𝐹(𝑥𝑖 , {𝑊𝑖})𝐿−1
𝑖=1   (3) 

Where 𝑥𝐿 denote the accumulated output of L-1 Connected Residual Unit. 

3.7 Fedrated Learning Set Up 

An employment of a Federated Learning architecture allows for the decentralization of sensitive patient data while facilitating 

collaborative model training across several dispersed healthcare nodes. The TB chest X-ray dataset is distributed over ten client 

nodes, each of which represents a distinct healthcare facility with data distributions independent of IID. Using a federated learning 

system, medical picture categorization may be done in a way that protects patients' privacy. Clients may train their models locally in 
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this setup, eliminating the need to transmit raw data to a central server. A more effective and precise global model is the end 

product. Due to the non-IID storage of medical imaging data, each client is granted access to a randomly chosen portion of the 

dataset. varied medical facilities or equipment may have data with varied distributions, and thus, non-IID arrangement matches real-

world realities. The model parameters are updated in the following way during local training using SGD, which updates the local 

model on each client k, represented as 𝑤𝑡
𝑘 in Equation (4). 

 

 𝑤𝑡
𝑘 = 𝑤𝑡−1

𝑘 − 𝜂𝛻𝐿𝑘(𝑤𝑡−1
𝑘 )  (4) 

 

Where η stands for the Learning Rate and 𝛻𝐿𝑘(𝑤𝑡−1
𝑘 ) denotes a gradient of the loss function 𝐿𝑘 for client k's local dataset. 

3.8 Performance Matrix 

Accuracy, precision, recall, and F1-score are some of the conventional performance measures utilized to assess the suggested 

federated learning model's efficacy in classifying TB chest X-rays. These measurements provide a thorough grasp of the model's 

diagnostic efficacy across dispersed healthcare nodes. It is also possible to examine the results of predictions using a confusion 

matrix, where TP stands for correctly identified tuberculosis (TB) positive cases, TN for correctly identified normal cases, FP for normal 

cases wrongly predicted as TB positive, and FN for TB positive cases wrongly predicted as normal. These metrics assess the model's 

ability to generalize across different types of client data while protecting patient privacy in a DL setting. 

1. Accuracy 

A popular statistic for assessing how accurate a classification model's predictions is overall is accuracy. In Equation (5) below, it is 

computed as the ratio of properly identified examples to all occurrences in the dataset. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100 (5) 

2. Precision 

Precision is defined as the ratio of correctly categorized photos to all classified images [26]. The precision (Pr) may be expressed 

using Equation (6): 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑅
× 100 (6) 

3. Recall 

Recall measures how many out of all images in the database were properly classified. Equation (7) provides a concise formula that 

summarizes it as follows: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100 (7) 

4. F1 Score 

A higher F-score suggests that the system has a more effective predictive capacity, as it represents the harmonic means of recall 

and precision. Precision and recall alone, however, are inadequate metrics for evaluating system performance. According to Equation 

(8), the F-score can be determined as follows: 

 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (8) 

 

4. Results and Discussion 

The experimental results for medical image classification using DL approaches on TB chest X-ray datasets are presented in this 

section. Model performance is evaluated using important measures such as F1-score for binary classification tasks, recall, accuracy, 

and precision. This implementation was executed on a Google Colab environment using the Python programming language in a 

Jupiter Notebook. It made use of core Python libraries like TensorFlow, Kera’s, pandas, NumPy, seaborn, and matplotlib PyTorch. 

The system specifications included an Intel R Xeon R CPU E5-2697 v4 @ 2.30GHz, 64 GB RAM, and a 16 GB NVIDIA GeForce GTX 

1080 GPU, which were used to train the ResNet architecture. The analysis includes performance evaluation of the ResNet model 

through comprehensive metrics including confusion matrix analysis, ROC curve assessment, and training-validation loss curves. The 

following outputs provide detailed insights into the medical diagnosis results, supporting the effectiveness of the proposed 

approach for automated healthcare imaging systems, incorporating federated learning methodologies with privacy-preserving 

analytics for distributed medical networks. 
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Fig. 6. Confusion Matrix of ResNet Model 

This confusion matrix depicts the assessment of a ResNet model's performance in TB detection. Figure 6 shows the classification 

results with the y-axis displaying the actual labels and the x-axis showing the predicted labels. The model achieved high accuracy 

with 490 TN, 495 TP, 10 FP, and 8 FN. This ResNet-based TB detection system could assist radiologists in automated chest X-ray 

screening for early tuberculosis diagnosis in clinical settings. The implementation leverages big data analytics in healthcare. 

