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| ABSTRACT 

Memory architecture has transformed from a secondary consideration into a crucial performance determinant amid the 

explosive growth of artificial intelligence, especially large language models and deep neural networks. This article delves into 

hierarchical memory systems for AI workloads, revealing how strategically arranged memory technologies balance speed, 

capacity, efficiency, and cost. Spanning from lightning-fast registers to massive persistent storage, the discussion highlights 

specialized AI enhancements: integrated on-chip buffers, high-bandwidth memory configurations, seamless unified memory 

frameworks, innovative compression methods, and flexible disaggregated memory pools. These approaches boost data 

proximity advantages, handle ever-expanding model dimensions, slash power requirements, and maximize available bandwidth. 

Yet significant hurdles remain: the energy drain of data movement, bewildering programming complexity, and maintaining 

consistency across distributed systems. Promising horizons include blending diverse memory technologies, intelligent software-

managed memory allocation, task-specific memory arrangements, and revolutionary memory-centered designs that distribute 

computation throughout storage layers, potentially reshaping tomorrow's AI hardware landscape. 
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1. Introduction 

Memory architecture stands as a defining element in system performance across today's rapidly evolving artificial intelligence 

landscape. The phenomenal growth in AI model complexity, particularly within large language models and deep neural networks, 

has elevated memory hierarchy design from afterthought status to becoming either a performance multiplier or crippling 

bottleneck. 

 

Parameter counts in modern models have skyrocketed, creating unprecedented memory demands at scales once deemed 

impossible. Traditional memory systems simply cannot keep pace, resulting in the notorious "memory wall" phenomenon 

plaguing large-scale computing environments. Extensive research examining warehouse-scale computing reveals how memory 

latency and bandwidth constraints become especially problematic during data-heavy AI training and inference tasks, where 

moving data often consumes more energy than actual computation [1]. 

 

The hierarchical memory concept arranges technologies in a carefully constructed pyramid that balances speed, capacity, and 

power usage across each tier. Fast but tiny memories—registers and L1 caches—occupy the pyramid's peak, while each 

subsequent layer trades increased latency for expanded capacity. This design philosophy extends far beyond traditional CPU 

cache arrangements into specialized AI memory implementations, including custom SRAM buffers, high-bandwidth memory 

modules, system DRAM, and persistent storage solutions. Managing these tiers effectively demands sophisticated insights into 

application-specific data access patterns, particularly challenging given the irregular memory behaviors exhibited by many 

contemporary AI algorithms [1]. 
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Modern AI accelerators enhance this basic hierarchy through several specialized optimizations addressing neural network 

computation demands. Dedicated on-chip memory buffers for storing weights and caching activations represent one critical 

advancement. Additionally, integrating HBM using silicon interposers dramatically increases available memory bandwidth, 

tackling a primary constraint in large-scale model training. These memory architecture refinements represent crucial frontiers in 

AI hardware evolution, especially as models continue expanding beyond what any single memory tier can accommodate [2]. 

 

Hierarchical memory effectiveness depends heavily on sophisticated data movement strategies. Memory tiering approaches 

must carefully balance competing goals: minimizing data transfers to reduce energy consumption while ensuring necessary data 

remains available when and where computation requires it. Research suggests processing-in-memory architectures offer 

promising solutions, potentially eliminating substantial data movement costs by performing calculations directly where data 

resides [2]. 

 

As AI models continue growing in both parameter count and computational demands, supporting memory systems must evolve 

accordingly. The fundamental challenge persists, maintaining a delicate balance between computational throughput, memory 

capacity, bandwidth, and energy efficiency, highlighting the critical importance of balanced system design where no component 

exists in isolation [1]. 

 

2. Understanding Hierarchical Memory Systems 

Hierarchical memory refers to an architectural approach that arranges various memory and storage technologies in tiers, each 

distinct in speed, capacity, expense, and power efficiency. This organized method improves data transfer and storage between 

computing systems, placing frequently used information near processing units while allocating less-accessed data to larger, cost-

effective memory tiers.  

