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| ABSTRACT 

Artificial intelligence has fundamentally transformed enterprise network management within smart building ecosystems, creating 

unprecedented opportunities for automation, optimization, and security enhancement. This integration enables networks to 

autonomously classify diverse traffic patterns, apply appropriate quality of service policies, and detect anomalous activities 

without continuous human intervention. The symbiotic relationship between AI systems and network engineers facilitates intent-

based configuration, where high-level objectives translate into granular network adjustments. Smart buildings particularly benefit 

from this technological convergence as network-generated data informs environmental controls, occupancy management, and 

energy utilization. The resulting dynamic infrastructure demonstrates greater resilience, adaptability, and efficiency than 

traditional network architectures, while simultaneously reducing operational complexity. As building systems grow increasingly 

interconnected, this AI-enhanced network intelligence serves as the critical foundation for next-generation smart infrastructure 

development, enabling buildings to respond intelligently to changing conditions while maintaining optimal performance. 
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1. Introduction to AI in Enterprise Network Management 

Enterprise networks have undergone a profound transformation with the integration of artificial intelligence technologies, 

revolutionizing how network infrastructure is managed, monitored, and optimized. AI applications in network management have 

enabled predictive capabilities that were previously unattainable through conventional methods [1]. This paradigm shift comes at 

a critical moment as smart building infrastructures grow increasingly complex, incorporating numerous interconnected systems 

from environmental controls to security apparatus, all competing for network resources. 

1.1 Overview of AI's Impact on Enterprise Networks 

The impact of artificial intelligence on enterprise networks extends across multiple dimensions, from operational efficiency to 

security posture. Network management systems enhanced with AI can continuously analyze vast quantities of telemetry data, 

identifying patterns and anomalies that would remain undetectable through manual monitoring. These capabilities have 

transformed reactive network management into proactive optimization, where potential issues are identified and remediated 

before affecting users or services. The implementation of machine learning algorithms for load prediction in IEEE 802.11 

networks demonstrates how AI can anticipate network demands and proactively allocate resources to maintain optimal 

performance [1]. 
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1.2 Current Landscape of Smart Building Network Complexity 

The current landscape of smart building networks presents unprecedented challenges in terms of scale, heterogeneity, and 

dynamic requirements. Modern enterprise environments must support diverse systems including Internet of Things (IoT) sensors, 

building automation controls, security cameras, access systems, and traditional IT services—all with varying demands for 

bandwidth, latency, and reliability. This complexity necessitates intelligent systems capable of understanding and adapting to the 

interconnected nature of smart building ecosystems [2]. The creation of truly smart buildings requires networks that can 

dynamically adjust to changing conditions and usage patterns while maintaining service quality across all connected systems. 

1.3 Need for Advanced Management Solutions Beyond Manual Intervention 

Manual network management approaches have reached their practical limits in these environments. Network engineers can no 

longer effectively monitor, troubleshoot, and optimize these multifaceted systems using traditional techniques alone. The sheer 

volume of devices, connections, and potential configuration permutations exceeds human cognitive capacity, creating an 

imperative for AI-augmented solutions that can process vast quantities of network telemetry data and extract actionable insights. 

As smart buildings continue to evolve in complexity, the necessity for automated, intelligent management systems becomes 

increasingly apparent [2]. 

1.4 Introduction to AI-driven Network Analytics Platforms 

Leading technology providers have responded to these challenges with sophisticated AI-driven network analytics platforms. 

Cisco Digital Network Architecture (DNA) represents one comprehensive solution, offering capabilities for network assurance, 

automation, and security through machine learning algorithms that continuously analyze network behavior. Similarly, Aruba 

AIOps leverages artificial intelligence for operations to detect anomalies, predict issues before they impact users, and 

recommend remediation steps based on learned patterns across the network infrastructure. These platforms exemplify how AI is 

becoming an essential component of enterprise network management, particularly in the context of smart building 

environments where operational continuity and performance optimization are paramount concerns [1]. 

