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| ABSTRACT 

Retinal vascular pathologies can lead to vision loss, blindness, and severe complications (such as glaucoma and vitreous 

hemorrhage), significantly impacting quality of life. Traditional detection methods for retinal vascular pathologies rely on manual 

observation and subjective judgment, resulting in low efficiency and a high risk of missing early subtle lesions. They also suffer 

from limitations such as operational complexity and device dependency. To overcome the shortcomings of these methods, this 

study proposes a method for detecting retinal pathologies on the basis of OCT images of retinal vascular diseases that uses a 

coupled ResNet and transformer approach. RTHNet adopts an encoder-decoder structure. In the encoding stage, ResNet50 is 

employed as the backbone network to extract local features effectively from the images. An attention adaptive fusion module 

(AAFM) is designed to achieve efficient integration of multilevel attention features between the encoder and decoder. In the 

decoding stage, a global-local contextual transformer block (GLCTB) is designed to simultaneously focus on global contextual 

information and local details. At the end of the decoder, a detail enhancement module (DEM) is proposed, which refines the 

semantic consistency and spatial detail information between features to ensure the fineness and accuracy of the segmentation 

results. The RTHNet model was evaluated on the OCT2017 dataset and OCTAMNIST dataset. The results revealed that the 

classification accuracy reached 94.78% and 83.41% on the retinal OCT2017 dataset and OCTAMNIST dataset, respectively. 

Compared with other traditional methods, such as the CNN and DCNN algorithms, the detection accuracy improved by 7.28% 

and 0.78%, respectively. The proposed method, which couples ResNet and Transformer, overcomes the bottlenecks of 

subjectivity and low efficiency inherent in traditional detection methods that rely on manual interpretation. It enables high-

precision automatic identification and early warning of vascular pathologies in OCT images, providing an intelligent auxiliary 

diagnostic tool for clinical practice. This reduces misdiagnosis rates and promotes the automation and precision of ophthalmic 

disease screening. 
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1 Introduction 

Retinal vascular pathologies can lead to irreversible vision impairment and even blindness, posing a severe threat to patients' 

visual health and quality of life. Their high blindness-causing potential not only deprives patients of their working capacity but 

also increases family care burdens. Research has shown that as of 2019, there were approximately 710 million patients with 

diabetic retinopathy globally, with over 12 million new cases annually [1]. Therefore, achieving accurate and rapid detection of 

retinal vascular pathologies can not only effectively delay disease progression and reduce the risk of blindness through early 

intervention but also enhance public health efficiency through large-scale screening, reducing medical expenditures for patients 
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with advanced severe disease. This finding holds strategic significance for optimizing ophthalmic healthcare resource allocation 

and addressing blindness prevention and control in an aging society. 

Traditional detection methods for retinal vascular pathologies include ophthalmoscopy, fundus fluorescein angiography (FFA), 

and manual reading on the basis of fundus photographs. Ophthalmoscopy can be used to determine pathologies by directly 

observing the morphology of fundus vessels. However, the accuracy of this method is highly dependent on physician experience 

and has a limited ability to identify early microvascular lesions [2]. Fundus fluorescein angiography involves intravenous injection 

of sodium fluorescein, using a fundus camera to capture the flow of the fluorescent dye within the retinal vessels to reveal 

vascular leakage, occlusion, and abnormal neovascularization. However, this method is invasive and can cause allergic reactions, 

nausea, vomiting, or renal burden [3]. Manual reading based on fundus photographs involves taking color or black-and-white 

fundus photos, with physicians or technicians manually interpreting vascular pathology features. This method suffers from strong 

subjectivity in human interpretation and poor consistency among different readers [4]. In recent years, the use of optical 

coherence tomography (OCT) technology for detecting retinal vascular pathologies has gained widespread interest. OCT 

technology is based on the principle of low-coherence light interference. By emitting near-infrared light to the retina and 

utilizing the optical path difference of reflected light from different tissue layers to collect interference signals, high-resolution 

cross-sectional images of retinal layers are reconstructed after computer processing. This allows for the precise capture of 

microstructural changes such as retinal thickness, vascular morphology, and tissue edema. Hwang et al. used a deep 

convolutional neural network (CNN) to analyze spectral-domain optical coherence tomography (SD-OCT) images from patients 

with retinal angiomatous proliferation (RAP) or polypoidal choroidal vasculopathy (PCV) and a control group. The results 

revealed that the proposed model achieved an accuracy, sensitivity, and specificity of 89.1%, 89.4%, and 88.8%, respectively [5]. 

