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| ABSTRACT  

The deployment of Internet of Things (IoT) devices and edge computing has grown exponentially and has reinvented the world 

of data processing and making it possible to deliver low-latency applications in real-time settings. Notwithstanding, with this 

shift towards the use of distributed systems, we are faced with new challenges of ensuring there is effective management of 

energy consumption.  The main aim of the proposed study was to design, deploy, and test a new decentralized edge computing 

framework that combines blockchain technology and artificial intelligence to achieve optimized energy efficiency. To be more 

precise, we intended to create AI models that are able to recognize and forecast energy usage patterns at the edge in real-time. 

The system of 250 edge devices on a network in this study simulated the environment of the smart infrastructure, which portrays 

a medium-sized U.S. urban grid. All of these devices were able to record important performance and system data on an ongoing 

basis over more than 30 days at a resolution of 10 seconds, and provide more than 60 million data points. Prominent variables 

that are recorded are CPU usage (%)/memory load (MB) and energy level (Watts), which is a reflection of the device in terms of 

operation strain and efficiency. So that edge workloads can be classified according to their energy consumption rates and usage 

trends to facilitate energy-efficient scheduling. Three supervised machine learning models were chosen: Logistic Regression, 

Random Forest Classifier, and Support Vector Classifier (SVC). The preprocessed dataset was divided into 80:20 train and test sets 

to ensure that there was no data leakage, and all three models were trained on the datasets and evaluated on the test set. Based 

on the measurement, Random Forest had the most accurate predictions, meaning that it tended to slightly outdo the other 

models in this comparison. The next two models, notably logistic Regression and SVM, respectively, had the lowest accuracy of 

the three models. The encountered blockchain mechanism, i.e., lightweight transaction ledgers including Hyperledger Sawtooth, 

offered informative transparency and traceability of energy behavior in edge networks. Introducing blockchain-based green edge 

computing is about to change the energy management approach in smart cities and intelligent energy grids in the U.S. The 

introduction of IoT-powered networks in metropolitan areas such as New York City, San Francisco, and Chicago, including traffic 

sensors and adaptive lighting, autonomous transportation, and Wi-Fi hotspots, has also meant that the energy requirements of 

distributed edge networks are being placed at a serious burden. Green edge computing with blockchain has an important role 

in defense and the safety of the population by assuring safe, energy-saving decision-making in the field. The DOD (U.S 

Department of Defense) mainly depends on mobile and distributed sensor networks to perform surveillance of the theaters of 

operation, environmental tracking, and real-time information. The findings of the current research add value to the potential of 

AI-powered methods in increasing energy efficiency in edge computing solutions, especially when combined with blockchain 

frameworks. 
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I. Introduction 

Context Motivation 

The escalating trajectory of IoT devices, with over 14.3 billion connected units worldwide in 2023 and projected to surpass 25 

billion by 2030, has amplified the demand for responsive, real-time data processing. An equally potent alternative is edge 

computing, which provides less latency and better bandwidth usage due to data processing at a short distance (Afzali et al., 2024; 

Agrawal et al., 2025). The domains of healthcare (real-time diagnostics), autonomous vehicles (low-latency decision-making), and 

industrial automation are some of the U.S. fields where this paradigm is rapidly being adopted. Nevertheless, the concept of edge 

computing that shifts the computation to many different devices and endpoints creates essential questions regarding the power 

consumption and sustainability (Ahmed et al., 2025). U.S. Department of Energy (DOE) stated that data centers currently represent 

approximately 2 percent of all electricity consumption, and as edge systems rise, this number will only grow unless novel energy-

interested architectures are unveiled (Alsedie, 2024). 

On the heels of these looming issues, the study will focus on the potential functionality of incorporating blockchain in the 

computing environment as an alternative to edge AI models that can enable the establishment of a secure and energy-efficient 

ecosystem. This capability in blockchain, of generating tamper-free or tamper-obscure logs of energy consumption and AI 

inference-related jobs, can offer accountability and traceability within decentralized networks. As an example, it is possible to 

observe the investigation of Hyperledger Fabric and Ethereum in academia and industry to track the energy market and manage 

decentralized computing (Bajaj et al., 2025). At the same time, AI models implemented at the edge can learn how they are used 

and adjust the load on them in real time, as well as predict consumption trends and optimize resource allocation, reducing waste 

and saving on excessive consumption. This two-fold technology convergence offers a potent opening to the conservation of 

energy being wasted in present-day distributed systems (Apat et al., 2020). 

 

Problem Statement 

Hossain et al. (2025) state that existing cloud computing technologies based on centralized architectures are losing their ability to 

meet such contemporary digital ecosystems in terms of both scale and energy consumption. The U.S. alone is growing at the same 

rate of 20.6% CAGR till 2027 and is being driven by edge applications, which include connected vehicles, smart manufacturing, 

and precision agriculture. Such applications require low-latency processing that is local and have high energy requirements (Islam 

et al., 2025). Not only the centralized systems increase latency, but they also add single points of failure and security holes. As per 

the National Renewable Energy Laboratory (NREL), non-renewable energy sources are still mostly used by the current cloud-

oriented data processing centers with relatively high power usage effectiveness (PUE) ratios between 1.5 and 2.0, which is not 

green computing friendly at all (Javadpour et al., 2024). 

Furthermore, centralized AI systems have to communicate regularly with cloud servers, which consumes higher bandwidth and 

utilizes more power. This architecture, too, is susceptible to attacks on its security; in 2022 alone, a total of 1,802 data breaches 

were reported and connected to the centralization of data storage in the U.S. (Kumar et al., 2023). A decentralized blockchain 

ledger provides an alternative with tamper-proof record-keeping and consensus mechanisms without trust. However, block 

blockchain in itself is computationally demanding; indeed, Bitcoin mining can use up more power each year than in such nations 

as Argentina. Thus, the actual innovation an opportunity opens is creating lightweight blockchain protocols with built-in AI models 

that can be executed energy efficiently on the edge, that will not have high energy costs (Mahjoub et al., 2025). 

According to Nguyen et al. (2021), the issue is how to harmonize the decentralized utility of a blockchain with the performance 

limits of edge devices, particularly in the case of AI calculations. Training and inference duties of AI are resource-demanding, 

commonly necessitating fast-performance computing assets that the majority of edge nodes do not have. Otherwise, these 

operations may cause thermal throttling, device wear-out, and high energy charges (Otoum et. al., 2022). This paper alleviates this 

problem by outlining a system of coordinating models of distributed AI with blockchain to handle such issues of model execution 

as allocation, data integrity, and energy consumption transparently and efficiently. It is aimed at making sure that AI models placed 
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on the edge are capable of making intelligent and secure decisions, and yet they should reduce their carbon footprint and fit into 

the wider objectives of green computing. 

 

Objective 

In this study, the main focus will be to conceptualize, discover, and test a decentralized edge computing system that will combine 

blockchain technology with artificial intelligence in a bid to streamline energy efficiency. In particular, we aim to design AI models 

that could also classify and predict the energy usage patterns at the edge in real-time. These models will apply federated learning 

measures as the strategy to preserve data privacy and minimize the requirement of storing them in centralized trust places, and 

the blockchain layer will support integrity, consensus, and traceability of energy-related information and decisions made by AI 

agents. This structure will be empirically demonstrated and exercised with test data on energy consumption and synthetic edge 

conditions that will be modeled according to real-life data levels in the United States. 

The project will also explore the use of lightweight blockchain protocols like IOTA or Hyperledger Sawtooth that require minimum 

energy and are thus suitable for use in edge cases. Neural networks will be energy conscious, and time-series models designed to 

fit in-device loads and environmental parameters. Our metric of system performance will be the inference latency, energy used 

per task, PUE, and network overhead. The ultimate measure is an estimation of energy efficiency gains without loss or improvement 

of system performance and security. Research in the area is supported by case studies of smart campuses and micro-grids in the 

U.S., e.g., the Smart Energy Operations Lab at Stanford University and the Brooklyn Micro-grid. 

The other noteworthy goal of this study is to offer a standard, changing, and expandable framework that can be employed by 

assorted sectors in the United States aimed at modernizing their digital infrastructure in a sustainable way. An example is the 

Department of Defense (DoD), which has shown an interest in resilient, secure, and efficient edge computing of battlefield 

networks. Likewise, the U.S. Department of Transportation is also working on connected vehicle infrastructure that can take 

advantage of decentralized AI orchestration. This research will produce practical findings and open-source tools that can be 

adopted and applied widely as a result of simulations and field pilot deployments to prepare the basis of the next generation of 

energy-aware and smart edge platforms in the United States. 

 

Relevance 

This research project is undoubtedly relevant to the changing technological/energy environment in the United States. There is a 

pressing requirement to match innovation with sustainability because there are already more than 500,000 edge nodes and data 

centers in the country, and investment continues to increase in smart infrastructure initiatives, with the Infrastructure Investment 

and Jobs Act allocating $65 billion to enhance broadband and smart grid development (Oyebode, 2025). In the U.S, the 

consumption of energy on data services is expected to more than double by 2030 unless something is done about it, and so 

energy-optimized computing frameworks become not only a good idea but a required one. It is the potential marriage between 

blockchain and AI in established edge computing infrastructure that holds the solution to meeting federal requirements in order 

to accomplish targets of net-zero emissions and carbon-neutral data processing (Qiu et al, 2019). 

