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| ABSTRACT

The accelerating trajectory of climate change, characterized by rising sea levels, intensifying precipitation events, and coastal
erosion, has exposed the critical vulnerabilities of traditional "gray” infrastructure in the United States. While the paradigm shift
toward Nature-Based Solutions (NbS) offers a promising pathway for resilience, the commercial and operational integration of
these technologies remains fragmented. This research paper presents an exhaustive systematic review of the "Green Value Chain"
a conceptual framework linking the biotechnical engineering performance of the Vetiver System (VS), the emerging business
models of coastal entrepreneurship, and the socio-economic dynamics of consumer valuation. Focusing specifically on the sterile,
non-invasive 'Sunshine' genotype of Chrysopogon zizanioides, the analysis synthesizes geotechnical data confirming Vetiver's
capacity to increase soil shear strength by 30-40% and stabilize slopes in high-plasticity clays. Economically, the review establishes
that while green infrastructure often entails higher initial stewardship costs compared to the "build-and-forget" model of gray
infrastructure, it delivers superior benefit-cost ratios over decadal lifecycles through avoided capital replacement and ecosystem
service generation. However, the market penetration of Vetiver bioengineering is severely constrained by "aesthetic friction"—a
deep-seated consumer preference for manicured landscapes and hardened shorelines, driven by social norms and risk
misperceptions. By integrating findings from U.S. Army Corps of Engineers studies, coastal homeowner surveys, and
bioengineering field trials, this paper proposes a "Nurse Crop Succession” framework. This model positions Vetiver not as a climax
monoculture but as a temporary biological scaffold that facilitates the establishment of native dune and riparian ecosystems,
thereby reconciling immediate engineering requirements with long-term ecological restoration goals. The findings suggest that
unlocking the U.S. green economy requires a tripartite evolution: the standardization of bio-technical certification to unlock FEMA
Community Rating System (CRS) incentives, the maturation of "Resilience-as-a-Service" business models, and a targeted cultural
shift in how coastal protection is visualized and valued.
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Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development,
London, United Kingdom.
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1. Introduction

The United States is at a pivotal moment in its approach to managing soil stability, flood risk, and coastal erosion (Daro Justine &
Seenath, 2025). For decades, the dominant approach has been gray infrastructure, such as concrete, steel, and riprap, that forces
a rigid boundary between development and natural systems. These structures can work under stable conditions, but they are
increasingly fragile under climate-driven extremes, often reflecting wave energy, disrupting ecosystems, and accumulating massive
long-term maintenance and replacement costs (Adkisson, 2021; Lovseth, 2018). As failures and accelerating land loss become more
common, agencies and engineers are shifting toward Nature-Based Solutions and a broader, resilience-focused green economy
(Dunlop et al., 2024). However, scaling these solutions is challenging because living systems are variable and context-dependent,
unlike standardized materials and mature supply chains (Martin et al., 2025a).

A promising tool within this shift is the Vetiver System, built around Chrysopogon zizanioides and, in the United States, the sterile
“Sunshine” genotype to avoid invasiveness (Darajeh et al., 2019; Luu, 2010). Vetiver functions like a living soil nail: stiff shoots slow
surface flows, while a dense vertical root system can reach roughly 3 to 4 meters, mechanically reinforcing soil and resisting shear
(Huang et al., 2024; Jandyal & Shah, 2024; G. Wang et al.,, 2020a). Reported root tensile strength averages about 75 MPa, making
it comparable in function to reinforcement used in civil works, and it has shown potential for highway slope stabilization and
coastal dune protection in parts of the Southeast, the Gulf Coast, and Hawaii (Mohammad et al., 2022; Noorasyikin & Zainab,
2016). Even with this technical promise, Vetiver remains underused relative to hard armoring or more familiar native plant options
(Barcellos-Silva et al., 2025).