 

Contemporary computing systems, particularly those designed for AI tasks, incorporate more advanced memory structures that 

tackle essential conflicts among performance, capacity, and energy efficiency. Research demonstrates that effective memory 

hierarchies slash both computation latency and energy consumption by orders of magnitude compared to flat memory 

architectures [3]. These layered designs capitalize on locality principles—both temporal (repeated access to identical data over 

short periods) and spatial (accessing nearby data together)—perfectly suited for structured access patterns common in neural 

network operations. 

 

2.1 Memory Hierarchy Levels and Characteristics 

The memory hierarchy comprises several distinct levels, each offering unique performance characteristics, creating a finely 

balanced storage pyramid. At the uppermost tier, Level 1 (L1) consists of SRAM registers providing extraordinarily low latency 

and phenomenal bandwidth. These registers function as immediate working memory for computational units, storing critical 

operands and frequently accessed weights during AI operations. L1's extreme performance comes with significant silicon area 

and power consumption costs, limiting capacity but making this tier perfect for performance-critical data elements [3]. 

 

As part of the hierarchy, Level 2 (L2) encompasses SRAM caches with moderate capacity, slightly higher latency, and substantial 

bandwidth. This level stores frequently accessed weights and activations that exceed L1 capacity yet still demand rapid access. 

Level 3 (L3) consists of last-level cache (SRAM) offering expanded capacity, higher latencies, and somewhat reduced bandwidth. 

This tier enables weight sharing and activation reuse in neural networks, serving as the final on-chip memory level in most 

designs [4]. 

 

Beyond the processor itself, Level 4 (L4) features on-chip or near-chip memory (HBM/GDDR) providing substantial capacity, 

increased latencies, and impressive bandwidth. This tier stores model weights, batched activations, and gradients during training, 

forming a critical bridge between on-chip and system memory. Level 5 (L5) encompasses system memory (DRAM) delivering vast 

capacity, comparable latencies, and moderate bandwidth. This level accommodates large model partitions and extended batch 

data exceeding higher-tier capacities [4]. 

 

At the pyramid's foundation, Level 6 (L6) includes persistent storage (SSD/CXL/NVMe) offering enormous capacity, dramatically 

higher latencies, and limited bandwidth. This tier stores complete models, training datasets, and checkpoints, providing 

persistence and capacity essential for large-scale AI workloads. While performance metrics lag far behind L1, the vastly greater 

capacity makes this tier indispensable within complete memory hierarchies, particularly as AI models continue expanding [3]. 

 

Hierarchical memory effectiveness depends not merely on raw performance metrics for each tier but equally on intelligent data 

movement mechanisms between tiers. Research confirms that sophisticated prefetching, caching, and tiering algorithms 

dramatically impact overall system performance, often delivering greater improvements than hardware upgrades alone [4].  
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Level Technology Capacity 

Range 

Latency Bandwidth Primary AI Usage 

L1 SRAM Registers 32-128 KB 0.5-1 ns 1-2 TB/s Critical operands, 

hot weights 

L2 SRAM Cache 512 KB-6 MB 3-7 ns 500 GB/s-1 TB/s Frequent weights, 

activations 

L3 Last-Level Cache 10-60 MB 10-25 ns 200-500 GB/s Weight sharing, 

activation reuse 

L4 HBM/GDDR 8-128 GB 80-200 ns 1-3 TB/s Model weights, 

gradients 

L5 DRAM 256 GB-4 TB 80-120 ns 50-200 GB/s Large model 

partitions 

L6 SSD/CXL/NVMe 1-100 TB 10-100 μs 3-30 GB/s Full models, 

datasets 

Table 1: Memory Hierarchy Performance Characteristics for AI Systems [3, 4] 

 

3. Critical Importance for AI Workloads 

Hierarchical memory systems deliver several key advantages, particularly relevant for AI computation, addressing unique 

challenges posed by modern neural network architectures and computational patterns. These systems have become increasingly 

central to AI hardware design as model complexity grows at rates far outpacing memory technology improvements [5]. 

