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| ABSTRACT 

The increase in decentralized applications has put blockchain technology in a very crucial position in the industries and various 

sectors such as finance, healthcare, and logistics in the United States. The need to optimize performance in blockchain systems 

and especially those operating on more than one machine grows along with the demand for secure and distributed ledgers.  

The main objective of the study was to develop a predictive dynamic benchmarking framework that allows optimizing the 

performance of the multi-machine blockchain systems. Through machine learning algorithms, which include random forests, 

gradient boosting, and support vector machines. The dataset used in this study is made up of high-resolution performance logs 

of a simulated multi-machine blockchain setting after having run 30 days of logs across both a permissioned (Hyperledger 

Fabric) and an accessible (Ethereum) environment. The main measurements observed are the block propagation times which is 

how long it takes a new block to be broadcasted to every single node of the network, along with the transaction confirmation 

latencies which will be the time difference between the moment a transaction is submitted and that same transaction is finally 

confirmed on the distributed ledger. The selection of three supervised machine learning models to be deployed was based on 

the capacity to work with high dimensionality, nonlinear as well as possible imbalanced performance classification problems. 

Several evaluation measures were calculated to have an overall picture of the classification ability of each model. Accuracy 

measures the level of overall accuracy of predictions, whereas precision, recall, and F1-score offer information about 

performance on minor classes needed to locate rare but serious blockchain performance reductions.  The Confusion matrix 

analysis was employed in identifying the particular types of misclassifications. The Random Forest model outperformed the 

other two models, attaining the highest accuracy, with near-identical precision, recall, and F1 score values, indicating consistent 

and reliable predictions across all classes. Gradient Boosting performs closely and achieves a strong balance across other metrics, 

suggesting it is nearly as effective and particularly useful for more nuanced prediction tasks or imbalanced datasets. The 

application of optimized multi-machine blockchain performance is particularly applicable in many of the large sectors in the 

United States, in which fast, secure, and scalable digital infrastructure is in demand. Infrastructure-wise, it is possible to use the 

results of machine learning-powered benchmarking to dictate more optimal hardware and software settings of blockchain nodes 

set up in the U.S.-based data centers and cloud environments. From a public policy perspective, the research implications for 

performance optimization are largely compatible with a series of current federal efforts aimed at enhancing the digital trust 

infrastructure. In the future, it is possible to research the integration of Machine Learning-based benchmarking systems into 

real-time optimization engines, whereby we would be able to tune the behavior of nodes on the fly, given the latest telemetry 

of performance. 
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I. Introduction 

Background 

The blockchain technology is quickly becoming an innovative infrastructure in the U.S. that reinvents industry like finance, 

health record management, and the transparency of the government through the decentralized and tamper-proof storage of data 

(Alladi et al., 2020; Aloqaily et al., 2020). The backbone of this transformation is the multi-machine blockchain deployments in 

which nodes are spread over physical or cloud-based solution environments. Nonetheless, these deployments also acquire 

complex operational inefficiencies. Problems like latency in communication between the nodes in a distributed system, unbalanced 

loads on the transactions, and resource contention are major factors that reduce the performance of a system (Govindasamy& 

Antonidoss, 2022; Ajayi & Saadawi, 2023). As an example, a report published by Deloitte in 2023 stated that 61 percent of 

blockchain companies headquartered in the U.S. claimed latency and throughput on the network to be their major issues when 

implementing enterprise blockchain products. 

Al-Refaie & Hawadi (2025) found that consensus protocols in multi-node architecture, such as Proof-of-Work (PoW) or 

Practical Byzantine Fault Tolerance (PBFT), also contribute to the performance lag. The requirement of inter-node agreement 

ensures that the messages have to be exchanged several times, and this is a weakness of the network that affects real-time 

operation. There also arise inconsistencies in communication patterns, particularly in a situation where the nodes are distributed 

in geographically distributed regions, which leads to differential propagation delays. This means that it is hard to evaluate the 

system efficiency based on old-fashioned standards that consider a specific parameter one by one, such as transaction rate or 

block size. More versatile performance assessment models are required, which would consider interdependencies of these 

elements, therefore making it possible to fully comprehend blockchain behavior under pressure (Feng et al., 2024). 

Furthermore, the distinctiveness of the workloads that blockchain platforms handle, such as micropayments, smart 

contract execution, requires a versatile but strong benchmarking method. Industries in the United States, whose regulatory 

environment is rapidly changing, and digital currency penetration is rapidly increasing, should focus on scalable and performance-

oriented blockchain solutions (Ge et al., 2020). NIST (2006, para 1) points out the significance of system-level benchmarking of the 

distributed settings, particularly the setting where critical infrastructures are being utilized. Thus, the issue of performance 

shortcomings in multi-machine blockchain systems is a challenge to the technological competitiveness of the United States and 

its cybersecurity, rather than a technical challenge (Hafeez et al., 2023; Chouksey et al., 2023). 