This paper argues that the main barrier is fragmentation across the green value chain: engineering validation, contractor
entrepreneurship, and end-user acceptance are not aligned. Engineers need reliable, codified design guidance; contractors
struggle to sell benefits that are often realized as avoided future losses; and property owners can resist taller, denser buffers due
to aesthetic preferences. To address this, the study synthesizes U.S.-relevant evidence on Vetiver performance and design needs,
evaluates lifecycle economics and ecosystem-service value against hardening alternatives, and analyzes adoption barriers across
regulation, business models, and consumer psychology. The scope is limited to the United States, focusing on viable climates in
USDA Hardiness Zones 8 to 11 and the constraints of the sterile Sunshine genotype, and it concludes by proposing a nurse crop
succession strategy to connect near-term bioengineering stability with longer-term native restoration.

2. Literature Review
2.1 Bioengineering Mechanics: The Science of Soil-Root Interaction

The foundational literature of bioengineering posits that vegetation influences slope stability through two primary mechanisms:
mechanical reinforcement and hydrological modification (Kumar et al., 2025; Lann et al., 2024).

Mechanical Reinforcement:

Classical soil mechanics relies on the Mohr-Coulomb failure criterion, where shear strength is a function of cohesion and friction
angle (Shen et al,, 2018; Xie et al., 2024). The literature indicates that plant roots contribute to effective cohesion (c') (Chok et al,
2015). Chrysopogon zizanioides is exceptional in this regard due to its high root biomass density and tensile strength (Chok et al.,
2015; Rajamanthri et al., 2021). Direct shear tests reported in recent studies indicate that Vetiver roots can increase the internal
friction angle of soils significantly, from ~31° to ~40° in specific unsaturated conditions (Mahannopkul & Jotisankasa, 2019b). The
roots intersect potential failure planes, acting as anchors that transfer shear stress from the soil to the root fibers. This "root
cohesion” has been quantified in various studies to add between 1.0 and 18 kPa to soil shear strength, depending on root density
and diameter (Mahannopkul & Jotisankasa, 2019b; Veylon et al., 2015). The tensile strength of Vetiver roots (75 MPa) is frequently
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cited as a benchmark, superior to many temperate woody species and comparable to synthetic geotextiles (G.-Y. Wang et al.,
2020).

Hydrological Modification:

Beyond mechanics, the literature emphasizes the role of Vetiver in matric suction. Soil saturation is a primary trigger for slope
failure, as positive pore water pressure reduces effective stress (Cueva et al., 2025; Lan et al,, 2025; Zheng et al., 2020). Vetiver acts
as a biological pump, extracting moisture through transpiration (Na Nagara et al., 2024). Research on the Yazoo clays of Mississippi,
a highly expansive and problematic soil formation, demonstrates that Vetiver hedges significantly reduce soil moisture fluctuation
at depth, thereby mitigating the shrink-swell cycles that destabilize highway embankments (Brister, 2022; Khan et al., 2023; Rahman
et al,, 2024). This hydro-mechanical coupling is a critical advantage over inert structures like riprap, which provide weight but do
not actively manage soil moisture regimes (P. Chen et al., 2022; Zhang et al., 2023).

2.2 The Restoration Economy and Coastal Entrepreneurship

The emerging field of "Restoration Economics" frames ecological restoration not as a cost center but as a productive industry
(Iftekhar & Polyakov, 2021).

Economic Scale and Impact: Recent reports indicate that the U.S. restoration economy generates substantial direct and indirect
economic output estimated at over $76 billion annually, supporting more jobs than the coal mining, steel, or logging industries
combined (Morgan, 2025). This sector includes planning, engineering, earthmoving, and nursery production. For coastal
entrepreneurs, the business case is increasingly driven by "avoided cost" logic (Kelmenson et al., 2016). NOAA and other agencies
have published extensive data showing that for every $1 invested in disaster mitigation and wetland restoration, the U.S. saves
approximately $6 to $7 in future disaster recovery costs (Noaa, 2025).