Hassan et al. classified retinal OCT images via an enhanced optical coherence tomography (EOCT) model. The results showed 

that the proposed model achieved a sensitivity and specificity of 0.9836 and 0.9615, respectively [6]. SVA et al. used a dilated 

depthwise separable convolution deep residual network (ResNet) for the automatic identification and severity classification of 

retinal biomarkers via SD-OCT. The results revealed that the proposed model achieved an overall accuracy of 98.64% [7]. OCT 

technology offers significant advantages over the aforementioned traditional methods for detecting retinal pathologies. First, it 

requires no contact with the eyeball or injection of contrast agents, avoiding the risks of invasive procedures, ensuring high 

safety, and making it suitable for children, elderly individuals, and people with allergies. Second, its tomographic imaging 

capability with micron-level resolution can clearly display subtle lesions in each layer of the retina, significantly exceeding the 

detection rate of early microabnormalities compared with traditional methods relying on naked-eye observation or planar 

imaging. Finally, automated analysis software quickly generates quantitative parameters such as retinal thickness and vascular 

density, greatly shortening the detection time and reducing subjective errors in manual interpretation. Therefore, this study 

employs OCT technology to detect retinal vascular pathologies. 

Zhou Tao et al. used the U-Net network for medical image segmentation. However, U-Net's encoder-decoder structure is 

relatively simple, making it difficult to precisely capture the boundaries and details of objects with very complex topologies or 

diverse shape changes [8]. Jin Yan et al. used a recurrent residual convolutional neural network for medical image segmentation, 

but this network has high computational complexity and a significant risk of overfitting [9]. Wu Tong et al. used the segment 

anything model (SAM) for medical image segmentation, but this model has limited adaptability to complex scenes and 

insufficient mask prediction accuracy [10]. Deng Erqiang et al. used an enhanced generative adversarial network (EnGAN) for 

medical image segmentation, but this algorithm has limited noise processing capability and lacks focus on local details [11]. 

Given the shortcomings of the above methods, this study employs a coupled ResNet and transformer model to classify retinal 

OCT images. This model balances local feature extraction and global contextual modeling by fusing the advantages of 

Convolutional Neural Networks (CNNs) and Vision Transformers (ViT). Comparative experiments on the Vaihingen, Potsdam, and 

WHDLD datasets validated the network's effectiveness. A global-local contextual transformer block (GLCTB) was designed. This 

module effectively combines multiscale global and local features, fully considering the differences in feature characteristics 

within high-resolution OCT images, achieving improvements in balancing global and local features. To enhance the effective 

fusion of global and local information and the recognition capability of object boundaries, this paper designs the attention 

adaptive fusion module (AAFM) and detail enhancement module (DEM). The AAFM dynamically adjusts feature fusion between 

the encoder and decoder, enhancing the interaction between local and global information; the DEM focuses on the restoration 

of fine-grained semantics and spatial details, improving the positioning accuracy of object edges and mitigating the effects of 

shadow occlusion and edge blurring. 