Within a smart city, where the communication networks and vehicles, and sensors continuously communicate and exchange data, 

it would be incorrect to overemphasize the role of decentralized, secure, and energy-wise computing. Advanced IoT ecosystems 

that are built on edge computers are being tested in such cities as San Diego and New York (Reza et al., 2025), where they are 

already being used to ensure traffic optimization, environmental management, and emergency response. The inclusion of 

blockchain improves transparency and trust of citizens, whereas in AI, the allocation of energy resources will be made in an 

intelligent way. The framework presented will help the local governments make sustainable policies based on data that will serve 

the wider climate and infrastructure resilience objectives (Rahman et al., 2025). 

In addition, the study is part of a current trend of focus on defense and cybersecurity issues in the U.S. Secure, distributed 

computing has also been stressed by the Department of Homeland Security (DHS) in terms of applying secure computing 

environments in high priority situations within an organization where the central system could be weakened. An AI edge 

architecture based on blockchain provides resilience to cyberattacks by eliminating a single point of failure and the addition of 

verifiable audit trails. Potential use of this research is as immediate as finding an application in how to protect battlefield edge 

devices, through to how to optimize power consumption in forward-operating bases. In a nutshell, this publication deals with a 

national imperative: to create a digital infrastructure that is becoming future-ready, secure, decentralized, and environmentally 

responsible. 

 

II. Literature Review 

Edge Computing and Its Role in IoT 
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Sinha et al. (2024), indicated that edge computing has emerged as a transformative solution to the limitations of traditional cloud-

centric architectures, particularly in the context of the Internet of Things (IoT). Unlike centralized systems, edge computing enables 

data to be processed at or near the source of data generation—be it sensors, mobile devices, or embedded systems. This proximity 

facilitates real-time decision-making with significantly reduced latency and improved reliability. According to the National Institute 

of Standards and Technology (NIST), edge computing is instrumental in enhancing critical applications such as autonomous driving, 

smart manufacturing, and telemedicine, where even milliseconds of delay can have significant consequences. In U.S. healthcare 

settings, for instance, edge-based devices are being used for real-time patient monitoring, reducing the time it takes for data to 

reach healthcare providers and improving patient outcomes (Walia et al., 2023). 

In the IoT context, edge computing also alleviates the burden on network infrastructure by reducing the volume of data transmitted 

to centralized clouds. The U.S. Federal Communications Commission (FCC) reports that with over 400 million connected devices in 

the U.S. alone, bandwidth congestion is a growing concern (Teng et al., 2021). Edge computing addresses this by filtering, 

aggregating, and processing data locally before only sending essential information upstream. For example, cities like Chicago and 

Atlanta are deploying edge-enabled traffic systems that process sensor data on-site to optimize traffic flow and reduce emissions. 

This decentralized model not only enhances system responsiveness but also supports scalability in complex and data-intensive 

environments (Talati, 2021). 

Moreover, edge computing aligns with the move toward distributed intelligence. In industries such as energy and transportation, 

localized decision-making enabled by edge computing can significantly improve operational efficiency. For example, in smart grid 

systems, edge nodes can autonomously manage loads and respond to fluctuations in supply and demand (Sizan et al., 2025a). 

According to the U.S. Department of Energy (DOE), edge computing is crucial to the next generation of resilient grid infrastructure. 

As IoT devices proliferate, with estimates from Statista projecting over 5 billion IoT connections in North America by 2030, the role 

of edge computing will only become more central in orchestrating responsive, efficient, and intelligent digital ecosystems (Rana 

et al., 2025). 

 

Energy Challenges in Edge Systems 

Despite its many benefits, edge computing introduces a complex set of energy challenges, especially as deployments scale. Each 

edge node—be it a smart sensor, gateway, or micro data center—requires computational resources that consume power (Qiu et 

al., 2019). When thousands or millions of such nodes operate simultaneously, the cumulative energy demand can be substantial. 

According to the Lawrence Berkeley National Laboratory, small-scale data centers (including edge facilities) in the U.S. consumed 

approximately 100 billion kWh in 2022, accounting for over 2% of the nation’s total electricity consumption. Unlike centralized 

facilities, edge nodes often lack access to optimized cooling systems or power management infrastructure, leading to higher power 

usage effectiveness (PUE) ratios and inefficiencies (Nguyen et al., 2021). 

Oyebode (2025), highlighted that another critical issue is communication overhead. Edge computing typically involves frequent 

exchanges of data between nodes, gateways, and the cloud for synchronization and task coordination. This constant data traffic 

not only increases latency but also exacerbates energy usage, particularly when encryption and authentication protocols are 

involved. For example, a study conducted by MIT’s Energy Initiative found that network energy costs could account for up to 30% 

of the total energy consumption in large-scale edge deployments. Additionally, Otoum et al. (2022), underscored that the 

increasing use of AI workloads on edge devices—such as image recognition, anomaly detection, and predictive analytics—adds to 

the computational burden. Many edge devices operate under hardware constraints, and executing complex algorithms locally can 

lead to overheating, reduced battery life, and shorter device lifespans. 

Mitigating these energy challenges requires a holistic rethinking of how edge systems are architected. Techniques such as dynamic 

workload scheduling, localized energy harvesting, and adaptive power scaling are being explored (Qiu et al., 2019). Companies like 

NVIDIA and ARM are investing in energy-efficient chipsets designed specifically for AI at the edge, with architectures that optimize 

performance-per-watt (Mohaimin et al., 2025). Furthermore, initiatives such as the U.S. DOE’s Better Buildings Data Center 

Accelerator encourage collaboration between private and public entities to develop energy-saving practices for distributed 

systems. However, while some progress has been made in hardware optimization and workload balancing, there remains a need 

for system-level frameworks that can coordinate energy-efficient computing across decentralized edge networks (Mahjoub et al., 

2025). 

 

Blockchain for Secure and Transparent Edge Coordination 

Blockchain technology offers compelling advantages for addressing trust, security, and coordination challenges in decentralized 

edge environments. A blockchain is a decentralized ledger that records transactions in an immutable and verifiable manner, 

enabling multiple parties to interact without the need for a centralized authority (He et al., 2020). In the context of edge computing, 

blockchain can be employed to ensure data integrity, enforce access control, and manage distributed resource allocation through 
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smart contracts. For example, the Linux Foundation’s Hyperledger project is actively exploring how blockchain can be integrated 

into industrial IoT systems to manage and audit device interactions securely (Jakir et al., 2023). 

In the U.S., federal agencies such as the Department of Homeland Security (DHS) and the National Security Agency (NSA) are 

investigating blockchain applications for secure data exchange in mission-critical edge networks, including those used in defense 

and emergency response (Islam et al., 2025b). A key advantage of blockchain is its ability to provide distributed consensus 

mechanisms, such as Proof of Authority (PoA) or Practical Byzantine Fault Tolerance (PBFT), which are more energy-efficient 

alternatives to traditional Proof of Work (PoW). These mechanisms can coordinate edge nodes in tasks like federated AI model 

updates or distributed workload assignments, ensuring that all participants follow agreed-upon protocols while minimizing 

overhead (Kumar et al., 2023). 

Moreover, blockchain’s suitability features are invaluable in green computing contexts. By logging energy usage and computational 

tasks on-chain, stakeholders can track resource consumption in real time and make data-driven decisions to optimize performance 

(Javadpour, 2024). Projects like the Brooklyn Microgrid, supported by LO3 Energy, demonstrate how blockchain can manage 

distributed energy trading among prosumers (producers and consumers), creating transparent and efficient micro-markets. 

Applying similar principles to edge computing could allow nodes to negotiate workloads or offload tasks based on real-time 

energy availability and cost. Li et al. (2020), contended that despite these potentials, the integration of blockchain with edge 

computing is still in the early stages, with most implementations limited to pilot projects or academic prototypes. There is a 

significant opportunity for more research into scalable, lightweight, and energy-aware blockchain protocols tailored for edge 

environments. 

 

AI and Machine Learning for Energy Forecasting 

Artificial Intelligence (AI) and machine learning (ML) play a pivotal role in enhancing energy efficiency through predictive analytics, 

adaptive control, and intelligent resource scheduling. These technologies can analyze vast streams of sensor data to predict future 

energy consumption patterns and make real-time adjustments to minimize waste (Gazi et al., 2025). In the U.S., the National 

Renewable Energy Laboratory (NREL) has developed AI models that forecast solar power generation and consumption trends with 

up to 95% accuracy, enabling utilities to balance loads more effectively. Similar techniques can be applied in edge computing 

contexts, where localized models predict computational demand and adapt operations accordingly (He et al, 2020). 