 

Problem Statement 

Gupta et al. (2021) highlighted that despite advancements in blockchain technology, benchmarking tools have not 

evolved at the same pace, often resulting in insufficient performance evaluations in real-world, multi-machine setups. Most existing 

benchmarking frameworks—such as Block-bench or Caliper—primarily analyze system throughput or latency in isolated 

environments, failing to capture the interactions between consensus protocols, communication layers, and dynamic workloads. Ge 

et al. (2020) added that these tools typically assume uniform conditions that rarely hold in large-scale deployments where nodes 

experience variable latencies, resource bottlenecks, and unpredictable traffic. As a result, optimization strategies derived from such 

benchmarks are often inadequate when applied to distributed, multi-machine systems used in actual business or governmental 

scenarios. 

Moreover, a lack of predictive modeling in current benchmarking methodologies further limits their utility. Without the 

ability to anticipate how performance might degrade or improve under varying workloads, administrators are left to rely on trial-

and-error or overprovision hardware resources (Hakeem & Kim, 2025). This inefficiency is particularly costly in the U.S. enterprise 

landscape, where blockchain platforms underpin mission-critical applications such as identity verification, interbank transfers, and 

medical data integrity. For example, JPMorgan Chase's Quorum blockchain platform processes hundreds of transactions per 

second and requires performance predictability to meet regulatory and service-level agreements. Without accurate benchmarks 

that reflect system-wide interactions, organizations are hindered in their ability to preemptively scale, optimize, or troubleshoot 

their blockchain systems (Elghaish et al., 2023). 

The current state of benchmarking also fails to incorporate adaptive, learning-based approaches that could enhance 

predictive accuracy (Han et al., 2022). This is a significant gap, considering the widespread availability of performance monitoring 

data in modern distributed systems. The integration of machine learning for performance classification and anomaly detection has 
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proven successful in cloud infrastructure management, yet it remains underutilized in the context of blockchain optimization (Ge 

et al., 2020). This research aims to bridge that gap by employing machine learning to develop a comprehensive benchmarking 

model that not only evaluates current system performance but also predicts future states based on historical and real-time metrics. 

 

Objective 

The primary goal of this study is to create a predictive and dynamic benchmarking framework that enables the 

performance optimization of multi-machine blockchain systems. By leveraging machine learning algorithms—such as random 

forests, gradient boosting, and support vector machines—this research seeks to classify performance patterns, detect inefficiencies, 

and forecast system behavior under various configurations. Using real-world data from multiple blockchain platforms and testbeds 

deployed in simulated cloud environments, the proposed model will offer a nuanced understanding of how system variables 

interact over time, informing smarter resource allocation and configuration decisions. 

This paper further aims to bridge the gap between benchmarking theory and practical system management. By analyzing 

core performance metrics such as transaction per second (TPS), block propagation time, and CPU/memory utilization, the study 

will generate a performance taxonomy that distinguishes between healthy, degraded, and critical states in a blockchain system. 

These classifications will be validated against known performance baselines and used to train predictive models capable of 

suggesting optimization strategies before issues arise. In doing so, we create a continuous feedback loop that integrates 

monitoring, benchmarking, and predictive optimization—a first in the realm of multi-node blockchain performance research. 

From a broader perspective, this research also strives to align with national priorities in blockchain standardization and 

infrastructure modernization. The U.S. Department of Commerce has advocated for greater adoption of blockchain technology 

across federal agencies, but emphasizes the need for scalable and dependable systems. By delivering an intelligent benchmarking 

solution, this study supports not only the immediate technical needs of system administrators but also the strategic vision of a 

blockchain-enabled digital economy. Through rigorous experimentation and data-driven analysis, the proposed model aims to 

become a cornerstone for future research and deployment standards. 

 

Research Significance 

Hafeez et al. (2023) indicated that the significance of optimizing performance in multi-machine blockchain systems cannot 

be overstated, especially when considering the vital roles these systems are beginning to play across U.S. industries. In sectors 

such as finance, where high-frequency trading and real-time settlement are essential, even a slight latency can result in millions of 

dollars in losses or increased systemic risk. According to a 2024 report by the Federal Reserve, over 50% of banks in the United 

States are actively testing or deploying blockchain technologies to enhance transaction security and processing efficiency (Feng 

et al, 2024). However, many of these deployments face scalability issues, particularly when operating across geographically 

dispersed machines. Optimizing performance through intelligent benchmarking allows financial institutions to handle higher 

transaction volumes without compromising system integrity or speed, making them more resilient in fast-paced markets (Elghaish 

et al., 2023). 