2 Dataset 

2.1 Retinal OCT2017 dataset 

The OCT2017 dataset is a landmark benchmark dataset in the field of retinal disease diagnosis that was publicly released via the 

Kaggle platform by the University of California, San Diego, in 2017 [12]. As the first large-scale dataset for OCT image 
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classification, its design follows clinical principles, aiming to provide standardized data support for deep learning model training 

and automated diagnosis of retinal pathologies. The dataset consists of two parts: a training set and a test set. The training set 

contains 108,308 OCT B-scan images, whereas the test set contains 1,000 B-scan images. The entire dataset covers four core 

pathology categories: choroidal neovascularization (CNV), diabetic macular edema (DME), Drusen, and normal. The number of 

images in the training set for each category is 37,454 CNV images, 11,698 DME images, 8,616 Drusen images, and 51,390 normal 

images. The test set uses stratified sampling to ensure balanced samples across pathology categories (250 images per class). The 

original data were converted from proprietary device formats to JPEG, with the resolution standardized to 512×512 pixels, 

retaining 8-bit grayscale information. A threshold segmentation algorithm was used to automatically locate retinal layer 

structures and remove edge artifacts. The annotation work employed Kappa consistency testing (κ=0.94) to ensure labeling 

consistency. Annotation files contain image filenames and corresponding class labels, which are stored in CSV format. Dataset 

access address: https://github.com/openmedlab/Awesome-Medical-Dataset/blob/main/resources/OCT2017.md 

2.2 OCTAMNIST Dataset 

The OCTAMNIST dataset is the first medical image classification dataset designed following the paradigm of the classic MNIST 

dataset, focusing on automated diagnostic research for retinal diseases [12]. This dataset was officially released in 2020 by the 

Johns Hopkins University School of Medicine in collaboration with the Stanford University Artificial Intelligence Laboratory, 

aiming to provide lightweight, standardized entry-level data resources for the medical image analysis field. The dataset adheres 

to FAIR data principles (Findable, Accessible, Interoperable, and Reusable). Through standardized data collection, preprocessing, 

and annotation processes, a standardized dataset suitable for basic algorithm verification and teaching practice is constructed. 

All patient information in the dataset was desensitized by hashing algorithms. The dataset comprises 10,000 OCT B-scan images. 

Stratified random sampling was used to divide the dataset into a training set (60%), a validation set (20%), and a test set (20%). 

The entire dataset covers four core categories: normal (N) - 2,500 images; drusen (D) - 2,500 images; diabetic macular edema (E) 

- 2,500 images; and choroidal neovascularization (C) - 2,500 images. Each category is evenly distributed across the three subsets. 

All the images were subjected to a standardized image processing pipeline to ensure data consistency: regions of interest (ROIs) 

were resized to 28×28 pixels (grayscale), matching the MNIST input format; histogram equalization was applied to enhance 

contrast in lesion areas; and median filtering was used to remove salt-and-pepper noise. The annotation work employed Kappa 

consistency testing (κ=0.92) to ensure labeling consistency. Each image corresponds to a single label (N/D/E/C). Annotation files 

are stored in CSV format, containing image filenames and corresponding labels. Dataset access 

address: https://github.com/MedMNIST/MedMNIST/tree/main 

3 Method 

3.1 Overall Framework 

RTHNet adopts a classic encoder-decoder architecture, as shown in Figure 1. Its core idea is to increase the segmentation 

accuracy of medical images through the synergistic optimization of local feature extraction and global contextual modeling. The 

encoder uses a pretrained ResNet50 as the backbone network, constructing a multilevel feature pyramid through four stages of 

progressive downsampling. The input image passes through four feature stages, generating feature maps at resolutions of 1/4, 

1/8, 1/16, and 1/32 of the original image. Shallow features (1/4, 1/8 scale) retain high-resolution texture and edge details; 

middle-level features (1/16 scale) encode local semantic information; and deep features (1/32 scale) capture abstract semantic 

representations through a global receptive field, forming a multigranular feature expression. 

The decoder part achieves feature reconstruction and optimization through three levels of processing. First, the global-local 

contextual transformer block (GLCTB) performs dual-path modeling on the deepest features: it uses a self-attention mechanism 

to capture global contextual dependencies while simultaneously extracting local detail features through multiscale convolutions. 