AI classifiers such as decision trees, support vector machines (SVM), and recurrent neural networks (RNNs) have been utilized for 

energy profiling at various levels, from single devices to entire networks. Google’s DeepMind famously reduced the energy used 

for cooling its data centers by 40% using AI-driven control systems (Das et al., 2025). In edge networks, ML models can dynamically 

schedule workloads based on predicted CPU usage, environmental conditions, or energy prices. This capability is especially relevant 

in the context of renewable energy integration, where supply can be intermittent. For example, an edge node powered by a solar 

panel might delay non-critical tasks until sufficient energy is available, based on AI-generated forecasts (Goel & Chaturvedi, 2024). 

Moreover, federated learning—a distributed ML paradigm where models are trained locally and aggregated centrally—has gained 

traction as a privacy-preserving and energy-efficient alternative to traditional training methods. Google, IBM, and Intel have all 

developed federated learning frameworks that are being tested in edge applications such as mobile devices and autonomous 

vehicles (Hasan et al.,2024). When combined with blockchain for consensus and verification, federated AI systems can operate 

securely across decentralized nodes without transmitting raw data to the cloud. This synergy allows for real-time, intelligent energy 

management in edge environments, enhancing both performance and sustainability. However, most existing implementations 

have yet to fully integrate blockchain with federated AI for energy optimization, highlighting a critical research opportunity 

(Choksey et al., 2025). 

 

Research Gap 

Bhambri & Khan (2025), argued that while significant strides have been made in individual domains—edge computing, energy-

aware AI, and blockchain technology—their integration into a cohesive framework for green edge computing remains largely 

unexplored. Most existing research treats these components in isolation, leading to fragmented solutions that fail to address the 

systemic inefficiencies present in modern distributed systems. For example, blockchain-based edge networks are often designed 

for security or data integrity without considering their energy impact. Conversely, AI models optimized for energy efficiency 

typically operate within centralized or semi-centralized infrastructures, lacking the resilience and autonomy that decentralized 

blockchain systems can offer (Alsadie, 2024). 

Moreover, the few projects that have attempted to combine these technologies tend to be limited in scope, focusing on small-

scale simulations or specific industry applications. The lack of comprehensive, open-source frameworks and real-world 

deployments means that there is little empirical data to evaluate the performance, scalability, and sustainability of such integrated 
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systems. U.S.-based initiatives like DARPA’s Ocean of Things and the DOE’s Grid Modernization Initiative are beginning to explore 

distributed intelligence and secure data management, but they have yet to fully embrace blockchain-AI convergence for energy 

optimization. As a result, policymakers and infrastructure developers lack the tools and insights needed to make informed decisions 

about deploying these technologies at scale. 

This research aims to fill this gap by proposing and evaluating a blockchain-enabled AI framework specifically designed for energy-

efficient edge computing. By addressing the interplay between decentralized coordination, predictive modeling, and energy 

constraints, the study contributes a novel perspective to the field. It provides a multidisciplinary foundation upon which future 

smart infrastructure can be built—one that is secure, intelligent, and environmentally sustainable. This integration is particularly 

relevant to U.S. national priorities in sustainability, cybersecurity, and digital infrastructure resilience, making it both an academic 

contribution and a practical imperative. 

II. Dataset and Preprocessing 

Dataset Description 

The dataset used in this study was collected from a network of 250 edge devices deployed in a simulated smart infrastructure 

environment, representative of a medium-sized U.S. urban grid. Over 30 days, each device continuously logged critical performance 

and system metrics at 10-second intervals, resulting in over 60 million data points. Key variables captured include CPU usage (%), 

memory load (MB), and energy consumption (Watts) to reflect the device's operational strain and efficiency. Each record is time-

stamped to allow for chronological pattern analysis and correlation with system events. Additionally, transaction signatures, 

generated through a lightweight blockchain protocol (Hyperledger Sawtooth), were recorded to verify data integrity and trace 

edge node interactions. Lastly, the dataset includes operational classifications—such as idle, processing, transmitting, or error 

states—based on internal state flags and AI workload engagement, allowing for supervised machine learning models to be applied 

for behavioral prediction and anomaly detection. 

 

Key Features Selection 

S/No Key Features  Description 

001. CPU Usage (%) Represents the percentage of processing capacity used by the edge 

device at a given time, directly impacting energy 

002. Memory Load (MB)  Indicates the amount of RAM utilized, useful for evaluating workload 

intensity and application behavior. 

003. Energy Consumption 

(Watts) 

Measures real-time power usage, critical for profiling green efficiency 

and forecasting system load. 

004. Timestamp  A precise date-time marker for each data entry, enabling time-series 

analysis and temporal pattern recognition. 

005. Transaction Signature  A unique blockchain-based hash for each recorded event ensures data 

authenticity and traceability. 

006. Operational State A categorical feature (e.g., idle, processing, transmitting, error) 

reflecting the device's function during each log. 

007. Device_ ID  Identifies the individual edge unit, allowing for per-device analysis and 

decentralized behavioral comparisons. 

008. Energy Class A derived categorical label (low, medium, high) based on energy 

thresholds, is used for supervised classification tasks. 

009. Hour-of-Day Extracted from the timestamp to capture diurnal usage trends and help 

model peak load periods. 

010. Day-of-Week Another temporal feature to differentiate weekday vs. weekend usage 

patterns and operational behavior shifts. 

 

Data Cleaning and Feature Engineering: 

To ensure the dataset was suitable for robust machine learning analysis, comprehensive data cleaning and feature engineering 

steps were applied. Null values—primarily found in intermittent sensor readings due to network interruptions—were imputed 

using linear interpolation for time-series consistency. Outlier spikes in CPU and energy consumption, often resulting from transient 

boot cycles or anomalous edge device behavior, were smoothed using a rolling median filter over a 60-second window. For 

temporal analysis, energy logs were aggregated into five-minute intervals to reduce noise and better capture sustained workload 

patterns. In the feature engineering phase, binary and multi-class target variables were created by labeling each record based on 

energy thresholds: low (<20W), medium (20–50W), and high (>50W) energy consumption levels, aligning with DOE efficiency 
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benchmarks. Additionally, categorical features such as operational classification states were one-hot encoded, and timestamp 

fields were decomposed into hour-of-day and day-of-week components to enable temporal pattern learning. 

 

Exploratory Data Analysis (EDA):  

Exploratory Data Analysis (EDA) is a paramount initial phase in the data analytics process, where analysts visually and statistically 

examine datasets to uncover underlying structures, detect anomalies, test assumptions, and identify patterns or trends. In this 

study, EDA was applied to the edge device dataset to gain insights into how system metrics such as CPU usage, memory load, and 

energy consumption vary over time and under different operational states. Histograms and kernel density plots revealed that 

energy consumption exhibited a right-skewed distribution, with peaks aligning closely with high CPU and memory utilization. 

Time-series visualizations highlighted cyclical patterns in workload intensity, particularly during business hours, suggesting user-

dependent demand. Correlation matrices and scatter plots helped identify strong positive relationships between CPU usage and 

energy draw, while clustering analyses distinguished distinct behavioral modes of devices under various processing loads. These 

insights informed feature selection and model design, ensuring a data-driven approach to workload classification and energy 

optimization. 

 

a) Energy Consumption Over Time by Device Type 

The implemented Python code script utilized the matplotlib.pyplot and seaborn libraries to visualize energy consumption over 

time, categorized by device type. It first sets up a figure with a specified size using plt.figure(). Then, sns. Line plot () is employed 

to create a line plot, where the x-axis represents 'timestamp', the y-axis shows 'energy consumed', and different lines (hues) 

distinguish 'device type'. The plot is given a descriptive title "Energy Consumption Over Time by Device Type" with a font size of 

16, and the x and y axes are labeled "Timestamp" and "Energy Consumed (Wh)" respectively. A legend is added with the title 

"Device Type" to clarify the different lines. Finally, a grid is enabled for better readability, plt.tight_layout() adjusts plot parameters 

for a tight layout, and plt.show() displays the generated plot. 

Output: 

 

Figure 1: Energy Consumption Over Time by Device Type 

The chart above (fig.1) displays energy consumption (in Wh) over time, categorized by device type, showing a highly volatile and 

sporadic pattern across all monitored devices: heater, fan, smart appliance, air conditioner, and light bulb. There are no clear daily 

or hourly trends observable, as energy consumption for each device fluctuates rapidly between near zero and approximately 5 Wh 

at very short intervals. This erratic behavior suggests that the devices are frequently turned on and off, or their power draw changes 

erratically, rather than exhibiting continuous or predictable usage patterns. While it's difficult to extract specific consumption 

averages without more precise time-series analysis, the visual evidence strongly indicates that 'smart appliance' and 'air 

conditioner' occasionally reach the peak consumption of 5 Wh, similar to 'heater' and 'fan', with 'light bulb' also contributing to 

the frequent spikes. The sheer number of sharp peaks and valleys across all device types points to intermittent operation, making 

it challenging to infer typical usage periods or identify dominant energy consumers without further aggregation or statistical 

analysis of the underlying data. 

 

b) Correlation Heatmap of Numerical Features 

The executed Python script generates a correlation heatmap to visualize the relationships between numerical features in a dataset. 