In logistics and supply chain management, the U.S. Department of Transportation has identified blockchain as a pivotal 

tool for tracking goods, verifying origins, and ensuring compliance with federal regulations (Hawashin et al., 2024). However, supply 

chains are inherently distributed and often involve dozens, if not hundreds, of nodes spread across different networks. This 

complexity introduces challenges related to node synchronization, data consistency, and latency. Efficient benchmarking tools and 

predictive models help address these challenges by simulating real-world conditions and recommending configurations that 

enhance system responsiveness. By optimizing how data is shared and validated across machines, companies can reduce delivery 

delays, minimize losses, and meet federal logistics standards with improved transparency and accountability (Jaffar & Acikgoz, 

2023). According to IBM, logistics companies using blockchain can reduce documentation errors by 75% and operational costs by 

up to 30%—figures that can only be realized with well-optimized systems (Jakir et al., 2023). 

 

According to Jasim & Hadi (2023), performance-enhanced blockchain systems can benefit government services in an 

enormous way. There are applications like land registry, identity management, and dispersing of the public funds for which both 

high security and real-time data processing are required. The U.S. General Services Administration (GSA), an agency that works to 

digitize processes in federal acquisition, is testing the use of blockchain to streamline the work across many interdependent 

systems. These initiatives are neither well optimized nor performant; thus, they can fail because of the slow consensus algorithms, 

overloaded nodes, or weak scalability (Hossain et al., 2024). With the use of machine learning enhanced benchmarking models, 

agencies will be able to optimize the computational resources, predict aspects of performance bottlenecks, as well as scale the 

services easily. Kai et al. (2024) also assumed that the outcome is not only cost reduction and higher community confidence but 

also substantial conformity to the executive order on the responsible development of digital assets signed by President Biden. In 

this way, this study is of critical importance because it allows blockchain systems to respond to the challenging requirements of 

the U.S. operations in both the public and private sectors. 
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II. Literature Review 

Multi-Machine Blockchain Architecture 

An analysis done by Soudan et al. (2025) indicates that multi-machine blockchain systems architecture is the apparent 

direction of developing distributed ledger technology (DLT) that is strategically intended to boost a system to be fault-tolerant, 

augment parallelism of transactions, and achieve expanded geographic coverage. Such systems are characterized by distributed 

ledgers being implemented, in various cases on different machines and even in different data centers or clouds to implement 

resilience towards single points of failure. These nodes synchronize them with consensus protocols and communication patterns 

in the form of gossip to ensure that the blockchain is in a coherent state (Rana et al., 2023). This architecture may commonly be 

used with the help of container orchestration systems such as Kubernetes or Docker Swarm, which enables a scalable deployment 

that fits within cloud infrastructure. The Hyperledger Fabric framework, spearheaded by the Linux Foundation and backed by 

multinational companies like IBM, Intel, has made the idea of modular architecture a default, where ordering nodes, peer nodes, 

as well as certificate authority nodes, are dedicated to separate machines. The advantage of this structure is the increased level of 

customization and security, as well as the complexity of coordination and performance optimization (Wang et al.,2023). 

The deployment of blockchain technologies in the enterprise and government systems in the United States gained 

momentum and led to the rise of demand in scalable and multi-node infrastructures (Yang et al., 2022). A 2023 report of the 

National Institute of Standards and Technology (NIST) further found that more than 60 percent of the blockchain deployments 

considered in federal pilot programs ran in multi-machine configurations to provide availability, redundancy, as well as federal IT 

modernization compliance (Yi et al.,2024). These arrangements can include hybrid cloud infrastructures, in which nodes can be on-

premise and others in the cloud, such as AWS GovCloud or Microsoft Azure Government. Although the distributed characteristic 

of such systems enables decentralized control and allows them to remain operational regardless of machine failure, it also 

necessitates the use of complex synchronization, failover recovery, and communication mediums across different machines to 

guarantee the integrity of the ledger, irrespective of the conditions in the system (Rahman et al., 2023). 

Furthermore, various machines also require multi-machine architecture to deal with the diversity of hardware and network 

attributes, most notably in case of blockchain systems that are distributed between several groups or jurisdictions (Zhou et 

al.,2024). As an example, the financial institutions in the U.S. need to operate under different security standards (e.g., PCI-DSS on 

payment data), thus affecting the design of node-to-node trust and encryption protocols. Such fragmentation makes architecture 

design complicated because developers have to consider the tradeoff between system interoperability and security, and 

compliance policies (Yang et al., 2022). With more complex and bigger systems, there is an obvious need to have automated and 

intelligent ways to measure and tune the performance of the system, considering the sheer amount of hardware and workload 

dynamics across distributed nodes (Hasan et al., 2025) 

 

Performance Challenges 

Inherent limitations to the performance of multi-machine blockchain systems are critical barriers caused by latency 

inefficiencies, throughput limits, overhead of consensus protocols, and resource contention. Inter-node communication is a 

bottleneck in multi-node configurations when the number of nodes rises (Mehta et al., 2020). In general, network latency, especially 

in geographically decentralized deployments, can extremely delay the propagation of blocks and the finalization of transactions. 