Feature Traditional Approach AI-Enhanced Approach Key Benefit 

Traffic Analysis Manual threshold 

monitoring 

Automated pattern 

recognition 

Early problem detection 

Configuration Manual updates Intent-based automation Reduced errors 

Anomaly Detection Signature-based Behavioral analysis Zero-day threat 

identification 

Load Prediction Static capacity planning Dynamic resource 

allocation 

Optimized performance 

Network Assurance Reactive troubleshooting Proactive issue prevention Improved uptime 

Table 1: Comparison of AI-Driven Network Analytics Platforms for Smart Buildings [1, 9] 

2. Automated Traffic Classification and Quality of Service 

Enterprise networks in smart building environments face increasing challenges in managing diverse traffic types with varying 

requirements. The application of artificial intelligence to traffic classification and Quality of Service (QoS) management 

represents a significant advancement in addressing these challenges. Intelligent systems now enable networks to automatically 

identify different traffic categories and apply appropriate policies without manual configuration. 

2.1 AI Mechanisms for Distinguishing Between Traffic Types 

Modern enterprise networks must efficiently handle multiple traffic categories including surveillance video streams, Voice over IP 

(VoIP) communications, building automation control signals, and standard user traffic. Traditional static classification methods 

have proven insufficient for the dynamic nature of contemporary network environments. Machine learning approaches have 

emerged as powerful tools for accurate traffic identification. Supervised learning algorithms analyze packet characteristics, flow 

behaviors, and temporal patterns to classify traffic with high precision [3]. Deep learning models particularly excel at recognizing 

subtle differences between traffic types, adapting to changing application signatures, and identifying encrypted traffic based on 

behavioral patterns rather than packet inspection. These classification mechanisms operate continuously, learning from network 

behaviors and improving accuracy over time. 
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Traffic Type Primary Classification Method QoS Priority Key Requirement 

Video Surveillance Flow behavior analysis High Consistent bandwidth 

VoIP Communications Packet pattern recognition Very high Minimal latency 

Building Automation Protocol identification Medium Low jitter 

IoT Sensor Data Behavioral fingerprinting Low Reliability 

User Applications Application signatures Variable Adaptability 

Table 2: Classification Methods for Different Network Traffic Types [3, 4] 

2.2 Dynamic QoS Policy Application Based on Traffic Classification 

The automatic classification of network traffic enables intelligent Quality of Service management through dynamic policy 

application. Once traffic is correctly identified, AI systems can automatically implement appropriate QoS policies that align with 

business priorities and technical requirements. This represents a significant advancement from static QoS configurations that 

required manual adjustment. Dynamic QoS systems continuously evaluate network conditions and traffic patterns, adjusting 

priority levels, bandwidth allocations, and queuing strategies in real-time [4]. These adjustments ensure critical applications 

receive necessary resources even as network conditions fluctuate. The architecture for dynamic management of QoS policies has 

proven particularly valuable in heterogeneous network environments where traffic patterns and priorities frequently change 

based on time of day, occupancy levels, or business activities. 

2.3 Impact on Real-time and Latency-Sensitive Applications 

Latency-sensitive applications such as building security systems, emergency communications, and environmental controls 

require consistent performance to function correctly. AI-driven traffic classification and QoS management significantly improve 

the reliability of these critical systems. By accurately identifying time-sensitive traffic and assigning appropriate priorities, AI 

systems ensure that critical applications receive necessary network resources even during periods of congestion [3]. This 

capability proves especially valuable for applications like video surveillance that require both low latency and high bandwidth. 

Voice communications benefit from reduced jitter and packet loss, while building control systems gain improved responsiveness 

and reliability. The overall impact extends beyond performance improvements to enhanced safety, security, and operational 

efficiency throughout smart building environments. 

2.4 Case Studies of Successful Implementations 

Numerous organizations have successfully deployed AI-driven traffic classification and QoS management systems with 

measurable benefits. Large corporate campuses have implemented these technologies to balance competing demands between 

IoT sensors, security systems, and user applications [4]. Healthcare facilities have deployed intelligent classification systems to 

ensure medical devices and emergency communications receive priority over administrative traffic. Educational institutions have 

utilized AI-driven QoS to maintain consistent performance for distance learning applications while accommodating research 

needs and administrative functions. These implementations demonstrate significant improvements in application performance, 

network reliability, and user satisfaction compared to traditional management approaches. The success of these deployments 

provides valuable insights into best practices for implementation and tuning of AI-driven traffic management systems in diverse 

enterprise environments. 

3. Intelligent Anomaly Detection for Network Security 

The integration of artificial intelligence into network security operations has revolutionized the detection and response to 

potential threats in enterprise environments. As smart buildings incorporate increasingly complex systems with numerous access 

points, traditional security approaches have proven inadequate. AI-powered anomaly detection provides a sophisticated solution 

that adapts to evolving threats while reducing false positives and operational overhead. 