 

 

Fig. 7. Accuracy Graph of ResNet Classifier 

Figure 7 illustrates the training and validation accuracy curves for a ResNet model applied to tuberculosis (TB) chest X-ray 

classification over 200 epochs in Figure 7. Training accuracy is shown by the red line, and validation accuracy by the blue line. Both 

curves demonstrate consistent improvement from approximately 80% to 98% accuracy, with convergence around epoch 150, 

indicating effective model learning without significant overfitting. 
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Fig. 8. Loss Graph of ResNet Classifier 

Figure 8 shows the ResNet model's training and validation loss curves on the tuberculosis (TB) chest X-ray dataset with 200 epochs. 

Training loss is shown by the red line and validation loss by the blue line. Both curves demonstrate steady decline from initial values 

around 0.78-0.86 to final values of approximately 0.75-0.83, indicating consistent model optimization and convergence without 

overfitting throughout the training process.  

Table 2: Resnet Proposed Models' Performance On Tb Chest X-Ray Dataset 

Measure ResNet 

Accuracy 96.7 

Precision 96.8 

Recall 98.0 

F1-score 97.4 

 

Fig. 9. Performance Metrics of Chest X-ray Dataset 

Figure 9 presents Table II presents the performance metrics of the proposed ResNet model on the TB chest X-ray dataset. The model 

demonstrates exceptional diagnostic capabilities with an accuracy of 96.7%, precision of 96.8%, recall of 98.0%, and F1score of 97.4%. 

The model's strong performance in medical imaging classification tasks, as measured by these criteria, shows that it can reliably 

detect TB patients with few false positives and negatives. This approach enables federated learning with privacy-preserving analytics 

for distributed healthcare systems, allowing collaborative model training while maintaining patient data confidentiality across 

medical institutions. 

 

Fig. 10. ROC curve of ResNet Model 

Figure 10 shows the ROC curve for a ResNet model applied to TB chest X-ray classification. The green curve demonstrates excellent 

diagnostic performance with an AUC of 0.97, significantly outperforming the ResNet model. The curve shows high TPR across low 

FPR, indicating superior discriminative ability for big data applications in healthcare, utilizing machine learning. 
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Fig. 11. Line Graph of Client Contribution in the Federated Setup with ResNet Model 

A line graph comparing client-wise contribution percentages between Training and testing ResNet models within a federated 

learning environment in Figure 11. The plot reveals fluctuations in contributions across clients, with ResNet showing peak 

participation from Client 2, while Google Net exhibits more consistent but moderate contributions. This variation reflects the impact 

of non-IID data distribution on local model updates in distributed healthcare systems. 

 

Fig. 12. Bar Chart Client Contribution in the Federated Setup with ResNet Model 

Figure 12 shows the client-wise contribution percentages for training and testing ResNet models in a federated learning setup. Each 

bar represents the model update weight contributed by individual clients, showing noticeable variability due to non-IID data 

distribution that ResNet consistently achieves higher or comparable contributions, indicating more stable learning across clients in 

distributed healthcare environments. 

The proposed approach utilizing ResNet deep learning architecture demonstrates significant advantages in detecting TB by Chest 

X-ray images with exceptional accuracy, precision, and recall metrics. Its ability to effectively minimize FP and FN ensures reliable 

diagnostic outcomes and reduced misdiagnosis risks, which is critical in clinical healthcare environments. Compared to traditional 

diagnostic methods, deep learning models such as ResNet exhibit superior performance through robust feature extraction, pattern 

recognition in medical imaging, and handling of diverse radiological presentations. These can be proved by the high ROC AUC 

scores, which is 0.97, indicative of excellent discriminatory power to detect TB. The innovation of the current study is that the study 

performs a thorough assessment of ResNet architecture on real data of TB chest X-ray and presents performance results on chest 

X-rays together with in-depth confusion matrices and ROC curve analysis, which are essential to prove the clinical effectiveness of 

this model. Moreover, the hybridization of big data and federated learning models focuses on scalable and privacy-respecting 

design, which challenges such as the distribution of data between different hospitals and the confidentiality of patients are difficult 

to address. The research validates the effectiveness of DL approaches in medical imaging and shows the practical implications of 

implementing advanced AI structures to make healthcare diagnoses with better precision and performance efficiency. 