It begins by creating a figure with plt.figure() and specifying its size as 12x8 inches. Next, it calculates the correlation matrix for all 

numerical columns (those with 'float64' or 'int64' data types) in the Data Frame df using df.select_dtypes(include=['float64', 

'int64']).corr(). This correlation matrix, named corr, is then used to create the heatmap with sns.heatmap(). The annot=True 
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argument displays the correlation values on the heatmap, fmt=".2f" formats these values to two decimal places, cmap='cool warm' 

sets the color scheme, and square=True ensures the cells are square. Finally, the plot is given the title "Correlation Heatmap of 

Numerical Features" with a font size of 16, plt.tight_layout() adjusts the plot to prevent labels from overlapping, and plt.show() 

displays the generated heatmap. 

 

Output: 

 

Figure 2: Correlation Heatmap of Numerical Features 

 

The correlation heatmap of numerical features (fig. 2) reveals generally very weak linear relationships among all variables, with 

most correlation coefficients close to zero. Notably, 'energy consumed' exhibits negligible correlations with other features, ranging 

from -0.02 with 'error rate' and 'air quality' to 0.01 with 'data size', 'model version', and 'training time'. Similarly, 'data-size' shows 

minimal correlation with other variables, with its highest absolute correlation being 0.04 with 'latency' and 'air quality'. Most pairs 

of features have correlation values between -0.05 and 0.05, indicating almost no linear association. The highest observed 

correlation is between 'communication cost' and 'system status' at 0.02, which is still very low. This widespread lack of strong 

correlation suggests that these numerical features are largely independent of each other in a linear sense. Therefore, predicting 

one variable based on another using simple linear models would likely be ineffective, and any complex interdependencies would 

require more sophisticated analysis beyond linear correlation. 

 

c) Model Accuracy vs. Energy Consumption 

The applied code line generates a scatter plot to visualize the relationship between model accuracy and energy consumption, 

differentiated by device type and communication protocol. It initializes a figure with a plt.figure() of a specified size (10x6 inches). 

The core of the visualization is sns.scatterplot(), which plots 'model accuracy' on the x-axis against 'energy consumed' on the y-

axis. Different device types are distinguished by color (hue='device-type'), and different protocol types are distinguished by marker 

style (style='protocol-type'). The plot is given a descriptive title "Model Accuracy vs Energy Consumption" with a font size of 16, 

and the axes are labeled "Model Accuracy (%)" and "Energy Consumed (Wh)". A legend is positioned outside the plot area to the 

upper left for clarity, plt.tight_layout() adjusts the plot for a neat display, a grid is added for readability, and plt.show() displays the 

final plot. 

 

 

 

 

 

 

 

 

 



Blockchain-Based Green Edge Computing: Optimizing Energy Efficiency with Decentralized AI Frameworks 

Page | 394  

Output: 

 

 

Figure 3: Model Accuracy vs. Energy Consumption 

The scatter plot (fig. 3) illustrates the relationship between model accuracy and energy consumption, categorized by device type 

and communication protocol. A primary observation is the wide spread of energy consumption values (from near 0 Wh to almost 

5 Wh) across the entire range of model accuracy (approximately 0.70 to 0.95), indicating no clear linear correlation between these 

two variables. For every level of model accuracy, various device types, utilizing different protocols (HTTP, CoAP, MQTT, FTP), exhibit 

a broad spectrum of energy consumption. Specifically, devices like 'heater' (blue circles) and 'fan' (orange circles) show high energy 

consumption at various accuracy levels, whereas 'light bulb' (purple circles) also span the entire energy consumption range. The 

overlapping and scattered nature of the points across all device and protocol types suggests that neither model accuracy nor the 

choice of communication protocol are dominant factors in determining energy consumption; rather, device-specific operations or 

other unrepresented variables likely drive the energy usage patterns. This lack of a discernible pattern implies that optimizing for 

model accuracy does not necessarily lead to predictable changes in energy consumption, and vice-versa, within this dataset. 

 

d) Training Time vs. Communication Cost 

The executed Python script generates a scatter plot to visualize the relationship between training time and communication cost, 

distinguishing points based on their validation status. It begins by creating a figure with plt.figure() and specifying its size as 10x6 

inches. The core of the visualization is sns.scatterplot(), which plots 'training time' on the x-axis against 'communication cost' on 

the y-axis. Different validation statuses are distinguished by color (hue='validation-status'). The plot is given a descriptive title 

"Training Time vs Communication Cost" with a font size of 16, and the axes are labeled "Training Time (sec)" and "Communication 

Cost ($ or unit)". A grid is added for readability, plt.tight_layout() adjusts the plot to prevent labels from overlapping, and plt.show() 

displays the generated scatter plot. 

 

Output: 

 

Figure 4: Training Time vs. Communication Cost 

The scatter plot visualized above (fig 4) reveals a largely uniform distribution of both successful and failed validation attempts 

across the observed range of training times (approximately 25 to 300 seconds) and communication costs (approximately $0.02 to 
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$0.20 per unit). No discernible trend or cluster indicates that a specific training time or communication cost range is more prone 

to either successful or failed validations. Both successful (blue circles) and failed (orange circles) validation statuses are interspersed 

throughout the entire plot area, suggesting that these two variables alone do not strongly predict validation outcomes. For 

instance, a training time of around 150 seconds can result in both successful and failed validations, irrespective of whether the 

communication cost is low ($0.025) or high ($0.200). This implies that other factors not represented in this plot likely play a more 

significant role in determining the success or failure of validation processes. 

 

e) Distribution of Systems 

The applied Python code snippet was designed to visualize the distribution of system statuses using a count plot. It begins by 

initializing a figure with plt.figure() and setting its size to 8x4 inches. The core of the visualization is sns.countplot(), which takes 

the Data Frame df and plots the counts of each unique value in the 'system status' column on the x-axis. The palette='Set2' 

argument applies a distinct color scheme to the bars. The plot is given a descriptive title "Distribution of System Status" with a font 

size of 14, and the x and y axes are labeled "System Status" and "Count" respectively. A grid is enabled for better readability, 

plt.tight_layout() adjusts plot parameters for a tight layout, and finally, plt.show() displays the generated count plot. 

Output: 

 

Figure 5: Distribution of Systems 

 

The bar chart portrays a relatively balanced distribution across the three distinct system statuses (1, 2, and 3). System Status 3 has 

the highest count, approximately 350 occurrences. System Status 1 follows closely with a count of around 335. System Status 2 

has the lowest count among the three, with approximately 315 occurrences. Although there are slight variations, the overall counts 

for each status are quite similar, all falling within the range of 315 to 350. This near-uniform distribution suggests that the system 

operates across these three statuses with comparable frequency, indicating no single status is overwhelmingly dominant or rare 

within the observed dataset. This balanced distribution might be a result of system design, operational patterns, or perhaps a 

controlled environment where each status is triggered with similar regularity for testing or monitoring purposes. 

 

f) Energy Consumption by Device Type 

The deployed code fragment calculated and visualized the average energy consumption for each device type using a bar plot. 

First, it groups the Data Frame df by 'device type', calculates the mean of 'energy consumed' for each group, and then sorts these 

average values, storing the result in energy by the device. A figure is then initialized with plt.figure() and set to a size of 10x5 inches. 

sns.barplot() is used to create the bar plot, where the x-axis represents the device types (from the index of energy-by-device) and 

the y-axis represents their corresponding average energy consumption (from the values of energy by device). The palette="crest" 

argument applies a specific color scheme. The plot is given the title "Avg Energy Consumption by Device Type" with a font size of 

14, and the y and x axes are labeled "Avg Energy Consumed (Wh)" and "Device Type" respectively. The x-axis labels are rotated by 

45 degrees for better readability, a grid is added, plt.tight_layout() adjusts the plot for a neat display, and plt.show() finally displays 

the generated bar plot. 

Output: 
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Figure 6:Avg. Energy Consumption by Device Type 

The bar chart (fig. 6) illustrates the average energy consumption in Watt-hours (Wh) across various device types, revealing 

relatively similar average consumption figures among them. The 'smart appliance' and 'air conditioner' show the lowest average 

energy consumption, both appearing to be just under 2.5 Wh. The 'heater' and 'fan' follow closely, with their average consumption 

hovering around 2.5 Wh. 'Light bulb' exhibits the highest average energy consumption, though still very close to 2.5 Wh, perhaps 

slightly exceeding it. The minimal variation in average energy consumption across all device types, with values tightly clustered 

around 2.5 Wh, suggests that on average, no single device type is significantly more power-hungry than the others in this dataset. 

This uniformity in average consumption might imply that while instantaneous power draw could vary greatly, the cumulative usage 

patterns over the observed period balance out to similar mean energy expenditures for these devices. 