The U.S. Department of Homeland Security (DHS) revealed that blockchain latency problems used in customs processing and 

border security might result in a delay in the application at its peak of more than 40 percent of a given application (Soudan et al., 

2025). These delays are further increased with the consensus algorithms such as Proof-of-Work (PoW) or Practical Byzantine Fault 

Tolerance (PBFT), which involve several rounds of communication and cryptographic verifications to reach agreement and therefore 

attach quantifiable delay to each transaction (Li et al.,2024). 

Throughput also emerges as an urgent issue, especially in specialized applications in the enterprise or in the public sector, 

where large numbers of transactions need to be processed within short periods. According to a 2022 study by MIT Digital Currency 

Initiative, Bitcoin has an average of 7 transactions per second (TPS) and Ethereum has about 30 TPS, although 5 to 10 TPS is more 

typical; the permissioned blockchain systems such as Hyperledger Fabric can achieve up to 3,000 TPS in the ideal, tightly controlled 

setting (Kumar et al., 20225). Nevertheless, real deployments in the wild perform below such figures and are limited by bottlenecks 

of resources and non-optimal setups. As noted by Kai et al., (2024), in the U.S. healthcare sector, especially, blockchain networks 

that have been piloted to enable sharing of data on patients between institutions have documented loss of up to 50 percent of 

throughput levels when the systems are undergoing maintenance or software updates and this contravenes reliability and services 

delivery. 

Competition for resources also adds to the problem of performance in a multi-machine blockchain. Performance can be 

reduced when many nodes compete over a finite pool of CPU cycles, memory bandwidth, or access to latent I/Os, particularly in 

the case of cloud-based virtualization (Kim et al., 2018). Many systems have missed service-level expectations, failing to launch the 

necessary virtual machines and engage effective load balancing mechanisms (Ghribi et al.,2020), and non-deterministic behavior 

in smart contracts execution can even result in highly unpredictable performance results when the workload is not distributed 

evenly. The problems presented provide the argument that intelligent benchmarking and tuning models are required to be able 

to adapt system parameters on-the-fly (Jasim and Hadi, 2023). 
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Machine Learning in Distributed Systems Performance Tuning 

Chouksey et al. (2023) believed that machine learning (ML) has been demonstrated to have good potential towards 

improving the performance of distributed computing systems through proactive management of resources, detecting anomalies, 

and keeping a balance on dynamic resources. Recently, ML models have been employed in cloud computing and data centers to 

predict traffic surge, detect performance degradation, and resource scheduling (Ajayi & Saadawi, 2023). Indicatively, the DeepMind 

project developed by Google is well-known for having decreased the amount of energy required at data centers by 40 percent by 

optimizing ML-based cooling systems. Within the U.S., the Department of Energy (DOE) and the Defense Advanced Research 

Projects Agency (DARPA) are major federal agencies involved in AI/ML research to enhance the efficiency of the underlying systems 

supporting these missions, which include distributed ledger technologies (El-Refaie & Hawadi, 2025). 

In this case of blockchain, nevertheless, the implication of ML remains at an early stage.    The majority of previous usages 

have centered on security and fraud prevention, including the use of supervised learning techniques with smart contracts, like 

finding abnormal transactions or even warning about smart contract security issues (Govindasamy & Antonidoss, 2022). That aside, 

a rising stack of evidence is showing that ML has the potential for use in the performance tuning of distributed systems. As 

examples, there has been the use of reinforcement learning methods to dynamically optimize parameters such as block size and 

mining difficulty over testbed environments to achieve higher transaction throughput and no manual reconfiguration. In the same 

way, support vector machines and decision forests have been utilized in cloud systems to forecast the pattern of usage of the CPU 

and identify resource starvation and load imbalance between virtual machines (Govindasamy & Antonidoss, 2022). 

More recent scholarly work has first started to look at how these Machine Learning approaches can be scaled to multi-

machine blockchain systems. At Stanford University, researchers produced a model that forecasts gas fee spikes in Ethereum based 

on time-series forecasting, and a study at the University of California used clustering algorithms to cluster transaction types based 

on resources utilized (Feng et al.,2024). These initiatives, as good as they are, have so far been more academic or simulations. There 

is not much that has been implemented operationally in large-scale networks in production blockchain networks. It is worth noting, 

however, that these seminal works pose a prospect of ML models not only being observational of distributed blockchain systems 

but actively enabling their overall optimization as a whole, when being supplemented by real-time data ingestion and feedback 

loops (Hafeez et al.,2023). 