3.1 AI Approaches to Identifying Unusual Network Patterns 

Artificial intelligence has transformed anomaly detection by enabling systems to establish behavioral baselines and identify 

deviations that may indicate security threats. Machine learning algorithms analyze historical network data to understand normal 

operational patterns and detect subtle anomalies that would escape traditional rule-based systems. Deep learning approaches 

have proven particularly effective at identifying complex patterns in network traffic without requiring manual feature engineering 

[5]. Unsupervised learning techniques can discover previously unknown threat patterns, while supervised methods excel at 



Secure and Safety-Aware IST Architectures for Next-Gen Automotive Systems 

Page | 908  

classifying known attack signatures with high accuracy. Generative Adversarial Networks represent an advanced approach where 

two competing neural networks simultaneously improve detection capabilities and reduce false positives through an 

evolutionary process. These AI techniques continuously refine their understanding of normal network behavior, adapting to 

changing conditions without requiring constant reconfiguration. 

3.2 Detection Capabilities for Switch Port Activity, Bandwidth Spikes, and Unauthorized Access 

AI-powered security systems monitor multiple dimensions of network activity to provide comprehensive threat detection. At the 

switch port level, intelligent systems track connection patterns, MAC address changes, and traffic characteristics to identify 

potential compromise or unauthorized device connections. Bandwidth analysis algorithms detect anomalous spikes or unusual 

traffic flows that may indicate data exfiltration attempts or denial-of-service attacks [6]. User access monitoring employs 

behavioral biometrics to identify potentially compromised credentials based on deviations from established usage patterns. 

Enhanced feature engineering approaches have significantly improved detection accuracy by incorporating contextual 

information from multiple data sources. This multi-dimensional monitoring provides defense-in-depth that addresses both 

external threats and potential insider attacks across the network infrastructure. 

3.3 Comparison with Traditional Security Monitoring Approaches 

Traditional network security monitoring relied primarily on signature-based detection and static rule sets that required constant 

updating and generated numerous false positives. These approaches struggled to identify novel threats and required significant 

human intervention for tuning and analysis. In contrast, AI-based systems can detect zero-day attacks by identifying behavioral 

anomalies rather than matching known signatures [5]. Machine learning models adapt to network changes without manual 

reconfiguration, reducing maintenance requirements while improving detection capabilities. The dataset-driven approach to 

network anomaly detection in Industrial Internet of Things environments has demonstrated superior performance compared to 

conventional methods [6]. While traditional systems focus primarily on known threat patterns, AI-powered solutions balance 

signature recognition with behavioral analysis to provide comprehensive protection against both known and emerging threats. 

3.4 Quantifiable Improvements in Security Posture and Network Uptime 

Organizations implementing AI-powered anomaly detection have reported significant improvements in their overall security 

posture and operational efficiency. Detection times for potential threats have decreased substantially compared to traditional 

approaches, with many attacks identified during reconnaissance phases before damage occurs [5]. False positive rates have 

declined dramatically, allowing security teams to focus resources on legitimate threats rather than investigating benign 

anomalies. Network uptime has improved through early detection of performance issues that might otherwise escalate to service 

disruptions. Mean time to resolution for security incidents has decreased as AI systems provide contextualized alerts with 

actionable intelligence rather than isolated data points. These improvements translate directly to enhanced protection for critical 

infrastructure, reduced operational costs, and improved compliance with security regulations and standards. The combined 

benefits of enhanced detection capabilities and operational efficiencies demonstrate the transformative impact of AI on network 

security in enterprise environments. 

4. Smart Building Optimization Through Network Intelligence 

The convergence of network intelligence and building management systems represents a significant advancement in smart 

building optimization. Modern enterprise networks generate substantial data about usage patterns, device connections, and 

traffic flows that—when properly analyzed—provide valuable insights for building operations. Artificial intelligence transforms 

this network data into actionable intelligence that enhances occupant comfort, improves energy efficiency, and optimizes 

resource allocation across building systems. 