 

3.1 Data Locality Optimization 

AI workloads display significant temporal and spatial locality patterns that are effectively utilized through a hierarchical memory 

structure. Storing data that is accessed often in low-latency caches or registers significantly enhances performance and 

decreases energy use. Matrix multiplication operations forming the backbone of neural network computation benefit 

tremendously from this optimization by repeatedly accessing identical data elements. Research confirms that properly optimized 

memory hierarchies can slash DRAM accesses dramatically for convolutional neural networks and transformer-based models 

through effective data locality exploitation [5]. 

 

3.2 Handling Model Size Explosion 

Advanced models frequently exceed native memory capacity within individual GPUs or accelerators, creating fundamental 

deployment challenges. Hierarchical memory enables tiered data movement, intelligently staging information between high-

bandwidth memory and host DRAM, sometimes extending to CXL-attached memory. This capability allows processing models 

that would otherwise be impossible to fit within any single memory tier. Industry analysis reveals today's largest AI models 

require distributed memory systems with massive aggregate capacities, necessitating sophisticated memory hierarchies spanning 

multiple physical nodes while maintaining performance coherence [6]. 

 

3.3 Power Efficiency 

Memory access energy costs vary dramatically across hierarchy tiers, profoundly affecting overall system efficiency. SRAM and 

register operations consume far less energy than DRAM or SSD accesses, with L1 cache operations typically requiring a tiny 

fraction of energy compared to DRAM operations. Intelligent caching and memory scheduling substantially reduce energy 

footprints for both inference and training workloads, which is critically important for large-scale AI deployments. Within data 

centers, memory subsystems represent a substantial portion of total system power consumption, making memory hierarchy 

optimization a primary target for improving energy efficiency [5]. 

 

3.4 Bandwidth Management 

Multi-tier memory architectures facilitate simultaneous memory access patterns, which are particularly essential for accelerators 

handling large tensors or groups of images. Effectively allocating data among memory levels optimizes the available bandwidth 

and reduces delays caused by memory conflicts. This method is particularly beneficial in AI training, as gradient computations 

necessitate concurrent access to weights, activations, and error signals. Leading-edge AI systems implement sophisticated 

bandwidth management techniques, coordinating access across multiple memory channels and tiers, achieving remarkably high 

bandwidth utilization rates compared to less optimized systems [6]. 
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Hierarchical memory effectiveness depends heavily on workload characteristics, with different AI models and operations placing 

unique demands on memory subsystems. Attention mechanisms in transformer models, for instance, exhibit more irregular 

access patterns than convolutional operations, potentially reducing benefits from simple prefetching strategies. As AI 

architectures evolve, memory hierarchies must adapt to changing access patterns and computational requirements, highlighting 

the need for flexible, programmable memory management systems tunable for specific workloads [5]. 

 

Benefit Category Key Metrics Impact on AI Workloads 
Memory Tier 

Relevance 

Data Locality 
DRAM access reduction: 85% 

(CNN), 67% (Transformers) 

Reduces computation time 

and energy use 
L1-L3 most critical 

Model Size Support 
Enables models exceeding 1TB 

aggregate capacity 

Supports trillion-parameter 

models 
L4-L6 most important 

Energy Efficiency 
L1 cache: <5% energy vs. DRAM 

operations 

25-40% of data center 

power from memory 
All tiers contribute 

Bandwidth Utilization 
80-95% vs. 30-60% in 

unoptimized systems 

Critical for parallel gradient 

computations 
L3-L5 most affected 

Table 2: Memory Hierarchy Benefits for AI Workload Performance [5, 6] 

 

4. AI-Specific Enhancements in Memory Hierarchies 

Distinct requirements posed by AI tasks have prompted tailored improvements to conventional memory structures, refining the 

fragile equilibrium between processing speed, memory size, data transfer rates, and power efficiency. These advancements in AI-

oriented memory have become essential distinguishing factors in the design of accelerators, allowing for considerable 

performance gains beyond the capabilities of general-purpose memory systems [7].  