 

Gaps in Research 

Recent research has shown that there is a lack of understanding of how predictive benchmarking techniques can be 

applied to real-world multi-machine blockchain systems, despite the increased work on blockchains and ML. The majority of 

benchmarking available tools, including Hyperledger Caliper or Blockbench, are designed to perform testing in a set amount of 

time without the opportunity to be dynamic and adaptive (Feng et al.,2024). They normally evaluate performance by using a 

measure of one aspect, such as throughput or latency, without considering any relationships of system parameters and the dynamic 

measurement relating node interactions in a multi-machine system architecture (Hafeez et al., 2023). Consequently, such 

benchmarks offer a momentary picture of performance and do not offer it in a manner to be acted upon in the long-term 

optimization process. This is an ultimate weakness that restricts the practicality of such tools in terms of enterprise-level blockchain 

systems where consistent surveillance and predictive modeling are necessary to achieve uptimes and adherence to performance 

levels (Han et al., 2022). 

Moreover, Hasan et al. (2024) indicated that there is little use of ML in benchmarking and optimizing the performance of 

blockchain systems, although it has been researched in security and anomaly detection. In a 2023 study, the National Science 

Foundation (NSF) stated that in federally funded initiatives supporting blockchain research, fewer than 5 percent included machine 

learning to tune performance, and the majority of such initiatives target cryptography or regulations, rather than performance 

tuning (Gupta et al.,2021). Real-time predictive modeling is a missed opportunity in benchmarking, and there is increasing 

blockchain deployment telemetry data to process. It is possible to train ML classifiers that recognize poor configurations, estimate 

future performance based on evolving workloads, and recommend adjustments, but those combined methods are surprisingly 

rare in existing research and in commercial packages (Hakeem & Kim, 2025). 

Furthermore, multi-machine blockchain systems present special issues that are not commonly taken into consideration 

in ML-based performance analysis studies (Ge et al., 2020). These are node heterogeneity, risk of network partitioning, and inter-

organizational coordination problems, which cannot be excluded from influencing the reliability of predictive models. These 

variables must be considered in a benchmarking framework unless the latter cannot manage to achieve optimization strategies of 

real-world systems (Hafeez et al., 2023). Hence, application of machine learning to benchmarking tools, and in particular, 

distributed blockchain environments that lie on multiple machines, is a highly important yet poorly researched topic of study. 

Closing this gap will not only lead to a better state of blockchain engineering but also give back considerable advantages to high-

stakes manufacturers of states and individual U.S. industries that depend on a scalable and streamlined distributed system (Feng 

et al., 2024). 
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III. Data Collection and Preprocessing 

Dataset Description: 

 

This analysis was based on a carefully compiled dataset that consists of high-fidelity performance logs taken from a simulated 

multi-machine blockchain environment. The environment spanned multiple machines over 30 days and recorded performances 

using both permissioned and public blockchain frameworks. The two types of frameworks tested were Hyperledger Fabric (a 

permissioned framework) and Ethereum (a public blockchain framework accessible to anyone). Key metrics captured during the 

logging include the following: . . . -Benchmarking consensus delay, defined as the time taken by the network to reach agreement 

on a block -Throughput, captured as the number of transactions successfully processed per second -Block propagation times -

Transaction confirmation latenciesData was collected using Prometheus and Grafana for real-time telemetry, while logs were 

structured in JSON and stored in a time-series database (InfluxDB) to facilitate efficient querying and ML model training. This 

comprehensive dataset enables granular analysis of performance behavior and resource dynamics across decentralized 

architectures. 

Data Preprocessing: 

The dataset underwent preprocessing of high standards to guarantee both the quality of the data itself as well as the reliability of 

any models to be applied subsequently in a predictive manner. This was especially pertinent since the raw data was to be used in 

a first-of-its-kind study, and thus, any findings therein might very well serve as a foundation for future research. Missing values 

appeared in the data for various reasons, such as jitter in the network or failures in logging that were bound to happen from time 

to time. Consequently, forward-fill and time-aware interpolation techniques were used to handle these gaps in a way that most 

preserved the apparent consistency of the data over time. The data also had noise in it from several sources, and so it was filtered 

to remove that noise. These filtering methods, which involved the use of statistics, were probably the most interesting part of the 

preprocessing to the authors since they either knew about these methods already or learned about them when doing this work. 

Key Features Selection: 

S/No Key Feature Description 

001. Block Propagation Time 

(ms) 

Measures how long it takes for a newly created block to reach all 

nodes in the network. 

002. CPU Usage (%) Real-time processor utilization on each node, sampled at regular 

intervals. 

003. Transaction 

Confirmation Latency 

(ms) 

The elapsed time from when a transaction is broadcast to when it is 

finalized. 

004. Memory Usage (MB) The amount of RAM consumed per node during workload execution. 

005 Transaction Throughput 

(TPS) 

Number of transactions processed successfully per second. 

006. Consensus Delay (ms) Time taken by the network to reach an agreement on a block across 

distributed nodes. 

007. Block Size (KB) The size of each new block in kilobytes influences propagation and 

validation time. 