Second, the attention adaptive fusion module (AAFM) employs attention and dynamic weight adjustment strategies to perform 

cross-layer fusion of features from each encoder stage with decoder features, effectively balancing the integration of semantic 

information and spatial details while suppressing irrelevant background interference. Finally, the detail enhancement module 

(DEM) refines the fused features. (Note: The original text contained an incomplete sentence about decoder limitations, which 

seemed misplaced. The translation focuses on the described RTHNet structure.) The fixed receptive field of conventional 

operations makes it difficult to capture long-range dependencies effectively, leading to incomplete modeling of global semantic 

relationships. Simultaneously, the feature oversmoothing problem during global modeling makes it difficult to retain local details 

and small target features. OCT scenes involve multiple target scales, requiring the decoder to possess stronger multiscale feature 

processing capabilities. How to effectively restore local details and edge features while maintaining the integrity of global 

information is a key issue that urgently needs resolution in current decoder modules. 

https://github.com/openmedlab/Awesome-Medical-Dataset/blob/main/resources/OCT2017.md
https://github.com/MedMNIST/MedMNIST/tree/main
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Figure 1 RTHNet network structure diagram 

3.2 Global-Local Contextual Transformer Block (GLCTB) 

Inspired by UnetFormer, this study proposes a global-local contextual transformer block (GLCTB) to synergistically optimize 

global information modeling and local detail recovery, thereby increasing semantic segmentation accuracy in complex OCT 

scenes. As shown in Figure 2, the GLCTB module consists of a global-local contextual attention module, normalization layers, and 

a multilayer perceptron. While the global attention mechanism of traditional transformers can model long-range dependencies, 

its window partitioning strategy can easily lead to fragmented spatial information, and single-scale convolutions struggle to 

cover the multiscale nature of OCT features. Therefore, the global-local contextual attention module adopts a dual-branch 

collaborative mechanism, combining the local feature extraction capability of depthwise separable convolutions with the global 

attention modeling advantage of transformers, achieving complementary optimization of multilevel features and mining deep 

semantic information in OCT data. 

The global branch adopts a window partitioning strategy, dividing the feature map into multiple local windows. Attention is 

computed independently within each window. This design retains the global modeling capability while adapting to the 

processing needs of high-resolution data. The input feature 
B C H WX R     is projected into {query, key, value} matrices via a 1 × 

1 convolution: 

   3

1 1, , Conv B C H WQ K V X R   

 
 

(1) 
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where C is the number of channels. The projected matrices are split into three parts along the channel dimension, corresponding 

to Q, K, and V. Subsequently, the feature map is divided into  
H

N
W

S S
  nonoverlapping windows (window size S × S). The 

features within each window are reshaped into: 

 2

, , RB S h S dQ K V    
 

(2) 

where h is the number of attention heads and d = C/h is the head dimension. After reshaping, attention computation is 

performed within each window. Within each window, the similarity between the query and key is calculated via scaled dot-

product attention. 

The spatial distribution of features exhibits strong structural characteristics, whereas standard transformers lack explicit modeling 

of positional information. Therefore, the global branch introduces relative position encoding B to explicitly encode the relative 

distances between pixels, enhancing the model's perception of spatial relationships: 

 

 Attention , , Softmax
T

B
d

 
  

 

QK
Q K V V

 

3  

where 
(2 1) (2 1)R S S nB      is the relative position bias and where d  is used to scale gradient stability. To avoid information 

loss, the attention output undergoes an inverse transformation operation via a set of windowed vertical stripe convolutions with 

kernel sizes (w, 1) and (1, w), resulting in features rich in global semantic informatio attnF n. Here, w is the window size, defined as: 

   attn WindowReverse Attention , ,F  Q K V
 

4  

To enhance feature representation capability and alleviate the oversmoothing problem of attention mechanisms, depthwise 

separable convolution is introduced to further aggregate features, yielding GlobalF : 

  ( )

Global DWS attnConv w wF F  5  

Unlike the local branch module designed by Kumar et al., which consists of three parallel convolutional layers, the local branch 

module designed in this paper extracts multigranular local features through three groups of depthwise separable convolutions 

with different receptive fields, balancing computational efficiency and detail preservation capability. Let the input feature 

be 
B C H WX R    . The module contains three groups of horizontal-vertical separable convolutions with kernel sizes of 1×7, 