Supply Chain Dynamics: The literature identifies a unique constraint in the Vetiver supply chain: the requirement for clonal
propagation (Krol et al, 2025). Because the 'Sunshine' genotype is sterile (non-invasive), it cannot be grown from seed. This
necessitates a network of vegetative nurseries (Rahman et al., 2024). In Hawaii and Puerto Rico, this infrastructure is relatively
mature, with suppliers like Agriflora Tropicals and Vetiver Farms Hawaii providing verified sterile stock (Jindapunnapat et al., 2018;
Joy & Evans, 2012; Panja et al., 2021). However, on the U.S. mainland, the supply chain is thinner, creating logistical bottlenecks for
large-scale infrastructure projects that require hundreds of thousands of slips (Meki et al., 2020). This biological constraint is a key
barrier to scaling, distinguishing bioengineering from the infinite scalability of manufactured concrete blocks (Barnard et al., 2013a;
Clark et al., 2023; Gittman et al., 2016).

2.3 Consumer Valuation and the Aesthetics of Resilience
The final node of the value chain, the consumer, is the subject of extensive socio-economic research (Shah & Asghar, 2023).

The "Neighbor Effect” and Hardening Bias: Studies in North Carolina and the Chesapeake Bay region have documented a strong
“neighbor effect" in shoreline hardening (Stafford, 2020). If adjacent properties have bulkheads, a homeowner is significantly more
likely to install a bulkhead, regardless of the site's erosion risk (Gittman et al., 2021). This is driven by a perception of "permanence”
and "neatness." The literature describes a widespread "hardening bias," where consumers equate concrete with safety and
vegetation with vulnerability (Li et al., 2025).

Aesthetic Friction: "Aesthetic friction" refers to the conflict between the ecological necessity of complex, structured vegetation
and the cultural preference for simplified, manicured landscapes (Wetli, 2024; Zhu, 2023). Survey data suggest that while coastal
residents value "nature," their definition of nature often centers on a scenic view of the water, unobstructed by tall vegetation (Shi
et al, 2025; Van Berkel et al., 2018). Vetiver, which grows as a tall (1-2m) hedge, can obstruct views if not managed, potentially
clashing with the aesthetic values of coastal property markets (Hasan et al., 2017). However, the literature also suggests that when
functional benefits (e.g., erosion control, insurance savings) are clearly articulated, Willingness to Pay (WTP) for green infrastructure
increases (Imamura et al,, 2023; T.-G. Kim & Petrolia, 2013; Netusil et al., 2022; Zalejska-Jonsson et al., 2020).

3. Methodology
3.1 Systematic Review Design

This research employs a systematic review methodology adapted for a multi-disciplinary synthesis. The approach integrates
guantitative geotechnical data, qualitative socio-economic surveys, and market analysis reports to construct a holistic view of the
Vetiver value chain.

Data Sources: The review draws upon a curated dataset comprising:
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1. Peer-Reviewed Journals: /nternational Journal of Geomechanics, Ecological Engineering, Coastal Management, Journal of
Sustainable Development.

2. Government Reports: Technical Notes from the US. Army Corps of Engineers (USACE) Engineer Research and
Development Center (ERDC); Technical Guides from the USDA Natural Resources Conservation Service (NRCS); Reports
from NOAA's Office for Coastal Management and FEMA.

3. Industry Literature: Case studies from The Vetiver Network International (TVNI), nursery propagation guides, and
restoration contractor portfolios.

Inclusion Criteria:

e Subject: Chrysopogon zizanioides (sterile 'Sunshine' genotype); living shorelines; coastal bioengineering; consumer
valuation of green infrastructure.

e Geography: United States (Continental, specifically Gulf Coast and Florida), Hawaii, Puerto Rico. International data (e.g.,
Vietnam, Australia) is included only for comparative technical validation where U.S. data is sparse.

e Timeframe: 1990-2025, capturing the modern era of bioengineering and recent climate adaptation policies.
3.2 Analytical Framework: The Value Chain Integration Model

The collected data is synthesized using a "Value Chain Integration Model," which dissects the technology's journey through three
phases:

1. Phase I: Technical Validation (Does it work?)
e Analysis of root tensile strength, shear strength improvement, and hydrological performance.
e  Review of failure modes and climatic limitations (cold tolerance).

2. Phase II: Economic Viability (Is it profitable?)
e Comparative analysis of installation and lifecycle costs (Green vs. Gray).
e  Evaluation of ecosystem service valuation (carbon, nutrient cycling).
e Assessment of supply chain logistics and entrepreneurial barriers.