008. Network I/O Rate (MBps Measures the rate of data transmission and reception between nodes. 

009. Peer Count  The number of active peer connections for each node at a given time. 

010. Node Role A categorical feature indicating the function of each node (e.g., miner, 

validator, peer). 

 

EDA Highlights: 

Exploratory Data Analysis (EDA) was important in getting a sense of what the processed and performance data look like before 

any of the modeling is done. EDA makes it possible to discover high-level characteristics of metrics like block propagation times, 

CPU usage, and transaction throughput between nodes through visualizations such as histograms, scatter plots, time series line 

graphs, and correlation heat maps. It also helps to diagnose the outliers or abnormal spikes in consensus delay or memory usage, 

which, if ignored, could distort the model predictions. Second, by using EDA, we are able to quickly identify multicollinearity 

between features, such as a high mutual information between peer count and network I/O, which could impact feature selection 
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or dimension reduction techniques. This study shows that EDA confirmed both completeness and consistency in data collection, 

was also an important step forward in selecting appropriate window periods to aggregate the data, and in identifying some of the 

factors that are most likely to cause bottlenecks in performance. EDA as a whole has established both a diagnostic and strategic 

step: it provided a solid set of base data to interpret the purpose of machine learning models that followed to analyze the 

performance of blockchain. 

 

a) Correlation Heatmap of the key features 

The code snippet applied by the analyst was executed within a Jupyter Notebook environment. The code line generates a 

correlation heatmap using seaborn and matplotlib.pyplot libraries. It starts by creating a figure with a specified size of 10x6 inches. 

Then, the adopted code block calculates the correlation matrix of a Data Frame named df using df.corr() and visualizes it as a 

heatmap using sns.heatmap(). Key parameters for the heatmap include annot=True to display the correlation values on the 

heatmap, cmap='cool warm' to set the color scheme, and fmt=".2f" to format the annotations to two decimal places. Finally, it sets 

the title of the heatmap to "Correlation Heatmap - Blockchain Performance Metrics", uses plt.tight_layout() to adjust plot 

parameters for a tight layout, and plt.show() to display the generated plot. This visualization is particularly useful for understanding 

the relationships and strengths of linear correlations between different "Blockchain Performance Metrics" within the df Data Frame. 

Output: 

 
Figure 1: Correlation Heatmap of the key features 

The showcased correlation heatmap (Fig.1) visually represents the relationships between various "Blockchain Performance 

Metrics," with correlation coefficients ranging from -1.00 to 1.00. Red hues indicate positive correlations, where two metrics tend 

to increase or decrease together, while blue hues signify negative correlations, meaning one metric tends to increase as the other 

decreases. Values close to 1 or -1 suggest strong linear relationships, while values near 0 indicate weak or no linear correlation. 

For instance, "Set Send Rates" and "Send Rates" show a very strong positive correlation (0.99), as expected. Conversely, "Avg 

Latency" exhibits a strong negative correlation with "CPU Usage (%)" (-0.72) and "Throughput" (-0.47), suggesting that higher 

latency might be associated with lower CPU utilization and throughput. The diagonal line of 1.00 represents the perfect positive 

correlation of each metric with itself. This heatmap is a powerful tool for quickly identifying dependencies and inverse relationships 

among the blockchain performance indicators. 

b) Portrays the Distribution of Metrics 

The code snippet adopted by our coding team was executed in a Jupyter Notebook, which in turn generated a series of histograms 

to visualize the distribution of four key blockchain performance metrics: 'Throughput', 'Avg Latency', 'CPU Usage (%)', and 'Latency 

Range'. It began by defining a list of these metrics. A figure with a size of 12x8 inches was then created to house the subplots. The 

code iterated through each metric, creating a 2x2 grid of subplots using plt.subplot(2, 2, i+1). For each subplot, a histogram is 

generated using sns.histplot(), with kde=True to overlay a Kernel Density Estimate plot, providing a smoothed representation of 

the data distribution. The color of each histogram was dynamically set using sns.color_palette('tab10'). Each subplot was given a 

title indicating the "Distribution of [Metric Name]". Finally, plt.tight_layout() adjusts the subplot parameters for a tight layout, and 

plt.show() displays the complete figure containing all four histograms. This code effectively allowed for a quick visual inspection 

of the spread, central tendency, and shape of the data for these crucial blockchain performance indicators. 