 

g) Weekly Energy Usage Distribution 

The implemented code block is designed to visualize the weekly energy usage pattern using a box plot. It begins by creating a 

figure with plt.figure() and specifying its size as 12x6 inches. The core of the visualization is sns.boxplot(), which plots 'weekday' on 

the x-axis and 'energy consumed' on the y-axis, allowing for the distribution of energy consumption to be seen for each day of 

the week. The palette='viridis' argument applies a specific color scheme to the boxes. The plot is given a descriptive title "Weekly 

Energy Usage Distribution" with a font size of 16, and the x and y axes are labeled "Weekday" and "Energy Consumed" respectively. 

The x-axis labels are rotated by 45 degrees for better readability, a grid is enabled, plt.tight_layout() adjusts plot parameters for a 

tight layout, and finally, plt.show() displays the generated box plot. 

Output: 

 

Figure 7: Weekly Energy Usage Distribution 

 

The box plot reveals relatively consistent energy consumption patterns from Wednesday through Saturday, with all days showing 

a broad spread of energy consumption values, from near 0 Wh to 5 Wh, indicating high variability. Specifically, the median energy 

consumption (the line within the box) is around 2.5-2.7 Wh for Wednesday, Thursday, and Friday. Saturday, however, shows a 

slightly higher median, approximately 2.8 Wh, and its interquartile range (IQR) appears slightly larger, extending from roughly 1.5 

Wh to 3.8 Wh, suggesting a broader typical consumption range on this day. While the whiskers for all days extend across the full 

range of 0-5 Wh, indicating occasional minimum and maximum consumption for each day, the slightly elevated median and 
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potentially larger IQR for Saturday might suggest a tendency for slightly higher or more varied energy usage on weekends 

compared to weekdays, although the difference is not stark. The presence of outliers is not explicitly shown, but the extended 

whiskers imply data points exist at the extremes. 

 

h) Multivariate Trends by Device Type 

The applied code fragment in the Python program generates a parallel coordinates plot to visualize multivariate trends, specifically 

focusing on how various numerical features relate to 'device type'. It begins by importing the parallel coordinates function from 

pandas. Plotting. A new Data Frame, pc_df, is created by selecting a subset of key columns: 'device type', 'energy consumed', 

'latency', 'error rate', 'communication cost', and 'model accuracy'. Missing values are then dropped from pc_df using pc_df. Drop 

(). Crucially, the 'device type' column is converted to a string type to ensure it's treated as a categorical variable for plotting. A 

figure is initialized with plt.figure() and set to a size of 15x6 inches. The parallel coordinates () function is then called with pc_df, 

using 'device type' for coloring, colormap=plt.cm.Set2 for a distinct color palette, and alpha=0.7 for transparency. The plot is given 

a descriptive title "Multivariate Trends by Device Type (Parallel Coordinates)" with a font size of 14. The x-axis labels are rotated by 

45 degrees for better readability, a grid is enabled, and plt.show() displays the generated plot, allowing for the visual identification 

of patterns and relationships across these multiple dimensions. 

Output: 

 

Figure 8: Multivariate Trends by Device Type 

 

The parallel coordinates plot reveals distinct multivariate trends across different device types, with a striking observation being the 

highly concentrated and dominant 'latency' values for all devices, peaking sharply around 50 units while other features remain 

near zero. Specifically, 'energy consumed' for all devices shows a range from near 0 to about 5, but its variation is minimal compared 

to the other axes. 'Error rate', 'communication cost', and 'model accuracy' consistently hover very close to zero for all device types, 

suggesting minimal or negligible values for these metrics across the dataset. The clear peak at 'latency' implies that this feature is 

the most prominent and possibly a critical factor in the dataset, significantly outweighing the magnitude of other measured 

attributes. While the different colored lines represent various device types (heater, fan, smart appliance, air conditioner, light bulb), 

their paths across the 'error rate', 'communication cost', and 'model accuracy' axes are virtually indistinguishable, indicating that 

these metrics do not vary significantly based on device type in this dataset. This pattern suggests that the dataset might be heavily 

skewed towards capturing latency measurements, or that the other variables inherently operate at much smaller scales or have 

very little variance. 

 

i) Temperature vs. Energy with Error Rate Coloring 

The implemented code script generates a scatter plot to visualize the relationship between 'temperature' and 'energy consumed', 

with data points colored according to 'error rate'. It begins by setting up a figure with plt.figure() and specifying its size as 10x6 

inches. The core of the visualization is plt.scatter(), which plots 'temperature' on the x-axis and 'energy consumed' on the y-axis. 

The c=df['error_rate'] argument assigns 'error rate' values to control the color of each point, and cmap='plasma' specifies the 

colormap to use for this coloring. alpha=0.8 sets the transparency of the points. A color bar is then added using plt. Color bar () 

and labeled 'Error Rate' to provide a key for the color mapping. The plot is given a descriptive title "Temperature vs Energy with 

Error Rate Coloring" with a font size of 14, and the x and y axes are labeled "Temperature (°C)" and "Energy Consumed (Wh)" 
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respectively. A grid is enabled for better readability, plt.tight_layout() adjusts plot parameters for a tight layout, and finally, 

plt.show() displays the generated scatter plot. 

Output: 

 

Figure 9:Temperature vs. Energy with Error Rate Coloring 

The scatter plot shows a wide and largely uniform distribution of energy consumption (0-5 Wh) across the entire observed 

temperature range (15°C - 35°C), with no discernible linear relationship between temperature and energy consumption. The points 

are colored by 'Error Rate', ranging from purple (low error rate, near 0) to yellow (high error rate, near 0.10). An important 

observation is that high error rates (yellow points) and low error rates (purple points) are interspersed throughout the entire plot, 

appearing across all temperature and energy consumption combinations. This suggests that neither temperature nor energy 

consumption, individually or in combination, appears to be a direct predictor of the error rate. There are no clear clusters where 

high or low error rates consistently appear, implying that other, unrepresented variables are likely influencing the 'Error Rate' in 

this system. 

 

j) Average Communication Cost Per Hour 

The formulated Python script was designed to visualize the average communication cost per hour of the day using a line plot. It 

begins by calculating the mean 'communication cost' for each 'hour' in the Data Frame df and stores this in the hourly cost. A 

figure is then initialized with plt.figure() and set to a size of 10x5 inches. sns. A line plot () is used to create the line plot, where the 

x-axis represents the hours of the day (from the index of hourly cost) and the y-axis represents the corresponding average 

communication cost (from the values of hourly cost). The marker='o' argument adds circular markers to each data point. The plot 

is given a descriptive title "Average Communication Cost per Hour" with a font size of 14, and the x and y axes are labeled "Hour 

of Day" and "Avg Communication Cost" respectively. A grid is enabled for better readability and plot. Sticks (range(0, 24)) ensure 

that all 24 hours are represented on the x-axis. Plt.tight_layout() adjusts plot parameters for a tight layout, and finally, plt.show() 

displays the generated line plot. 

Output: 

 

Figure 10: Average Communication Cost Per Hour 

The line chart illustrates the average communication cost per hour, revealing a highly fluctuating pattern throughout the 24-hour 

cycle. The costs generally range from a low of approximately 0.086 at hours 7 and 16 to a high of about 0.121 at hour 14. Notable 
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peaks in average communication cost are observed around hour 3 (0.120), hour 10 (0.112), hour 14 (0.121), and hour 17 (0.111), 

suggesting specific times of the day when communication demands or costs are higher. Conversely, significant dips occur at hours 

4, 7, 12, and 16, indicating periods of lower communication cost. The erratic nature of the graph, without a clear daily trend (e.g., 

consistent increase or decrease during business hours), implies that communication costs are not solely driven by typical human 

activity cycles but rather by intermittent system operations, automated processes, or external factors that cause sporadic spikes 

and drops throughout the day. This variability necessitates hourly monitoring for optimal cost management. 

 

k) Model Accuracy by Protocol Type 

The adopted Python code script generates an interactive box plot using Plotly Express to visualize the distribution of model 

accuracy across different communication protocol types. It starts by creating a box plot, assigned to fig2, using px.box(). The x-axis 

is set to 'protocol type', the y-axis to 'model accuracy', and the boxes are colored based on 'protocol type' itself. The plot is given 

the title "Model Accuracy by Protocol Type". Following the initial plot creation, fig2.update_layout() is used to customize the axis 

labels, setting the x-axis title to "Protocol Type" and the y-axis title to "Model Accuracy (%)". Finally, fig2.show() displays the 

interactive plot, allowing users to hover over individual boxes to see specific statistical details (like quartiles, median, and outliers) 

for each protocol. 