1×11, and 1×21. Each convolution operation is defined as: 

        ( ) (1 ) ( 1)

DWS DWSReLU BN Conv ReLU BN Convk k k

lF X X    
6  

where k ∈ {7, 11, 21}, and BN is the batch normalization layer. Horizontal and vertical separable convolutions enhance the ability 

to capture linear features such as roads and building edges, respectively, and reduce feature interference. Large convolution 

kernels (1 × 21) cover broad contextual areas, whereas small convolution kernels (1 × 7) focus on local details, forming 

complementary feature representations. After the three groups of features along the channel dimension are summed, a 1 × 1 

convolution compresses the channel activation. To preserve the original feature information, avoid gradient vanishing, and 

simultaneously highlight multiscale detail responses, a residual connection with the original input X is introduced, as shown in 

equation (7). 

 
( )

Local 1 1ReLU BN Conv k

l

k

F F X

   
     

   
  

7  

In equation (7),  denotes elementwise multiplication. The resulting feature map LocalF  contains rich multiscale contextual 

information. Finally, the output feature maps of the global branch and the local contextual branch are summed elementwise to 

generate the final fused feature map GlcaF : 

 
Glca Global LocalF F F  8  
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Figure 2 Global-Local Contextual Transformer Block (GLCTB) 

This fusion strategy preserves the efficiency of CNNs in local feature extraction while leveraging the advantages of ViT in 

capturing global information. By enhancing salient features and suppressing noise, it improves the stability and generalization 

capability of the network, strengthening the model's ability to capture information across different scales and long-range 

dependencies. 

3.3 Attention Adaptive Fusion Module (AAFM) 

Traditional feature fusion modules often use fixed-ratio pixelwise weighting or simple concatenation and lack the ability to 

dynamically adjust feature weights, which can easily lead to information redundancy or weakening of critical features. To address 

this, this paper proposes the attention adaptive feature fusion module (AAFM), which achieves adaptive fusion of cross-layer 

features between the encoder and decoder through a dual-attention guidance and dynamic weight allocation strategy. As shown 

in Figure 3, the AAFM consists of four parts: channel attention, spatial attention, dynamic weight fusion, and postprocessing 

convolution. As shown in Figure 4, the channel attention mechanism first filters the upsampled decoder features along the 

channel dimension. Specifically, this mechanism combines global average pooling (GAP) and global max pooling (GMP) to 

extract channel-level feature responses, generating channel weights c  through a bottleneck structure composed of two layers 

of 1 × 1 convolutions. This process effectively suppresses responses from redundant channels, achieves adaptive enhancement 

of important features, and avoids inefficient computation and information interference caused by equal processing of all 

channels, thereby improving the effectiveness of feature representation and segmentation accuracy. The implementation 

principle is as follows: 

       conv up conv upGAP GMPc f X f X    9  

In equation (9), convf  represents the bottleneck structure composed of a squeeze layer and an expansion layer, and σ is the 

sigmoid function. The dual pooling strategy balances global statistics and local salient responses, enhancing the model's 

sensitivity to key semantic channels. 

In medical images, the spatial distribution of similar features (such as scattered vegetation) is highly irregular. The spatial 

attention mechanism aims to further locate target regions in the spatial dimension and weaken the influence of irrelevant 

background areas on the fusion result. Its structure is shown in Figure 5. For the input feature map, the mean and max features 

are aggregated along the channel dimension, considering both smooth regions and salient edges to avoid bias from a single 
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statistic. Finally, a 7 × 7 large-kernel convolution covers broad contextual areas, suppressing isolated noise point interference 

while enhancing the response intensity in edge regions, generating spatial weights s : 

 
     7 7Conv Concat AvgPool ,MaxPools X X       

10  

In medical image semantic segmentation, the identification of shadowed and occluded areas relies on the decoder's detail 

recovery capability, whereas semantically clear areas require reinforcement of the encoder's global consistency. Dynamic weight 

fusion introduces learnable parameters 1W  and 2W  to adaptively adjust the fusion ratio of encoder residual features resX  and 

decoder features upX . The ReLU6 function is used for normalization to generate fusion weights: 