Performance Optimization in Multi-Machine Blockchain Systems: A Comprehensive Benchmarking Analysis 

Page | 364  

Output: 

 

Figure 2: Portrays the Distribution of Metrics 

The chart above (Fig. 2) presents a visual summary of four key performance metrics from the blockchain system: Throughput, 

Average Latency, CPU Usage (%), and Latency Range. The Distribution of Throughput (top-left) shows a multimodal pattern with 

noticeable peaks around 100 and 125 TPS, suggesting that the system frequently operates at these rates, possibly due to batch 

transaction scheduling or network optimization phases. The Distribution of Average Latency (top-right) is sharply right-skewed, 

with the majority of values concentrated below 2 milliseconds, indicating that most transactions are confirmed quickly, although 

a few outliers exceed 10 milliseconds. In the Distribution of CPU Usage (bottom-left), we see a fairly uniform and flat distribution 

between 17% and 20.5%, which reflects stable CPU utilization across nodes, likely a result of balanced load distribution 

mechanisms. Lastly, the Distribution of Latency Range (bottom-right) is also skewed right, with a dominant spike around 2 

milliseconds, suggesting that while latency is low overall, there are brief periods of significant variability. These distributions imply 

the system is mostly efficient but may occasionally encounter performance inconsistencies that could benefit from further tuning. 

c) Displays 3D Performance Surface 

The implemented code script by the coding team utilized matplotlib.pyplot to generate a 3D scatter plot, visualizing the 

relationship between "Send Rates," "Block Size," and "Throughput." It initializes a figure of size 10x7 inches and adds a 3D subplot. 

The ax.scatter() function then plots "Send Rates" on the x-axis, "Block Size" on the y-axis, and "Throughput" on the z-axis, with the 

color of each point representing its "Throughput" value (using the 'viridis' colormap) and a fixed marker size of 20. The axes are 

appropriately labeled, and the plot is given a title of "3D Performance Surface." Finally, plt.show() displays the interactive 3D plot, 

allowing for a visual exploration of how throughput changes with varying send rates and block sizes in a blockchain context. 
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Output: 

 

Figure 3: Displays 3D Performance Surface 

The displayed 3D scatter plot visualizes the interplay between "Send Rates" (x-axis), "Block Size" (y-axis), and "Throughput" (z-axis, 

also represented by color intensity from purple to yellow, indicating increasing throughput). The plot shows a clear positive 

relationship: as both "Send Rates" and "Block Size" increase, the "Throughput" generally tends to rise. The lighter, yellowish points, 

representing higher throughput, are clustered towards the higher values of both "Send Rates" and "Block Size," indicating that 

maximizing throughput requires a combination of high transaction sending rates and larger block sizes. The distribution of points 

suggests a non-linear surface, where throughput gains might be more significant as both input parameters increase, possibly up 

to a certain saturation point not fully visible here. This visualization is crucial for identifying optimal configurations of send rates 

and block sizes to achieve the desired throughput performance in the blockchain system. 

d) System Efficiency vs. CPU Usage 

The applied code fragment, executed within a Jupyter Notebook environment, generated a scatter plot to visualize the relationship 

between "CPU Usage (%)" and "Efficiency," with the points colored according to "Throughput." It started by initializing a figure 

with a size of 10x5 inches. The seaborn.scatterplot() function is then used to create the plot, mapping "CPU Usage (%)" to the x-

axis, "Efficiency" to the y-axis, and using the 'Throughput' column to determine the color of each point with the 'coolwarm' palette. 

The plot was titled "System Efficiency vs CPU Usage," and plt.tight_layout() adjusted plot parameters for a tight layout, before 

plt.show() displayed the generated visualization. The plot was designed to reveal how system efficiency changes with CPU usage, 

and how throughput might mediate or influence this relationship. 
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Figure 4: System Efficiency vs. CPU Usage 

The scatter plot portrayed above (Fig. 4) reveals a clear segmentation based on "Throughput," represented by the color gradient. 

At lower CPU Usage (around 16.5% to 18.0%), efficiency generally remains high, close to 1.00, and points are predominantly colored 

in shades of blue, indicating lower throughput values (30 to 90). As CPU Usage increases beyond approximately 18.25%, there's a 

distinct shift: throughput values, indicated by redder hues, become higher (120 to 150), and efficiency generally decreases, forming 

a cluster of points between 0.70 and 0.98. This suggests that while increased CPU usage is associated with higher throughput, it 

comes at the cost of reduced system efficiency, indicating a performance trade-off where the system operates less efficiently to 

process more transactions. The gap between the two main clusters of data points, around 18.0% CPU usage, further reinforces the 

idea of distinct operational regimes. 

e) Interactive:  Send Rates vs. Avg Latency 

The code line implemented by the dataset specialist leveraged the plotly. Express library to create an interactive scatter plot, 

visualizing the relationship between "Send Rates" and "Avg Latency." The plot used "Block Size" to determine the color of the 

points, allowing for an additional dimension of analysis, and "Throughput" to define the size of the markers, providing yet another 

layer of information. The chart is given the title "Interactive: Send Rates vs Avg Latency." By using plotly.express, the generated 

plot was interactive, enabling users to hover over data points to see specific values, zoom, pan, and potentially explore the data 

more deeply than a static plot. This interactive visualization was valuable for understanding how average latency changes with 

send rates, and how block size and throughput influence this relationship. 