3. Phase lll: Social Acceptance (Is it wanted?)
e Synthesis of consumer preference surveys regarding shoreline management.
e Analysis of aesthetic perceptions and risk communication.
e Review of policy incentives (FEMA CRS, grants).

3.3 Limitations of the Review

A primary limitation is the fragmented nature of long-term longitudinal data for Vetiver in the continental U.S. While short-term
studies (2-5 years) are available, decadal performance data are less prevalent than in tropical regions. Furthermore, economic data
is highly site-specific; costs for "living shorelines" vary wildly based on local labor rates, material availability, and site accessibility.
The review addresses this by focusing on relative cost ratios and trends rather than absolute pricing.

4. Findings:
Technical Efficacy of Vetiver Bioengineering

The technical review indicates that vetiver-based soil bioengineering is a mature, high-performance option for targeted U.S. use
cases, with documented success on expansive clay highway and levee slopes and demonstrated potential for sand-dune
stabilization in suitable warm-climate settings when properly designed and managed (Mickovski & van Beek, 2009; Rahman et al.,,
2024; G.-Y. Wang et al., 2020).
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4.1 Geotechnical Performance in Cohesive Soils

The most robust U.S. data emerges from the stabilization of highway embankments on expansive clays, particularly the Yazoo Clay
formations in Mississippi (Khan et al., 2019; Rahman et al., 2024).

Mechanism of Stabilization: Research conducted by Jackson State University and the USACE highlights the dual-action
stabilization of Vetiver. In highly plastic clays, which are prone to shallow slope failures due to shrink-swell cycles, Vetiver roots act
as vertical reinforcement (Rahman et al., 2024; Zalejska-Jonsson et al., 2020).

e Shear Strength: Direct shear tests on Vetiver-reinforced soil samples demonstrate a significant increase in the internal
friction angle ($) and apparent cohesion (c). One key study reported an increase in the internal friction angle from ~31.7°
in bare soil to ~40.6° in Vetiver-rooted soil (Garzon et al., 2020).

e Factor of Safety (FoS): Numerical modeling of slope stability indicates that the inclusion of Vetiver roots can increase the
FoS by 20% to over 50%, depending on the root density and depth. The roots effectively "suture" the active zone of the
slope (typically the top 1.5-2 meters) to the more stable subsoil (Rahman et al., 2024).

Hydrological Regulation: Field monitoring, utilizing moisture sensors and LiDAR in Mississippi, confirmed that Vetiver hedges
maintain a more consistent soil moisture regime compared to bare slopes (Rahman et al., 2024). During intense rainfall, Vetiver-
covered slopes can reduce effective rainwater infiltration into the soil mass and help maintain matric suction, leading to smaller or
delayed pore-water pressure increases compared with bare slopes, which lowers the likelihood of rainfall-triggered shallow failures
(Rahardjo et al, 2014; G. Wang & Sassa, 2003). Overall, vetiver supports slope stability through two coupled pathways: root
reinforcement and rainfall regulation via plant water uptake, as well as changes to soil hydraulic behavior, which helps preserve
suction and reduce destabilizing pore-pressure responses during storms (Prasetyaningtiyas et al., 2024).

4.2 Coastal and Dune Stabilization Capabilities

In coastal environments, the stress factors shift from shear failure to wave erosion and scour (Leshchinsky et al., 2019; Muller et al,,
2026; Salauddin & Pearson, 2019).

Hydraulic Resistance: Vetiver's stiff stems can withstand flow depths of up to 0.6-0.8 meters and reduce flow velocity, promoting
the deposition of sediment. This "sediment trapping" capability is crucial for dune building (Meyer et al., 1995; Truong &
Hengchaovanich, 1997; White et al., 2024). In Hawaii and the Gulf Coast, Vetiver has been used to stabilize sand dunes against
wind and wave erosion. The roots, which can penetrate deep into sandy substrates where native grasses may be shallower, provide
a "deep anchor" for the dune core (K. Kim et al., 2022; Mahannopkul & Jotisankasa, 2019a).