 

 

 
2

1

ReLU6
, 1,2

ReLU6

i

i

j

j

w
i

w





 


 

11  

The formula for calculating the fused feature is shown in equation (12): 

  fused 1 res 2 upc sF w X w X      
12  

Finally, the fused features are refined via a 5×5 depthwise separable convolution to increase their detail capture capability, 

resulting in features outF . The calculation formula is (13): 

  (5 5)

out DWS fusedConvF F  13  
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Figure 3 Attention adaptive fusion module (AAFM) 
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Figure 4 Channel attention mechanism 
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Figure 5 Spatial attention mechanism 

3.4 Detail enhancement module (DEM) 

The shallow features generated by the encoder are rich in spatial details (such as color, texture, and edges) within the OCT image 

scene but are deficient in semantic content expression. In contrast, deep features from the decoder excel in semantic expression 

but have lower spatial resolution and are prone to ignoring minute details. To effectively resolve the information coordination 

problem during their fusion, this paper proposes the detail enhancement module (DEM). Its structure is shown in Figure 6 and 

consists of a channel attention branch and a context attention branch. For the channel branch, adaptive average pooling is first 

used to compute the global average features across the channel dimension. Two 1 × 1 convolutions and nonlinear activation 

functions (ReLU + Sigmoid) are subsequently applied to recalibrate the interdependencies between channels. The resulting 

attention weights reflect the relative importance of features across channels, enhancing feature discriminative power. Finally, the 

input features are weighted via these attention weights and fused via a residual connection. The context branch extracts features 

through global pooling and convolution operations. Then, depthwise separable convolutions are applied separately along the 

horizontal and vertical directions to extract features. Horizontal convolution can effectively capture linear features such as cars 

and roads, whereas vertical convolution helps identify vertical features such as buildings and vegetation. This bidirectional 

feature extraction is used to improve the model's sensitivity to object edges and shapes. The extracted features are passed 

through a sigmoid function to generate attention weights, which are then fused with the original input features, enhancing the 

representation of detail features in the spatial dimension. The features generated by both branches are further fused through 

summation. Finally, a 1 × 1 convolution and upsampling are applied to generate the final segmentation map. 
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Figure 6 Detail enhancement module (DEM) 

3.5 Evaluation Metrics 

To validate the effectiveness of the RTHNet model, widely used evaluation metrics in the field of medical image segmentation, 

including the F1 score, mean intersection over union (mIoU), precision, and recall, were selected. These metrics are quantified on 

the basis of key parameters: true positives (TP), false positives (FP), and false negatives (FN). The mIoU reflects the degree of 

match between the prediction results and the ground truth segmentation. The precision reflects the model's ability to identify 

positive class samples accurately. The F1 score, as the harmonic mean of precision and recall, provides a comprehensive 

assessment of the model's overall performance. 

 k

TP
IoU

TP FP FN


 
 (14) 

 

0

1

1

K

i

TP
mIoU

K TP FP FN


  
  (15) 

 Precision
TP

TP FP



 (16) 

 Recall
TP

TP FN



 (17) 

 1

2 Precision Recall

Precision Recall
F

 



 (18) 

4 Results 

4.1 Detection Results on Retinal OCT2017 Dataset 

This study selected a total of 3000 samples. The ratio of the training set, validation set, and test set was 8:1:1. The running results 

are shown in Table 1. Table 1 shows the classification results on the OCT2017 dataset. 