4.1 Correlation Between Network Data and Building Occupancy Patterns 

Enterprise networks serve as rich sources of information about building occupancy and usage patterns. WiFi connection data, 

network authentication logs, and switch port activity collectively provide detailed insights into when and where occupants are 

present throughout a facility. Sophisticated AI algorithms can process this network information to develop highly accurate 

occupancy models without requiring dedicated occupancy sensors. Smartphone-based indoor positioning systems offer 

particularly valuable data for multi-floor occupancy detection, enabling precise tracking of movement patterns throughout 

complex buildings [7]. This network-derived occupancy intelligence serves as a foundation for numerous optimization strategies, 

from environmental controls to security operations. The ability to understand occupancy patterns with temporal and spatial 

precision enables building systems to anticipate needs rather than simply reacting to conditions, creating more responsive and 

efficient environments. 

4.2 AI-Driven Environmental Control Adjustments 

Network intelligence enables environmental systems to anticipate occupant needs and optimize comfort while minimizing 

energy consumption. AI algorithms analyze historical occupancy data alongside real-time network information to predict when 
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specific areas will be occupied, allowing HVAC systems to precondition spaces just before use rather than operating 

continuously. Lighting systems leverage network-derived presence information to adjust illumination levels based on actual 

usage rather than scheduled operations. Conference room environmental controls can automatically adjust based on the 

number of attendees detected through network connections. These intelligent adjustments create environments that respond 

dynamically to changing occupancy conditions while eliminating waste from conditioning unoccupied spaces. The integration of 

AI for energy management in building systems represents a vertical application domain that delivers substantial efficiency 

improvements [8]. 

Application Network Data Source Building System Impact 

Occupancy Detection WiFi connections, authentication HVAC optimization 

Energy Management Traffic patterns, device connections Consumption reduction 

Space Utilization Connection density, duration Facilities planning 

Security Operations Access patterns, anomalies Enhanced physical security 

Meeting Room Optimization Connection counts, patterns Improved scheduling 

Table 3: Network-Derived Building Intelligence Applications [7, 8] 

4.3 Energy Usage Optimization Methodologies 

Network-informed energy optimization extends beyond simple occupancy-based controls to comprehensive methodologies that 

balance multiple variables. AI systems analyze patterns of energy consumption in relation to network activity, identifying 

opportunities for load shifting, peak demand reduction, and equipment scheduling optimization. Computational intelligence 

techniques enable predictive energy management that accounts for factors including weather forecasts, occupancy predictions, 

and equipment efficiency profiles. These methodologies optimize energy consumption while maintaining or improving occupant 

comfort and productivity. The IEEE Computational Intelligence Society has recognized energy optimization as a critical vertical 

application domain for artificial intelligence, highlighting its importance for sustainable building operations [8]. By correlating 

network data with energy consumption patterns, AI systems create optimization strategies that would be impossible through 

conventional building management approaches. 

4.4 Machine Learning Applications for Behavioral Pattern Recognition 

Beyond simple presence detection, machine learning enables the recognition of complex behavioral patterns that inform 

building operations. Network activity analysis can identify recurring meetings, collaborative work sessions, and other usage 

patterns that impact resource requirements. Deep learning algorithms process historical network data to discover behavioral 

trends that might escape human observation, such as seasonal variations in building usage or gradual shifts in work patterns. 

These recognized behaviors inform predictive models that anticipate future needs with increasing accuracy over time. Indoor 

positioning systems provide particularly valuable data for understanding movement patterns throughout buildings, enabling 

optimization of space allocation and resource distribution [7]. As these machine learning systems accumulate data over time, 

their predictive capabilities continue to improve, creating increasingly responsive and efficient building environments. The ability 

to recognize and anticipate occupant behaviors represents a fundamental advancement in building intelligence that transforms 

static infrastructure into dynamic, responsive environments. 

5. Human-AI Collaboration in Network Policy Orchestration 

The evolution of network management has progressed beyond automated configurations to a collaborative model where human 

expertise and artificial intelligence work in tandem. This collaborative approach enables network policies to align more closely 

with organizational objectives while maintaining the reliability and security required in enterprise environments. Human-AI 

collaboration represents a transformative approach to network orchestration that leverages the strengths of both human insight 

and machine intelligence. 

5.1 Intent-Based Networking Frameworks 

Intent-based networking (IBN) represents a paradigm shift in network management, focusing on business outcomes rather than 

technical configurations. These frameworks allow engineers to express desired network behaviors in business language, with AI 
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systems translating these intentions into specific network configurations. IBN abstracts the complexity of network infrastructure, 

enabling communication between technical and non-technical stakeholders about network requirements. The implementation of 

intent-based networking involves multiple architectural components including intent translation, policy validation, automated 

implementation, and assurance monitoring [9]. These frameworks provide a foundation for human-AI collaboration by creating a 

common language for expressing network requirements and evaluating outcomes. The abstraction layer that IBN provides 

enables more strategic thinking about network policies, shifting focus from technical details to business objectives and allowing 

both human and artificial intelligence to contribute more effectively to network orchestration. 