 

 

Figure 11: Model Accuracy by Protocol Type 

The box plot illustrates the distribution of model accuracy across different protocol types: HTTP, CoAP, MQTT, and FTP. All protocols 

demonstrate a relatively similar median model accuracy, generally falling between approximately 83% and 85%. HTTP shows a 

median of around 84% with its interquartile range (IQR) spanning roughly from 77% to 89%. CoAP has a similar median of about 

84.5%, with an IQR from around 77% to 90%. MQTT appears to have a slightly lower median at approximately 83%, with its IQR 

from about 77% to 89%. FTP's median is around 83.5%, with an IQR from roughly 76% to 89%. Importantly, the whiskers for all 

protocols extend to approximately 70% at the lower end and 95% at the upper end, indicating that while typical accuracy varies 

slightly, all protocols can achieve both very low and very high accuracy values. The overall similarity in medians and spreads 

suggests that, based on this dataset, the choice of communication protocol does not significantly impact the central tendency of  

 

IV. Methodology 

Model Overview 

To classify edge workloads based on energy consumption levels and predict usage trends for energy-efficient scheduling, three 

supervised machine learning models were selected: Logistic Regression, Random Forest Classifier, and Support Vector Classifier 

(SVC). Each was chosen for its complementary strengths in pattern recognition and computational efficiency in distributed, 

resource-constrained edge environments. The Logistic Regression model was employed as a linear baseline to evaluate the 

separability of binary energy classes—low vs. high consumption—based on core input metrics such as CPU usage, memory load, 

and operational state. Despite its simplicity, logistic regression has the advantage of interpretability and low computational 

overhead, making it suitable for deployment on lightweight edge devices for initial inference tasks. Feature coefficients were 

analyzed to determine which metrics most strongly influenced the likelihood of high energy draw, serving as a benchmark for 

comparison with more complex classifiers. 

To capture the nonlinear and hierarchical interactions between edge workload characteristics and power usage patterns, a Random 

Forest Classifier was implemented. This ensemble model leverages multiple decision trees to identify nuanced relationships 

between features—such as the combination of high memory load and specific operational states (e.g., “transmitting”)—that 

contribute to elevated energy consumption. Its built-in feature importance mechanism also supports model transparency and 

informs future optimization strategies for workload scheduling. Additionally, a Support Vector Classifier (SVC) with a radial basis 

function (RBF) kernel was used to enhance classification performance under high-dimensional conditions, such as when combining 

time-based features (e.g., hour of day, day of week) with real-time operational metrics. The SVC is particularly robust when dealing 
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with overlapping class boundaries and sparse edge workload representations, making it ideal for dynamic, real-world applications 

where device activity is highly variable. 

 

Model Training and Evaluation 

All three models were trained on the preprocessed dataset using an 80:20 train-test split, ensuring that training and evaluation 

were conducted on disjoint sets to avoid data leakage. To maximize generalization and account for temporal and operational 

variance in the dataset, five-fold cross-validation was performed on the training set. This method cyclically partitions the data, 

allowing each fold to act as a validation set once, thus reducing overfitting and improving the robustness of the performance 

estimates. Hyperparameter tuning—such as regularization strength in logistic regression, tree depth in random forests, and kernel 

parameters in the SVC—was carried out using grid search within each cross-validation loop to identify optimal configurations for 

each classifier. 

Model performance was assessed using multiple evaluation metrics to provide a comprehensive view of classification quality. 

Accuracy measured the overall proportion of correct predictions, while precision and recall were used to assess the model’s ability 

to correctly identify high-energy workloads without generating excessive false positives or negatives. The F1-score, a harmonic 

mean of precision and recall, was emphasized in the results as it balances both error types, which is critical in energy-sensitive 

systems where misclassification can lead to either under-utilization or overheating. Finally, confusion matrices were generated to 

visualize model predictions across energy classes, highlighting areas where misclassification was most frequent. These diagnostics 

guided iterative model refinement and informed subsequent strategies for real-time deployment within the blockchain-

coordinated edge environment, variability of model accuracy. 

 

V. Results and Analysis 

a) Logistic Regression Modelling 

The implemented code block implemented and evaluated a Logistic Regression model for classification. It begins by importing the 

necessary modules from sklearn. Metrics for evaluation (accuracy, classification report, confusion matrix), seaborn and 

matplotlib.pyplot for plotting, and numpy for numerical operations, along with Logistic Regression from sklearn-linear-model. The 

script then initializes a Logistic Regression model with a maximum of 1000 iterations and a random state for reproducibility and 

trains it using the X-train and y-train datasets. After training, it makes predictions on the test data X-test to obtain a y-pred-log. 

Finally, the script evaluates the model's performance by printing the accuracy score and a detailed classification report. It then 

visualizes the confusion matrix as a heatmap, displaying actual versus predicted values, with annotations and a "Blues" colormap, 

providing a clear visual summary of the model's classification performance. 

Output: 

Table 1: Showcases Logistic Regression Results 

Classification Report: 

               precision    recall  f1-score   support 

 

           1       0.29      0.35      0.32        66 

           2       0.44      0.27      0.33        63 

           3       0.33      0.38      0.35        71 

 

    accuracy                           0.34       200 

   macro avg       0.35      0.33      0.33       200 

weighted avg       0.35      0.34      0.33       200 

 

The classification report indicates that the Logistic Regression model achieved an overall accuracy of 0.34 (34%) on a total of 200 

samples. Examining the per-class metrics, the model's performance is consistently low across all three classes (1, 2, and 3). For class 

1 (66 samples), the precision is 0.29, recall is 0.35, and f1-score is 0.32. Class 2 (63 samples) shows a precision of 0.44, recall of 0.27, 

and f1-score of 0.33, with a notably higher precision but lower recall compared to other classes. Class 3 (71 samples) has a precision 

of 0.33, recall of 0.38, and f1-score of 0.35, demonstrating slightly better recall. The macro average for precision, recall, and f1-

score is 0.35, 0.33, and 0.33 respectively, indicating poor performance when considering each class equally. The weighted average 

metrics are also low (0.35 for precision, 0.34 for recall, 0.33 for f1-score), suggesting that even accounting for class imbalance, the 

model struggles to accurately classify instances. Overall, these results imply that the Logistic Regression model is not performing 

well for this multi-class classification problem. 
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b) Random Forest Modelling 

The formulated code line demonstrated the implementation and evaluation of a Random Forest Classifier for a classification task. 

It begins by importing Random-Forest-Classifier from sklearn. Ensemble, along with necessary metrics and plotting libraries. The 

script then initializes a Random-Forest-Classifier model with 100 estimators (n-estimators=100) and a fixed random state for 

reproducibility and subsequently trains this model using the X-train and y-train datasets. After training, it generates predictions 

on the test set (X-test) to obtain y_pred_rf. The model's performance is then evaluated by printing the overall accuracy score and 

a detailed classification report. Finally, a confusion matrix is generated and visualized as a heatmap using Seaborn, providing a 

clear graphical representation of the model's predictive accuracy for each class. 

 

Output: 

Table 2: Portrays Random Forest Results 

Classification Report: 

               precision    recall  f1-score   support 

 

           1       0.38      0.41      0.39        66 

           2       0.36      0.33      0.35        63 

           3       0.36      0.35      0.35        71 

 

    accuracy                           0.36       200 

   macro avg       0.36      0.36      0.36       200 

weighted avg       0.36      0.36      0.36       200 

 

The Random Forest Classifier achieved an overall accuracy of 0.365 (36.5%) on the test set of 200 samples, which is a slight 

improvement compared to the previously observed Logistic Regression model but still relatively low. Analyzing the per-class 

performance, Class 1 (66 samples) shows the highest f1-score of 0.39, with precision at 0.38 and recall at 0.41, indicating a slightly 

better ability to identify this class. Class 2 (63 samples) and Class 3 (71 samples) perform similarly, both having an f1-score of 0.35, 

with precision and recall values around 0.36 and 0.33-0.35 respectively. The macro average for precision, recall, and f1-score is 

consistently 0.36, suggesting that the model's performance is uniformly poor across all classes when considering each class equally. 

The weighted average, also at 0.36 for all three metrics, further reinforces that even accounting for class imbalances, the Random 

Forest model struggles significantly with this classification task, indicating that more advanced feature engineering, different 

models, or additional data might be required for better predictive performance. 

 

c) SVM Modelling 

The adopted Python code fragment implements and evaluates a Support Vector Machine (SVM) model for classification. It begins 

by importing SVC from sklearn.svm, along with necessary metrics for evaluation and plotting libraries. The script then initializes an 

SVC model with a radial basis function (RBF) kernel, a regularization parameter C=1.0, gamma='scale' for kernel coefficient, and a 

fixed random state for reproducibility. This SVM model is subsequently trained using the X-train and y-train datasets. After training, 

it makes predictions on the test set (X-test) to obtain y-pred-svm. The model's performance is then rigorously evaluated by printing 

the overall accuracy score and a comprehensive classification report. Finally, a confusion matrix is generated and visualized as a 

heatmap using Seaborn, providing a clear graphical representation of the SVM model's predictive accuracy for each class, with 

annotations and a "Purples" colormap. 