Salinity Tolerance: A critical finding for coastal applications is the salinity threshold. The 'Sunshine' genotype is highly salt-
tolerant. Studies indicate it can survive soil salinity levels up to roughly 19 dS/m (decisiemens per meter), though growth is optimal
below 8 dS/m (Liu et al., 2016; Su et al,, 2021). This allows it to thrive in the "back dune” and "interdune" zones where salt spray is
prevalent, though it is not a seagrass and cannot withstand permanent inundation in high-salinity seawater (Tresballes, 2003).

4.3 Phytoremediation and Water Quality

Beyond slope and shoreline stabilization, vetiver (Chrysopogon zizanioides) can measurably improve water quality by reducing
sediment and nutrient export in runoff and by removing nutrients and other pollutants in treatment-wetland systems (Aregu et al.,
2021; Oshunsanya et al., 2019; Panja et al., 2021).

e Nutrient and Heavy Metal Uptake: The dense root system is highly efficient at absorbing Nitrogen and Phosphorus
(mitigating eutrophication) and sequestering heavy metals like Lead, Zinc, and Chromium from landfill leachate and mine
tailings (R. Banerjee et al., 2016; S. Banerjee et al.,, 2025; Hassan et al., 2020; Panja et al., 2021; Wu et al., 2011).

e Emerging Contaminants: Recent U.S.-based research has demonstrated Vetiver's capacity to remove antibiotics such as
tetracycline and ciprofloxacin from wastewater effluent, achieving removal rates of >90% in hydroponic and constructed
wetland systems (Panja et al., 2021). This capability positions Vetiver as a functional component in "green" wastewater
treatment infrastructure (Almeida et al., 2019).

4.4 The Sterile Genotype: A Non-Negotiable Standard

The U.S. technical landscape is defined by the strict adherence to the 'Sunshine' genotype (Meki et al., 2020). The USDA NRCS
Plant Guide explicitly lists 'Sunshine' as non-invasive, citing decades of observation in Hawaii and the Pacific Islands with no
evidence of volunteer seedlings or invasive spread. This sterility is the "license to operate” for the entire industry; any deviation
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from fertile genotypes would likely result in immediate regulatory prohibition, given the U.S. history with invasive species like
Kudzu (Barnard et al., 2013a).

Economic and Market Analysis

The economic synthesis reveals that Vetiver bioengineering offers a compelling "Value-for-Money" proposition over the lifecycle
of a project, despite facing structural barriers in the current market economy.

4.5 Comparative Cost Analysis: Green vs. Gray
The cost differential between Vetiver bioengineering and traditional hard engineering is stark.

Table 1: Comparative Costs of Shoreline and Slope Stabilization Methods (USD)

Stabilization Method ||[Estimated Unit Cost |[Primary Cost Drivers Maintenance Profile

Vetiver Bioengineering||$3 - $15 per m? Labor (planting), Plant Material High Initial (Watering/Weeding) -> Low

Long-term
Native Grass 2 . . . .
Hydroseeding $5 - $8 per m Machinery, Seed Low -> Medium (Erosion Risk)
Riprap / Rock Armor |{$50 - $150 per linear ft Matgrlal Transport, Heavy Low -> Medium (Settling/Displacement)
Equipment
Bulkhead / Seawall 15100 - $1,200+ per Mate.rlaTIs (Concrete/Vinyl),||[Low -> Catastrophic (Replacement every
linear ft Specialized Labor 20-30 yrs)

Lifecycle Value: Cost-benefit evidence suggests vetiver-based bioengineering can deliver strong lifecycle value (for example, over
multi-decade project horizons), but its diffusion is often constrained by institutional and economic barriers such as grey
infrastructure path dependency and evaluation systems that prioritize upfront costs over long-term benefits (Boonyanuphap, 2013;
K. Kim et al,, 2022; Martin et al., 2025b). A seawall is a depreciating asset; its value and performance peak at installation and degrade
daily until failure (H.-P. Chen & Alani, 2012; H.-P. Chen & Mehrabani, 2019; Nolan et al,, 2021). A living shoreline or Vetiver hedge
is an appreciating asset; its root system grows stronger, deeper, and more effective over time. Economic studies indicate that over
60 years, living shorelines are more economically efficient than bulkheads due to the avoided capital costs of replacement and the
self-healing nature of vegetation after storm events (Barry et al.,, 2024; Gittman et al., 2014a; Palinkas et al., 2023; Smith et al., 2018;
G. Wang et al.,, 2020b).