5.2 Translation of Business Objectives into Network Configurations 

The translation of high-level business objectives into specific network configurations represents a critical function in human-AI 

collaboration. Network engineers articulate organizational requirements such as "optimize building energy usage during non-

peak hours" or "prioritize emergency communications during critical events," while AI systems interpret these objectives and 

generate appropriate network policies. This translation process involves semantic understanding of business intent, mapping to 

technical capabilities, and generating compatible configurations across diverse network devices. The complexity of this 

translation would overwhelm purely manual processes, particularly in large enterprise environments with heterogeneous 

equipment. AI systems excel at managing this complexity while maintaining consistency across the network infrastructure. 

Federated multi-task learning approaches have demonstrated particular effectiveness for network management and 

orchestration tasks that require coordinated policies across distributed systems [10]. The collaboration between human intent 

expression and AI translation capabilities creates network policies that align technical implementations with organizational 

objectives more effectively than either could achieve independently. 

5.3 Engineer Oversight and AI Refinement Processes 

While AI systems handle much of the technical implementation, human engineers maintain critical oversight roles that ensure 

proper network functioning. Engineers review AI-generated configurations before deployment, validate that implementations 

align with intended outcomes, and intervene when necessary to address unique situations. This oversight relationship evolves 

over time as engineers gain confidence in AI recommendations and AI systems learn from engineer modifications. The 

supervisory role of network engineers shifts from direct configuration to policy guidance, exception handling, and performance 

evaluation. This transition represents a more strategic application of human expertise rather than a reduction in importance. 

Survey results on intent-based networking implementations have highlighted the critical importance of maintaining human 

oversight while leveraging AI capabilities for network management [9]. The complementary relationship between human 

judgment and machine efficiency creates network management processes that combine the best qualities of both, resulting in 

more robust and adaptable network infrastructures. 

5.4 Development of Feedback Loops for Continuous Improvement 

The effectiveness of human-AI collaboration in network policy orchestration depends on well-designed feedback mechanisms 

that enable continuous improvement. These feedback loops capture performance metrics, user experiences, and business 

outcomes to evaluate the success of implemented policies. AI systems analyze this feedback to refine their translation algorithms 

and recommendation engines, while engineers use the same information to adjust their intent specifications and oversight 

approaches. Federated learning techniques enable these improvement processes to operate across distributed network 

environments, aggregating insights without compromising security or privacy [10]. The multi-directional nature of these 

feedback processes—between humans and AI, between technical and business stakeholders, and across different network 

domains—creates a learning ecosystem that continuously enhances network policy effectiveness. As these feedback mechanisms 

mature, the collaborative relationship between human engineers and AI systems grows increasingly sophisticated, enabling more 

complex network policies and more precise alignment with business objectives. This evolution represents a fundamental 

advancement in network management that transcends both traditional manual configuration and simple automation to create 

truly intelligent network orchestration. 

6. Conclusion 

The integration of artificial intelligence into enterprise network management represents a transformative advancement for smart 

building ecosystems. As networks evolve from static infrastructure into dynamic, intelligent systems, the symbiotic relationship 

between AI capabilities and human expertise creates unprecedented opportunities for operational efficiency, security 

enhancement, and resource optimization. The progression from automated traffic classification to anomaly detection, 

environmental optimization, and intent-based orchestration demonstrates the multifaceted impact of AI across network 

functions. This technological evolution enables buildings to respond intelligently to changing conditions while maintaining 

optimal performance for diverse applications. Network engineers now operate at a more strategic level, defining intentions and 

validating outcomes rather than managing technical details, while AI systems handle increasingly complex implementation tasks 

with growing sophistication. The feedback mechanisms between human and machine intelligence foster continuous 
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improvement cycles that enhance both technological capabilities and business outcomes. As smart buildings continue to 

increase in complexity and scale, the intelligence embedded within their network infrastructure will become an increasingly 

critical factor in operational success, occupant satisfaction, and sustainability performance. The future of enterprise networks lies 

not in artificial intelligence alone, but in the powerful collaborative relationship between human insight and machine intelligence 

that enables truly smart environments. 
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