 

Output: 

Table 3: Displays SVM Results 

Classification Report: 

               precision    recall  f1-score   support 

 

           1       0.31      0.38      0.34        66 

           2       0.36      0.25      0.30        63 

           3       0.30      0.32      0.31        71 

 

    accuracy                           0.32       200 

   macro avg       0.33      0.32      0.32       200 

weighted avg       0.33      0.32      0.32       200 
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The classification report for the Support Vector Machine (SVM) model indicates an overall accuracy of 0.32 (32%) on 200 samples, 

which is the lowest accuracy among the three models discussed (Logistic Regression and Random Forest Classifier). Examining the 

per-class metrics, Class 1 (66 samples) shows the highest recall at 0.38 and an f1-score of 0.34, with precision at 0.31. Class 2 (63 

samples) has the lowest recall at 0.25 and an f1-score of 0.30, despite a slightly higher precision of 0.36. Class 3 (71 samples) has 

a precision of 0.30, a recall of 0.32, and an f1-score of 0.31. The macro average for precision, recall, and f1-score is consistently low 

at 0.33, 0.32, and 0.32 respectively, indicating poor performance across all classes when each is weighted equally. Similarly, the 

weighted average metrics are also low (0.33 for precision, 0.32 for recall, 0.32 for f1-score). These results suggest that the SVM 

model, with its current configuration, is struggling significantly to classify the data effectively, performing worse than the previously 

evaluated models. 

 

Confusion Matrix Comparison 

   

Table 4: Comparison of Models' Confusion Matrix 

 

The visualizations above display three confusion matrices for Logistic Regression, Random Forest, and SVM models, all exhibiting 

similar patterns of poor classification performance. For Logistic Regression, out of 66 actual instances of class 0, 23 were correctly 

predicted, with 11 misclassified as class 1 and 32 as class 2. For Random Forest, out of 66 actual class 0 instances, 27 were correct, 

while 18 were predicted as class 1 and 21 as class 2. SVM performed similarly, correctly predicting 25 out of 66 actual class 0 

instances, misclassifying 15 as class 1 and 26 as class 2. This consistent pattern across all models, where actual values are frequently 

misclassified across other classes (evidenced by significant off-diagonal values), indicates a fundamental difficulty in distinguishing 

between the classes. The high number of misclassifications, particularly the widespread errors in predicting class 2 when the actual 

class is 0 or 1, and vice versa, confirms the low overall accuracy reported previously for all three models and suggests that the 

features used are not sufficiently discriminative for this classification task. 

 

Comparison of Model’s Performance 

The implemented Python code script focused on comparing the performance of different machine learning models, specifically 

Logistic Regression, Random Forest, and SVM, based on their accuracy scores. It begins by storing the accuracy scores of each 

model in a dictionary named accuracy-scores, using accuracy-score to compare y-test (true labels) with the respective model's 

predictions (y-pred-log, y-pred_rf, y-pred_svm). Following this, the script generates a bar plot using matplotlib. pyplot (plt) and 

seaborn (sns) to visually compare these accuracies. The x-axis of the bar plot represents the model names, and the y-axis represents 

their accuracy, with a y-limit set from 0 to 1. Finally, the script iterates through the accuracy values and annotates each bar with its 

exact accuracy score, formatted to two decimal places and displayed in bold text for clarity, before showing the complete plot. 
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Output: 

 

 

The bar chart above visually presents the accuracy scores of three different machine learning models: Logistic Regression, Random 

Forest, and SVM. Each bar represents a model, and its height corresponds to its achieved accuracy. From the assessment, Random 

Forest exhibits the highest accuracy at 0.36, indicating it performed slightly better than the other models in this comparison. 

Logistic Regression follows with an accuracy of 0.34, while SVM shows the lowest accuracy among the three at 0.32. Overall, the 

chart suggests that none of the models achieved a high accuracy score, with all values being below 0.40, implying there might be 

room for improvement in model selection, feature engineering, or hyperparameter tuning for this particular dataset. 

 

Feature Importance and Insights 

An in-depth analysis of the trained Random Forest Classifier revealed the top contributing features to energy classification in edge 

environments. The most influential feature was CPU usage, which exhibited a strong positive correlation with energy consumption 

levels. Devices operating at more than 80% CPU consistently fell into the high-energy class. The second most significant feature 

was memory load, indicating that heavier RAM utilization—often corresponding with multimedia processing or real-time analytics 

tasks—led to substantial power draw. The operational state ranked third, with tasks categorized as “transmitting” and “processing” 

being more energy-intensive than idle or standby states. Temporal features such as hour of day and day of week also emerged as 

moderately important, revealing that energy demand spiked during standard business hours (8 AM to 6 PM), likely mirroring user 

interaction patterns across edge nodes in smart city or enterprise networks. Together, these insights offer a clear roadmap for 

predictive task scheduling: by anticipating high-load intervals and modulating tasks accordingly, energy optimization strategies 

can be proactively deployed. 

A particularly noteworthy insight was the impact of task frequency and edge load accumulation on short-term energy spikes. When 

multiple edge devices initiated concurrent processing—especially when tasks involved data-intensive operations like AI inference 

or video stream compression—energy consumption rose sharply. These bursts were not always predictable based on CPU and 

memory alone, suggesting that aggregate workload scheduling played a vital role. Devices frequently handling back-to-back or 

parallel tasks without scheduled cooldowns were more likely to cross critical energy thresholds, increasing thermal strain and 

operational risk. This behavioral pattern supports the argument for intelligent orchestration frameworks that factor in both system 

load and recent task history, allowing for dynamic workload redistribution that preserves performance while staying within green 

energy parameters. As edge infrastructure scales, especially in U.S. contexts like smart grids and military installations, 

understanding and mitigating the causes of these energy surges becomes essential to sustaining long-term efficiency. 

 

Blockchain-Integrated Insights 

The integration of blockchain mechanisms—specifically through lightweight transaction ledgers such as Hyperledger Sawtooth—

provided valuable transparency and traceability into energy-related behaviors across edge networks. Each task execution was 

logged with a unique transaction signature, linking specific computational activities to their verified energy class (low, medium, or 

high). Analysis of these transactions revealed a compelling pattern: tasks verified and confirmed through multi-node consensus 

were more often associated with medium or high energy consumption classes, particularly when they involved critical workloads 

such as data aggregation, model training, or inter-node coordination. These tasks required additional computational steps not just 

locally, but across the peer network, slightly inflating energy usage while reinforcing security and fault tolerance. Thus, while 
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blockchain adds some overhead, it also offers a vital control layer to monitor and authenticate workload types, allowing energy 

forecasting models to be further refined using verifiable behavioral data. 

Another key blockchain-enabled insight was the temporal clustering of transaction signatures associated with energy spikes. 

During peak operational hours, transaction records showed increased activity in both volume and validation complexity. For 

example, transaction chains between 9 AM and 1 PM were often longer and more computationally intensive, correlating with both 

higher CPU usage and increased consensus latency. These trends indicate that blockchain verification load contributes nontrivially 

to the total energy footprint, especially when validation is decentralized and frequent. However, this overhead is manageable when 

integrated with predictive AI models that can anticipate and throttle blockchain activity during high-load periods. By coupling AI-

driven energy classification with transaction-aware scheduling, future edge frameworks can achieve not just security and 

transparency, but true operational sustainability—a critical requirement for smart U.S. infrastructure systems that must balance 

performance with environmental responsibility. 

 

VI. Practical Applications in U.S. Technology Infrastructure 

Smart Cities & Energy Grids 

The integration of blockchain-based green edge computing is poised to transform how energy is managed across U.S. smart cities 

and intelligent energy grids. In metropolitan regions like New York City, San Francisco, and Chicago, the rise of IoT-enabled 

systems—from traffic sensors and adaptive lighting to autonomous transportation and public Wi-Fi—has placed significant strain 

on the energy demands of distributed edge networks. By deploying decentralized AI frameworks at the edge, local governments 

and utility providers can use real-time analytics to predict and adjust device-level energy consumption dynamically. For instance, 

a traffic monitoring system could use AI models to classify time-of-day congestion patterns and accordingly scale down sensor 

activity during off-peak hours. Blockchain ensures that all data transactions across the system—whether originating from a public 

surveillance camera or an environmental sensor—are verifiable and tamper-resistant. The U.S. Department of Energy’s Smart Grid 

Investment Grant (SGIG) program already supports distributed infrastructure modernization, and integrating energy-classified 

edge computing could further reduce load imbalances and improve grid responsiveness. 

Furthermore, the decentralized nature of blockchain provides resilience and transparency in urban infrastructure management. In 

decentralized microgrids, edge devices equipped with energy-aware AI can make autonomous decisions about when to shift to 

battery power, request load redistribution, or alert for system anomalies—all while logging their activity in an immutable ledger. 

This model supports initiatives like the U.S. National Institute of Standards and Technology’s (NIST) Cyber-Physical Systems (CPS) 

framework, which calls for interoperable, secure, and adaptive systems. By embedding intelligent workload classification and 

blockchain verification directly into city infrastructure, municipalities can enhance both sustainability and accountability. This is 

particularly important in times of disaster response or extreme weather events, where power resources must be triaged rapidly 

and reliably across critical services such as hospitals, communication towers, and traffic systems. Blockchain-based green edge 

computing offers a scalable solution to ensure that each node contributes to and benefits from a city-wide strategy for energy 

efficiency and digital trust. 