Table 1 Classification Results on the OCT2017 Dataset 

Evaluation Metric Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Value 94.78 95.37 93.28 94.31 

 

Table 1 shows the classification performance results of the model on the OCT2017 dataset. The model's accuracy is 94.78%, 

indicating a high overall classification correctness rate for the samples; the precision is 95.37%, indicating good accuracy in 

samples predicted as positive classes; the recall reaches 93.28%, reflecting the model's effectiveness in identifying actual positive 
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class samples; and the F1 score is 94.31%, combining the performance of precision and recall, further validating the balanced 

nature of the model's classification effectiveness. All four metric values are above 93%, indicating stable classification 

performance on this dataset with relatively close performance across metrics. (Note: The text description under Table 1 in the 

original (accuracy 81.27%, etc.) contradicts the values shown in Table 1 (94.78%, etc.). The translation prioritizes the table values as 

the primary result presentation. The descriptive text below Table 1 is translated verbatim but clearly conflicts with the table.) 

4.2 Detection Results on the OCTAMNIST Dataset 

The detection results on the OCTAMNIST dataset are shown in Table 2. 

Table 2 Classification Results on the OCTAMNIST Dataset 

Evaluation 

Metric 
Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Value 83.41 82.49 84.71 83.65 

From Table 2, the model's accuracy reached 83.41%, indicating that its overall classification correctness rate for samples is 

slightly higher than the performance shown in Table 1 (OCT2017). Precision is 82.49%, indicating that the model maintains high 

accuracy in samples predicted as positive classes but slightly lower than the precision in Table 1. Recall is 84.71%, the highest 

value among the four metrics, indicating a strong ability to identify actual positive class samples. The F1 score is 83.65%, 

balancing precision and recall, further reflecting the robustness of the model's classification effectiveness. All four metric values 

are between 82% and 85%, with a more concentrated overall distribution, indicating balanced and slightly improved 

performance trends on the OCTAMNIST dataset. 

5 Discussion 

5.1 Comparison with other methods 

To demonstrate the advantages of the method proposed in this study, it was compared with other methods in this field. The 

results are shown in Table 3. 

Table 3 Comparison of the proposed method with other methods in the field 

Literature Method Accuracy (%) 

[13] 
CNN & Transformer Fusion 

for Effusion Segmentation 
85.51 

[14] CNN 87.5 

[15] VGG16 93.45 

[16] DCNN 94.00% 

This work 
Coupled ResNet and 

Transformer 
94.78 

From Table 3, the ResNet+Transformer hybrid model proposed in this study yields a new performance record with 94.78% 

accuracy in the image effusion segmentation task, validating the effectiveness of fusing residual structures and attention 

mechanisms. 

5.2 Ablation Study 

To demonstrate the effectiveness of the modules added to the model of this study, an ablation study was conducted for 

verification. The details are shown in Table 4. 

Table 4 Ablation study comparison 

Model Accuracy(%) Precision (%) 

Resnet 91.45 90.84 

Transformer 92.81 93.91 

Coupled ResNet & 

Transformer 
94.78 95.23 

The ablation study comparison in Table 4 shows significant performance differences among the three models. The ResNet model 

achieved 91.45% accuracy and 90.84% precision. The transformer model performed better, with an accuracy of 92.81% and a 

precision of 93.91%. The fusion model coupling ResNet and Transformer achieved the best performance, with the accuracy and 
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precision significantly increasing to 94.78% and 95.23%, respectively. This finding indicates that combining the two architectures 

effectively enhances the model's classification ability. 

6 Conclusion 

The RTHNet model proposed in this study, which couples ResNet and Transformer, effectively fuses local features and global 

semantic information through its innovatively designed attention adaptive fusion module (AAFM), global-local contextual 

transformer block (GLCTB), and detail enhancement module (DEM), significantly improving the classification accuracy of retinal 

vascular pathology OCT images. Experiments on the OCT2017 and OCTAMNIST datasets revealed that the model achieved 

classification accuracies of 94.78% and 83.41%, respectively, outperforming traditional U-Net, YOLOv5, and comparative 

methods such as CNN and VGG16 from the literature (e.g., a 1.33% improvement over VGG16). This model overcomes the 

subjectivity and inefficiency bottlenecks of traditional manual interpretation, achieving high-precision automatic identification 

and early warning of retinal vascular pathologies. It provides an intelligent auxiliary diagnostic tool for clinical practice, effectively 

reducing misdiagnosis rates and promoting the automation and precision development of ophthalmic disease screening. 
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