 

4.1 On-chip Memory Buffers 

Modern AI accelerators embed substantial amounts of SRAM specifically designed for storing activations, weights, and partial 

sums. These buffers dramatically reduce off-chip traffic, addressing one of the most energy-intensive and performance-limiting 

aspects of AI computation. Recent designs incorporate specialized scratchpad memories with generous capacities, enabling the 

vast majority of memory accesses to remain on-chip for specific AI workloads. This approach demonstrates substantial 

performance improvements compared to traditional cache hierarchies while significantly reducing energy consumption for 

common deep learning operations [7]. 

 

4.2 HBM Optimization 

High-bandwidth memory directly integrated with processor dies using silicon interposers dramatically reduces latency while 

increasing throughput for deep learning training. This tight integration proves essential for data-hungry operations like 

backpropagation, requiring rapid access to large gradient matrices. With exceptional bandwidth capabilities in current 

implementations, HBM represents a critical enabler for large-scale model training. Recent advances in HBM stacking techniques 

have substantially increased densities while reducing power consumption compared to previous generations, addressing both 

capacity and efficiency concerns [8]. 

 

4.3 Unified Memory Architectures 

NVIDIA's unified memory architecture exemplifies an approach enabling memory sharing between host CPUs and GPUs, 

reducing manual data transfer requirements. This architecture improves programmability and enables out-of-core execution for 

models exceeding available GPU memory. By automatically migrating pages between CPU and GPU memory spaces, unified 

memory architectures support models substantially larger than physical GPU memory, albeit with performance penalties 

compared to models fitting entirely in GPU memory. These architectures also reduce development complexity by eliminating 

explicit memory management code, with studies showing significant reductions in code complexity for sophisticated AI 

applications [7]. 

 

4.4 Memory Compression and Sparsity 

Techniques like pruning and quantization dramatically reduce memory footprints, enabling more layers to reside closer to 

compute units. Compression-aware memory controllers further exploit these optimizations by providing hardware support for 

sparse tensor operations and compressed data formats. Quantization to reduced precision can slash memory requirements 

substantially with minimal accuracy impact for many models, while pruning commonly eliminates the majority of parameters, 

depending on model architecture. Together, these techniques enable inference deployment of billion-parameter models on 

devices with limited memory capacity, democratizing access to advanced AI capabilities [8]. 
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4.5 CXL and Disaggregated Memory 

CXL (Compute Express Link) introduces shared, coherent memory pools enabling dynamic attachment of memory capacity 

across accelerators and CPUs. This capability proves particularly valuable for large-scale AI training, where memory requirements 

fluctuate significantly during different training phases. CXL-enabled systems provision memory resources with much finer 

granularity than traditional architectures, improving overall system utilization in mixed workload environments. For large 

language model training specifically, CXL-based memory expansion supports models substantially larger than possible with fixed 

memory allocations, while maintaining reasonable latency increases compared to local memory access [8]. 

 

These memory hierarchy enhancements continue evolving rapidly, with research efforts focused on further reducing memory 

walls constraining AI model scaling. Emerging technologies such as compute-in-memory, near-memory processing, and novel 

non-volatile memory types promise additional improvements, potentially enabling next generations of even larger and more 

capable AI models [7]. 

  

Enhancement Type Performance Gain Energy Impact 
Model Size 

Impact 

Implementation 

Challenge 

On-chip SRAM Buffers 
3-5x vs traditional 

cache 
70% reduction 

90% on-chip 

access 
High silicon cost 

HBM Integration 2+ TB/s bandwidth 
20% power 

reduction 
24GB per stack Interposer complexity 

Unified Memory 
4-8x model size 

support 

20-50% perf 

penalty 

Out-of-core 

execution 
Memory coherence 

Compression/Sparsity 2-8x with quantization 
Minimal 

accuracy loss 

50-90% 

parameter 

reduction 

Algorithm adaptation 

CXL/Disaggregated 
15-30% utilization 

gain 

35% latency 

increase 

2-3x larger 

models 
Protocol complexity 

Table 3: Performance Impact of AI-Specific Memory Enhancements [7, 8] 

 

5. Challenges in Hierarchical Memory for AI 

Despite numerous advantages, hierarchical memory systems for AI face several technical challenges requiring resolution to 

realize the potential benefits fully. These challenges span hardware design, software development, and system integration, 

demanding holistic solutions considering entire computing stacks [9]. 