4.1 Discussion 

Table III shows the comparative performance analysis of DL models within a FL framework of TB X-ray classification on the chest. 

The proposed ResNet-based model performed the best by an accuracy of 96.7, precision of 96.8, recall of 98.0 and F1 score of 97.4 

within a privacy-preserving and distributed health situation. Comparatively, similar but slightly lower competitive accuracy of 94 

percent accuracy 96 percent precision, 95 percent recall, and 96 percent F1score were recorded using Dense Net. Squeeze Net 

yielded rather humble results of 94.18% accuracy, 94.31% precision, 94.18% recall and 94.17% F1score, albeit being more lightweight. 

Those models were tested in a federated learning system where the training process is distributed among various healthcare nodes, 

which perform heavy tasks on medical imaging data. The proposed ResNet model has not only shown a high level of classification 

ability but also showed a significantly high level of scalability and compliance with privacy regulations, thus a model well suited to 
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a reality-guided deployable in large data-driven distributed healthcare systems. This points to the practical good of combining deep 

convolutional models such as ResNet with federated learning to have high diagnostic accuracy and safe collaboration across 

organizations. 

Table 3: Comparison Between Proposed Model And Existing Models For Federated Learning In Healthcare 

Measure ResN

et 

Dense 

net[27] 

Squeeze 

Net[28] 

Accuracy 96.7 94 94.18 

precision 96.8 96 94.31 

Recall 98.0 95 94.18 

F1- score 97.4 96 94.17 

 

The efficiency of the proposed ResNet-type deep learning that is introduced in a federated learning environment in the TB chest X-

ray classification method proves to be more effective within a distributed healthcare setup. The accuracy of ResNet is the highest 

compared to other models; it surpasses Dense Net and Squeeze Net, that are utilized to form comparative baselines. The 

implementation of modern convolutional architectures in privacy-preserving settings helps the framework to capture complex trends 

in medical imaging data, thus maintaining confidentiality of the patient. The federated architecture enables decentral nodes to train 

the model without exchanging raw data according to privacy issues and regulatory limits in clinical settings. The robustness of 

ResNet is indicated by its excellent capability of processing high-resolution image features as well as heterogeneous client data. 

Nonetheless, it has its problems, such as handling non-IID data distributions and low-latency communication to support real-time 

diagnosis. Nevertheless, the proposed framework continues to present a scalable, secure and accurate solution to TB detection in 

multi-institutional healthcare networks in the broader context of utilizing federated learning to perform privacy-preserving big data 

analytics in the medical setting. 

 

5. Conclusion and Future Work 

Federated learning has already established itself as a unique learning platform because it enables edge devices to learn the model 

locally and use their local data to train the model at the local site. a federated learning-based solution to privacy-preserving TB chest 

X-ray classification in a distributed healthcare scenario. Federated learning ensures that sensitive personal patient data is distributed 

at the hospital or nodes, thus staying under privacy regulations, such as HIPAA. Pre-processing pipelines incorporate necessary 

image resizing to 224x224 pixels, normalization and SMOTE to counter class imbalance between distributed datasets that are not 

IID. ResNet was chosen due to its impressive feature extraction components and was trained coordinated among various clients. Its 

benchmarking was compared to Dense Net and Squeeze Net on the same federated configuration. The proposed ResNet model 

achieved the highest accuracy of 96.7%, demonstrating its robustness and effectiveness in medical image classification tasks. In 

contrast, Dense Net and Squeeze Net achieved accuracies of 94% and 94.18%, respectively. These results validate the superior 

performance of ResNet in the federated learning environment. For future work, the framework can be extended by incorporating 

secure aggregation techniques and differential privacy mechanisms to further enhance privacy during model updates. Additionally, 

the deployment of this system on real hospital networks with live patient data can be explored to validate its effectiveness in practical 

healthcare scenarios. The integration of multimodal data, CT scans, EHRs and optimization for low-resource edge devices are also 

promising directions to improve diagnostic accuracy and accessibility. 
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