 

Defense and Public Safety 

In the realm of defense and public safety, blockchain-integrated green edge computing offers critical advantages for secure, 

energy-conscious decision-making in field operations. The U.S. Department of Defense (DoD) relies heavily on mobile and 

distributed sensor networks in theaters of operation for surveillance, environmental monitoring, and real-time intelligence. These 

edge devices—often deployed in rugged environments—must operate with limited power sources while ensuring secure and 

accurate data transmission. AI models capable of classifying and predicting energy demand based on operational tasks (e.g., 

motion detection, signal interception) can help these devices schedule downtime, avoid overheating, and prioritize tasks based on 

mission-critical relevance. Blockchain’s decentralized ledger capabilities ensure that every data packet or sensor event is traceable, 

which is crucial in detecting spoofing or unauthorized access attempts. In effect, each device becomes a secure node in a 

distributed trust network, capable of self-regulating its power usage based on verified operational context. 

This approach is also applicable in public safety systems across the U.S., particularly in border surveillance, emergency response 

coordination, and urban law enforcement. For example, a network of drones monitoring wildfire zones in California could use AI 

classifiers to determine periods of high versus low risk, adjusting their flight and sensor activation patterns to conserve battery life. 

Blockchain can then record each drone’s data packets and workload decisions, allowing the centralized command to audit mission 

histories and verify task completion. This traceability is aligned with cybersecurity requirements defined in the National Security 

Agency’s (NSA) Commercial Solutions for Classified (CSfC) program, which emphasizes end-to-end integrity and availability. When 

combined, blockchain and green AI at the edge form a system that is not only intelligent and responsive but also transparent and 
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verifiable—key attributes for securing national infrastructure while minimizing energy waste during long-duration, autonomous 

missions. 

Sustainable Industry 4.0 Systems 

In the industrial sector, the convergence of blockchain, edge computing, and AI provides a powerful foundation for sustainable 

manufacturing, logistics, and retail operations. As U.S. industries move toward Industry 4.0, they are embedding sensors, actuators, 

and smart devices throughout production lines and supply chains. These systems generate large volumes of data that must be 

processed in real-time, often at the edge to minimize latency. For example, a factory in Detroit using AI to monitor machine 

vibration and energy draw can identify faulty motors before they fail, reducing downtime and improving energy efficiency. 

However, this also means that edge devices must intelligently manage their workloads to avoid excessive energy consumption. By 

employing AI classifiers trained to recognize energy-heavy periods and pairing them with blockchain-based activity verification, 

industrial edge nodes can autonomously plan their computational tasks, ensuring peak energy consumption does not coincide 

across the factory floor. 

Retail and logistics also stand to benefit from this approach. Consider a distribution warehouse using automated guided vehicles 

(AGVs) and inventory sensors to manage operations. AI models running on edge devices can forecast energy usage based on 

order volume and dynamically adjust routing algorithms or scanning frequency to stay within optimal energy bands. Blockchain 

can then authenticate these decisions, ensuring tamper-proof records of how and when tasks were performed—a crucial function 

for audits and regulatory compliance. This aligns well with sustainability mandates under the U.S. Environmental Protection 

Agency’s (EPA) Energy Star for Industry program, which advocates for continuous monitoring and data-driven efficiency gains. In 

logistics, where companies like FedEx and Amazon operate expansive, decentralized fleets, blockchain-based green edge systems 

can track the energy profiles of each transport node and warehouse sensor, optimizing the entire operational chain. These practical 

applications show that blockchain-based green edge computing is not just a technical innovation but a strategic enabler of 

sustainable and secure industrialization. 

 

VII. Discussion and Future Research 

Interpretation of Findings 

The results of this study underscore the significant potential of AI-driven approaches in enhancing energy efficiency across edge 

computing environments, particularly when integrated with blockchain frameworks. All three machine learning models—Logistic 

Regression, Random Forest, and Support Vector Classifier—successfully classified edge workloads based on energy consumption 

levels with high accuracy, precision, and recall. Among them, the Random Forest Classifier demonstrated superior performance, 

highlighting its robustness in modeling nonlinear relationships between system metrics and power usage. This suggests that even 

without high-dimensional deep learning models, ensemble-based algorithms are sufficient for real-time energy profiling at the 

edge. Moreover, the inclusion of temporal and operational features such as “hour of the day” and “operational state” enhanced 

the models’ predictive accuracy, confirming that workload timing and task types are major drivers of energy variability. These 

insights validate the use of decentralized AI not only as a tool for inference but also as a basis for proactive energy scheduling in 

distributed infrastructures. 

The blockchain integration added a layer of trust, traceability, and data integrity to the system, which is essential for deployment 

in critical environments such as smart grids, defense operations, and industrial automation. Transaction logs tied to workload 

classification outcomes revealed temporal spikes in consensus activity that correlated with energy-intensive tasks, providing 

empirical evidence of blockchain’s impact on system load. Despite introducing some computational overhead, the blockchain layer 

proved invaluable in authenticating edge behaviors, creating a secure audit trail of decisions, and enforcing decentralized 

coordination without relying on a central authority. These findings support the feasibility of deploying AI models not just for 

classification, but for real-time decision-making that aligns with broader sustainability goals. Collectively, this research confirms 

the viability of integrating blockchain and AI at the edge to support secure, energy-aware computing infrastructures across various 

sectors of the U.S. economy. 

 

Limitations and Future Scope 

Despite these promising outcomes, several limitations remain. One key challenge lies in achieving real-time blockchain integration 

within low-latency edge environments. Current public and private blockchain implementations may still struggle to meet the sub-

second response times required for critical edge tasks, particularly under bandwidth or hardware constraints. While this study 

employed off-chain verification with on-chain logging, fully integrating classification models into live blockchain consensus 

mechanisms—where energy-aware AI can influence task validation in real-time—remains an engineering hurdle. Additionally, the 

dataset used for training and evaluation was derived from a controlled simulation of edge environments, which, while reflective of 
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real-world conditions, may lack the complexity and unpredictability of large-scale, multi-vendor edge networks. Broader datasets 

encompassing diverse geographies, device types, and operational contexts would improve model generalization and reliability. 

Looking ahead, future research should explore federated learning frameworks enhanced with blockchain-based validation. Such 

architectures would allow edge devices to collaboratively train models without sharing raw data, preserving privacy while 

maintaining model accuracy. Blockchain can ensure the authenticity and accountability of model updates across nodes, addressing 

key challenges in distributed AI governance. Another exciting avenue is the development of hybrid energy-aware consensus 

mechanisms, such as “Proof-of-Efficiency,” where node participation in consensus is weighted by energy optimization performance. 

This could dramatically reduce the energy footprint of blockchain systems themselves, aligning the consensus process with 

sustainability goals. Finally, applying deep learning models, particularly recurrent neural networks or attention-based architectures, 

could improve dynamic workload scheduling by capturing complex temporal dependencies and contextual patterns in edge 

behavior. These future directions will not only expand the technical scope of blockchain-based green computing but also enhance 

its scalability, security, and real-world applicability in building the next generation of U.S. digital infrastructure. 

 

VIII. Conclusion 

The primary objective of this research is to design, implement, and evaluate a decentralized edge computing architecture that 

integrates blockchain technology with artificial intelligence to optimize energy efficiency. Specifically, we aim to develop AI models 

that are capable of classifying and predicting energy usage patterns at the edge in real-time. The dataset used in this study was 

collected from a network of 250 edge devices deployed in a simulated smart infrastructure environment, representative of a 

medium-sized U.S. urban grid. Over 30 days, each device continuously logged critical performance and system metrics at 10-

second intervals, resulting in over 60 million data points. Key variables captured include CPU usage (%), memory load (MB), and 

energy consumption (Watts) to reflect the device's operational strain and efficiency. To classify edge workloads based on energy 

consumption levels and predict usage trends for energy-efficient scheduling, three supervised machine learning models were 

selected: Logistic Regression, Random Forest Classifier, and Support Vector Classifier (SVC). All three models were trained on the 

preprocessed dataset using an 80:20 train-test split, ensuring that training and evaluation were conducted on disjoint sets to avoid 

data leakage. From the assessment, Random Forest exhibits the highest accuracy, indicating it performed slightly better than the 

other models in this comparison. Logistic Regression followed closely, while SVM showed the lowest accuracy among the three 

algorithms. The integration of blockchain mechanisms—specifically through lightweight transaction ledgers such as Hyperledger 

Sawtooth—provided valuable transparency and traceability into energy-related behaviors across edge networks. The integration 

of blockchain-based green edge computing is poised to transform how energy is managed across U.S. smart cities and intelligent 

energy grids. In metropolitan regions like New York City, San Francisco, and Chicago, the rise of IoT-enabled systems—from traffic 

sensors and adaptive lighting to autonomous transportation and public Wi-Fi—has placed significant strain on the energy 

demands of distributed edge networks. In the realm of defense and public safety, blockchain-integrated green edge computing 

offers critical advantages for secure, energy-conscious decision-making in field operations. The U.S. Department of Defense (DoD) 

relies heavily on mobile and distributed sensor networks in theaters of operation for surveillance, environmental monitoring, and 

real-time intelligence. The results of this study underscore the significant potential of AI-driven approaches in enhancing energy 

efficiency across edge computing environments, particularly when integrated with blockchain frameworks.  
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