 

5.1 Data Movement Overhead 

Moving data between memory tiers introduces significant overhead without intelligent prefetching mechanisms. This becomes 

particularly problematic for irregular access patterns defying prediction, such as those found in graph neural networks or 

attention mechanisms. Studies reveal that data movement consumes substantial energy in deep learning workloads and 

accounts for significant execution time in transformer-based models. Energy costs for moving data from off-chip DRAM to on-

chip processing elements dramatically exceed actual computation costs, creating fundamental efficiency challenges. This 

"memory wall" grows more pronounced as AI models scale, with research indicating data movement energy can overwhelm 

computation energy by substantial margins in large language models [9]. 

 

5.2 Programming Complexity 

Handling memory manually across various layers creates significant complexity for developers. Although compilers and 

frameworks are advancing to streamline this process, effective data placement generally necessitates specialized expertise and 

manual effort. Existing deep learning frameworks manage only fundamental memory tasks, requiring developers to manually 

coordinate intricate processes such as gradient checkpointing, model sharding, and memory swapping.  

 

Research shows memory-related issues cause approximately one-quarter of bugs in deep learning applications, highlighting the 

difficulties of correct implementation. Complexity increases exponentially when optimizing across multiple memory tiers, with 

substantial performance differences commonly observed between naive and expert implementations of identical algorithms [9]. 

 

5.3 Coherency Management 

Maintaining uniform memory views across CPUs, GPUs, or various accelerators poses considerable difficulties, particularly in 

disaggregated memory environments. Ensuring coherence while avoiding too much synchronization overhead demands 

advanced coordination between hardware and software. Conventional cache coherence protocols become excessively costly at 
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large scales, potentially using significant available interconnect bandwidth. Distributed training amplifies this issue, as ensuring 

global consistency among various nodes leads to increased latency and greater system complexity. Research indicates that 

coherent traffic can significantly decrease effective memory bandwidth in systems with multiple accelerators, leading to major 

bottlenecks for extensive AI tasks [10].  

 

These difficulties have initiated a comprehensive investigation into innovative memory architectures and programming 

paradigms tailored for AI tasks. Techniques like specialized memory structures, automated memory management systems, and 

flexible coherence models demonstrate potential for overcoming constraints. Moreover, collaboratively designing AI algorithms 

and memory systems provides chances to address challenges by adjusting computational patterns to align more effectively with 

existing memory capabilities [10].  

 

With the expansion of AI models in size and complexity, tackling memory hierarchy issues is becoming more essential. Future AI 

systems will probably need groundbreaking advancements in hardware design and software abstractions to surpass current 

limitations, possibly involving new memory technologies, compilers aware of architecture, and smart runtime systems that 

adaptively enhance memory usage across intricate hierarchies [9].  

 

 
 Fig 1: Key Challenges in Hierarchical Memory Systems for AI Workloads [9, 10] 

 

6. Future Directions in Hierarchical Memory for AI 

Memory hierarchy evolution for AI workloads advances rapidly, driven by technological innovations and architectural 

breakthroughs. As AI models grow increasingly complex and memory demands escalate, several promising directions emerge, 

potentially reshaping memory landscapes for AI systems [11]. 
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6.1 Heterogeneous Memory Integration 

A variety of memory technologies, including non-volatile memories like Phase Change Memory (PCM), Resistive RAM (ReRAM), 

and Magnetoresistive RAM (MRAM), are anticipated to be included in future systems.  