4.6 The Supply Chain Ecosystem
The U.S. Vetiver supply chain is a niche, vertically integrated market (Barnard et al., 2013a).

e  Production: Production is concentrated in tropical/subtropical hubs (Hawaii, Puerto Rico, South Florida). Key suppliers
like Agriflora Tropicals and Vetiver Farms Hawaii operate as both nurseries and technical consultancies (Rojas-Sandoval,
2020).

e Distribution: Because the plant must be propagated vegetatively (via slip splitting), scaling production is linear rather
than exponential (unlike seeds). This creates a "lead time" constraint (Barnard et al., 2013b; Pandey et al., 2025; Whittet
et al, 2016). Large infrastructure projects requiring 100,000+ plants often face supply shortages, necessitating forward
contracting and contract-growing arrangements (Tangren et al., 2022).

e Service Delivery: Specialized firms like Vetiver Systems International and ecological contractors like Davey Resource
Group act as intermediaries, bridging the gap between raw plant material and engineered installation (B. Allen et al,
2024).
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4.7 Institutional Incentives and the Insurance Market

A critical finding is the role of insurance as a market driver. The Federal Emergency Management Agency (FEMA) manages the
Community Rating System (CRS), which offers discounts on flood insurance premiums to communities that implement floodplain
management activities exceeding minimum standards (Brent et al., 2024a; Highfield & Brody, 2017; Zahran et al,, 2010).

e Open Space Preservation (Activity 420): Protecting open land functions as flood storage.

e Natural Shoreline Protection: Communities can earn points for regulations that incentivize living shorelines over
bulkheads. This institutional validation monetizes the "resilience” value of Vetiver, converting it from an abstract
environmental good into a direct financial saving for homeowners (up to 45% premium reduction in top-tier
communities).

Consumer Valuation and Social Perception
Despite the technical and economic case, the consumer interface remains the primary point of friction.
4.8 The Psychology of Hardening

Surveys of coastal residents, particularly in North Carolina and the Gulf Coast, reveal a tenacious preference for hard infrastructure
(S. B. Scyphers et al., 2019).

e Perceived Efficacy: Homeowners consistently rate bulkheads as "more effective" at preventing erosion than living
shorelines, despite scientific evidence often proving the contrary (bulkheads cause scouring and flanking erosion) (Barry
et al., 2024; Gittman et al,, 2014b; Sun et al., 2022).

o The Neighbor Effect: The strongest predictor of a homeowner's shoreline choice is the condition of their neighbor's
shoreline. If the neighbor has a wall, the social norm and perceived risk dictate a wall. Breaking this cycle requires "early
adopters" and highly visible demonstration projects to shift the neighborhood norm (Kochnower et al., 2015; Scyphers et
al., 2015).

4.9 Aesthetic Friction and the "Messy" Ecology
"Aesthetic friction" defines the conflict between ecological function and visual preference (H. Gobster et al., 2007).

e Neatness Bias: There is a cultural association between "manicured" landscapes (short turf, defined edges) and
"care/value." Tall, tussocky grasses like Vetiver or native marsh plants are often perceived as "weedy," "neglected," or
harborers of pests (snakes, rodents) (Cooper et al., 2024; Filibeck et al.,, 2016; Li & Nassauer, 2020; Nassauer, 1995).

e View Obstruction: On coastal properties, the view is a primary component of property value. Vetiver hedges, which can
reach 6 feet in height, can obstruct sightlines if not actively managed (trimmed). This trade-off between protection (hedge)
and amenity (view) significantly depresses WTP for Vetiver in residential contexts unless the risk of erosion is acute and
visible (Benson et al., 1998; Guthrie et al,, 2023; Nordstrom et al., 2007; S. B. Scyphers et al., 2014).

4.10 Willingness to Pay (WTP) Nuances

However, valuation is not static. Studies show that when consumers are educated about the co-benefits, specifically habitat
creation (better fishing) and resilience (protection from storms), their WTP for green infrastructure increases (Imamura et al., 2023;
Petrolia et al.,, 2014; Wieczerak et al., 2022). There is a specific premium for "accessible" green space (e.g., walkability) versus purely
functional green space. This suggests that Vetiver installations that are integrated into a broader landscape design (e.g., with
pathways, terracing) are more valued than simple utility plantings (kaszkiewicz et al., 2022; Mazzotta et al., 2014; Tanaka et al.,
2022; R. Wang et al., 2022).

5. Discussion: Synthesizing the Green Value Chain
5.1 Bridging the Gap: The “"Nurse Crop” Succession Model

One of the most significant insights from this review is the potential for Vetiver to serve not as a permanent monoculture, but as
a "Nurse Crop" for native restoration (Wen Chen et al., 2020).

e The Challenge: Native dune grasses like Sea Oats (Uniola paniculata) and Bitter Panicum (Panicum amarum) are
ecologically preferred but slow to establish and vulnerable to initial erosion stress (Joyce et al., 2022; Miller et al., 2001).
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e The Solution: Vetiver, with its rapid growth (establishing in 12 weeks) and deep roots, can be planted as the primary
stabilizer. Once the soil is anchored, native species are interplanted. The Vetiver provides a windbreak and moisture trap
(nurse effect), facilitating the establishment of the natives (Holanda et al., 2022; Oshunsanya et al., 2019).

e The Transition: Over time (3-5 years), as the native ecosystem matures, the Vetiver can be managed (shaded out or
trimmed), leaving a restored native dune system that retains the deep-root legacy of the initial Vetiver application. This
approach satisfies the engineering need for speed and stability while satisfying the ecological mandate for nativity,
potentially unlocking funding sources restricted to “native restoration” (Castanho & Prado, 2014; Tessema et al., 2022).

5.2 Resilience-as-a-Service (RaaS)

The economic friction of "high maintenance" can be flipped into a business opportunity (Knapik et al, 2024). The traditional
construction model is transactional (build and leave) (Sanchez-Garrido et al., 2023). The bioengineering model is relational (plant
and steward). Entrepreneurs can adopt a "Resilience-as-a-Service" model. Instead of selling a "Vetiver Wall," they sell a "10-Year
Stabilization Contract" (Andersson et al., 2014; Davies & Santo-Tomas Muro, 2024; Smith et al., 2020). This bundles the installation
with the necessary annual maintenance (trimming, monitoring). This aligns the incentives: the contractor ensures the plants survive
to minimize their own rework costs, and the homeowner gets a guaranteed outcome without the burden of horticultural
management (Baker & Gittman, 2024; Knapik et al., 2024; Mitchell & Bilkovic, 2019). This model mirrors the software industry's
shift to SaaS (Software as a Service), providing recurring revenue streams for the "Restoration Economy" (T. BenDor et al.,, 2015; T.
K. BenDor et al., 2015; Benlian & Hess, 2011; Cusumano, 2008).

5.3 Unlocking the Insurance Lever

The connection to FEMA's CRS is the most potent lever for mass adoption (Davlasheridze & Fan, 2025; Sadiq et al., 2020). If a
Vetiver stabilized shoreline can be certified to provide a specific flood reduction credit, the ROI calculation for the homeowner
shifts immediately. The cost of the system is offset by the annual insurance savings (Brent et al., 2024b; Guthrie et al., 2023; Hudson
et al., 2016). To achieve this, the industry must move toward standardized "performance certificates" for Vetiver installations,
verified by licensed engineers, to provide the documentation required by insurers (Eab et al.,, 2015; Marchal et al., 2019; Rédl &
Arlati, 2022; G. Wang et al., 2020b).