 

These technologies offer unique combinations of persistence, density, and access characteristics complementing traditional 

memory tiers. Research prototypes demonstrate PCM-based systems with substantial density improvements over DRAM while 

maintaining acceptable performance for select AI workloads. ReRAM technologies show promise for in-memory computing, 

potentially offering remarkable improvements in energy efficiency for specific neural network operations. This heterogeneous 

approach creates opportunities for specialized memory allocations based on data characteristics, with critical model parameters 

potentially stored in high-performance tiers while less frequently accessed data resides in high-density, lower-power 

technologies [11]. 

 

6.2 Software-Defined Memory Management 

Improvements in compiler technologies and runtime systems will progressively automate memory management choices, 

adjusting dynamically to hardware capabilities and workload traits. This method minimizes programming complexity and 

enhances performance, along with energy efficiency. Initial implementations of memory management systems tailored for AI 

show significant performance gains over static allocation methods, especially for workloads that exhibit changing memory 

footprints during operation. These systems allow informed decisions regarding data placement within memory hierarchies by 

tracking access patterns and migration costs in real-time. Integrating machine learning techniques into memory management 

represents a promising recursive application, with ML-based prefetchers and allocation policies demonstrating abilities to 

identify complex access patterns escaping traditional heuristic approaches [12]. 

 

6.3 Domain-Specific Memory Architectures 

Memory architectures tailored to specific AI fields, such as reinforcement learning, computer vision, or natural language 

processing, might develop. To conform to the specific access patterns and data flow needs of the intended applications, these 

customized architectures would alter memory types, sizes, and interconnects.  

 

Vision transformers display significantly distinct memory access patterns in contrast to recurrent networks, which could gain 

advantages from various cache hierarchies and prefetching techniques. Studies show that memory architectures specialized for 

specific domains provide notable performance enhancements over general-purpose designs when aimed at specific AI tasks. 

This specialization trend mirrors broader movements toward domain-specific accelerators in AI hardware design, with memory 

hierarchies becoming increasingly customized components within vertical solutions [11]. 

 

6.4 Memory-Centric System Design 

Rather than treating memory as subordinate to computation, future system architectures may adopt memory-centric design 

philosophies. Such systems distribute computation units throughout memory hierarchies, with processing capabilities matched 

to characteristics of each memory tier. Processing-in-memory (PIM) and near-memory computing approaches exemplify this 

direction, with prototype systems demonstrating remarkable energy efficiency improvements for memory-bound AI operations. 

These architectures tackle essential issues in contemporary AI systems by reducing data movement via careful computation 

placement. Recent developments in 3D integration technologies allow for closer integration of memory and logic, opening 

possibilities for more precise allocation of computing resources across memory hierarchies. Research prototypes demonstrate 

abilities to perform low-precision matrix operations directly within memory arrays, achieving substantial throughput 

improvements for specific neural network layers [12]. 

 

These emerging directions highlight the increasing importance of memory systems in AI hardware design. As gaps between 

computational capabilities and memory performance widen, innovations in memory hierarchy design will likely become primary 

differentiators for next-generation AI systems. Co-designing algorithms, software stacks, and memory architectures presents 

particularly promising opportunities, potentially enabling AI capabilities otherwise impractical with traditional approaches to 

memory hierarchy design [11]. 

 

7. Conclusion 

Hierarchical memory systems establish a vital basis for enhancing AI tasks, tackling increasing disparities between computational 

power and memory retrieval efficiency. Through the strategic combination of various memory technologies and the introduction 

of optimizations tailored for AI, system architects can alleviate the memory constraints that are increasingly hindering AI model 

training and inference. If memory systems and AI algorithms are created jointly, there is a chance that performance and 

efficiency may increase significantly. These systems will have a bigger influence on the platforms that can serve AI applications in 

the future as memory hierarchies continue to change because of advancements like software-defined management, domain-
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specific architectures, memory-centric designs, and heterogeneous memory integration. The growth of AI computing depends 

equally on improvements in memory hierarchy and processing capacity, and the most effective methods show a close 

integration of algorithms, software frameworks, and specialized memory structures designed to satisfy specific AI requirements.  
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