6. Conclusion

The synthesis of the Green Value Chain shows that Vetiver bioengineering is an underused but highly capable option within the
U.S. coastal resilience toolkit. From a technical standpoint, the sterile ‘Sunshine’ genotype can deliver strong geotechnical
stabilization at a much lower lifecycle cost than many gray alternatives, especially in Gulf Coast soils and Atlantic dune systems
where erosion pressure is persistent and damages compound quickly (Adams et al., 1998).

Its long-term promise depends on more than performance data. Widespread adoption requires blending entrepreneurship with
homeowner psychology and institutional incentives, so the solution feels credible, insurable, and easy to maintain. The most
scalable direction is to treat Vetiver as a temporary bio-technical bridge to native communities through a “Nurse Crop Succession”
approach, and to professionalize upkeep through a “Resilience-as-a-Service” model that turns stewardship into a managed
outcome rather than a homeowner burden (Islam et al., 2015).

At the same time, deployment in the U.S. has clear constraints that shape where and how the system can be responsibly used.
Vetiver is tropical and reliably perennial mainly in USDA Zones 8 to 11, while in Zone 7 and colder it tends to die back, reducing
the deep-root stabilization benefits that drive its engineering value. It is also shade-intolerant, limiting its applicability on forested
streambanks or heavily canopied riparian corridors. Finally, there is a real establishment risk window of roughly 3 to 4 months after
planting when extreme storm events can overwhelm young root systems, which often makes temporary measures like
biodegradable coir mats necessary to bridge early vulnerability.

Future research should move from isolated demonstrations toward integrated, verifiable pathways that reduce risk for regulators,
insurers, and buyers. Priority work includes a practical genetic chain-of-custody system, ideally, rapid low-cost field verification of
the sterile ‘Sunshine’ material to prevent accidental introduction of fertile types (Celestino et al., 2015; Ocenar et al., 2019; Papadakis
et al, 2022). In colder regions, research should test annual use as a short-term nurse crop in Zones 6 to 7 to see whether one
growing season can provide enough stabilization to establish natives before winter dieback (David et al., 2023; Dorafshan et al,
2023). Additional value could come from rigorous measurement of belowground carbon storage in U.S. soil conditions to assess
eligibility for voluntary carbon markets, and from multi-year property valuation studies that track how communities shifting from
bulkheads to living shorelines affect home prices over time (Good & Pindilli, 2022; Landry & Hindsley, 2011; Pompe & Rinehart,
1994).
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Appendix:

Table 2: Technical Specifications of Vetiver Bioengineering in U.S. Context

Parameter Performance Metric Engineering Implication

Root Tensile Strength ||~75 MPa (Mean) Approx. 1/6th strength of mild steel; high tensile reinforcement.
Shear Strength +30% to +40% Increases soil internal friction angle (e.g., 31° $\rightarrow$ 40°).
Increase

Root Depth 3.0 — 4.0 meters Penetrates typically shallow slip circles; anchors surface soil to subsoil.

Hydraulic Tolerance Flow velocity reduction  |[Withstands flow depths up to 0.8m; promotes sediment trapping.

Salinity Tolerance Threshold ~19 dS/m

Viable for back-dune and interdune stabilization; not for direct sub-tidal
use.

Contaminant Removal High utility for leachate management and wastewater polishing.

>90%
(Antibiotics/Metals)

Table 3: Economic Comparison of Coastal Stabilization Options

. .. . Hard Armor . .
Cost Category Vetiver / Living Shoreline (Bulkhead/Seawall) Economic Insight
Capital Cost Low ($30-$150/linear High ($100-$1,200+/linear ft) Gre.en solutions offer immediate CAPEX
(Install) savings.
Maintenance High Initial e Green requires stewardship; Gray appears
Cost (Watering/Weeding) Low Initial (none) "maintenance-free" initially.
Long-Term Cost Decrga;mg (Self- Increasmg (Structural||Green . systems appreciate; Gray systems
sustaining) degradation) depreciate.
Lifecycle ROI - - Lower/Negative . .
(60yr) Positive (Benefit:Cost > 1) (Replacement costs) Avoided replacement drives green ROI.
Externalities Positive (Habitat, Filtration) Negative (Scouring, Habitat||Green creates public value; Gray creates public
Loss) cost.
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