Output: 

 

Figure 5: Interactive:  Send Rates vs. Avg Latency 

The chart displays an interactive scatter plot illustrating the relationship between Send Rates and Average Latency, with each data 

point colored by Block Size. The plot reveals that for most of the observed send rates—from 10 up to about 140 transactions per 

second—average latency remains consistently low, typically under 2 milliseconds, indicating strong system performance under 

normal load. However, an outlier appears at around 60 TPS with an unusually high latency exceeding 11 milliseconds, likely caused 

by transient congestion or a temporary system bottleneck. As the send rate increases beyond 140 TPS, there is a visible density 

cluster of points with slightly higher latencies, suggesting the system approaches its performance limits around this threshold. 

Color intensity (representing block size) varies across the x-axis, with larger blocks (yellow and orange hues) becoming more 
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common at higher send rates, which could be contributing to the modest latency increase due to longer processing and 

propagation times. This visualization highlights that while the system scales well up to a point, send rates above 140 TPS may 

induce slight delays, especially when combined with larger block sizes. 

IV Methodology 

Feature Engineering 

The feature engineering procedure aimed at converting raw blockchain telemetry into meaningful indicators of system behavior 

and performance dynamics. Important characteristics were extracted to capture the efficiency of operations and the distribution 

of loads among nodes within the multi-machine setting. Average node delay was one of the most important derived metrics, and 

it is the average latency between the receipt of a transaction and node-level confirmation, and it is especially helpful in detecting 

communication bottlenecks in heterogeneous machine clusters. Also, the block confirmation time variance was calculated on 

rolling time windows, which reflects the changes in the speed of block finalization, which is particularly valuable in identifying 

network instability or ineffective consensus performance. The resource consumption ratio was another composite feature, which 

was computed by dividing the CPU usage by the memory usage, and it was possible to distinguish between compute-intensive 

and memory-bound processing conditions. These engineered features, as well as baseline measures such as throughput and peer 

count, were standardized and aggregated in 5-minute windows, so that temporal trends and burst patterns were maintained, but 

random noise was also smoothed. This action enhanced the interpretability and predictive relevance of the model to a great extent. 

 

Model Deployment 

The three supervised machine learning models that were chosen to be deployed were due to their capacity to deal with high-

dimensional, non-linear, and possibly imbalanced performance classification issues. First, the Random Forest Classifier was applied 

because of its ensemble learning style, which averages the results of several decision trees to enhance the generalization and 

accuracy. This model was especially good at modeling nonlinear interactions between features, e.g., how node delay interacts with 

the consensus time, and it was also guaranteed not to overfit, as it made use of bootstrapped sampling and randomness of 

features. Second, Support Vector Classifier (SVC) was used due to its effectiveness in high-dimensional space, which enables it to 

separate the subtle performance classes with the help of kernel functions. Its margin-maximization approach helped it to delineate 

decision boundaries, particularly when making the choices between stable and unstable blockchain states. Finally, the Gradient 

Boosting Classifier was added because it performed well on smaller and imbalanced data, and rare but critical performance failures 

had to be forecasted with great confidence. The model constructs sequential trees that aim at correcting the mistakes of 

predecessors; therefore, it is particularly useful in the refinement of predictions over complicated temporal patterns in blockchain 

logs. 

 

Evaluation Strategy 

A strict evaluation strategy was used to determine the generalizability and reliability of the models deployed. A stratified 80/20 

train-test split was used to ensure a proportional distribution of performance classes in the training and the testing subsets of the 

dataset. Besides, the training set was cross-validated 10 times in order to reduce variance in model performance and prevent 

overfitting, so that the results would not be sensitive to various subsets of the data. Several evaluation measures were calculated 

to have a comprehensive picture of the classification performance of each model. Accuracy described the general accuracy of 

predictions, and precision, recall, and the F1-score gave information about the minority classes' performance, which is necessary 

to detect the rare but severe blockchain performance degradations. The ROC-AUC score was also computed to evaluate the 

model's capabilities of separating classes at all the threshold levels, and a confusion matrix analysis was performed to determine 

the particular type of misclassification. This thorough analysis made model performance not only statistically sound but also in line 

with the operational priorities in terms of multi-machine blockchain systems optimization. 

V. Results and Analysis 

Model Performance Benchmarking: 

a) Random Forest Modelling 

The formulated code snippet by the coding team implemented a Random Forest Classifier for the blockchain system, related to 

blockchain performance prediction. It began by importing the necessary modules from sklearn. Ensemble (for Random-Forest-

Classifier) and sklearn.metrics (for accuracy-score, classification-report, and confusion-matrix), along with seaborn and 

matplotlib.pyplot for visualization. The core of the code involved initializing a Random-Forest-Classifier with 100 estimators and a 

random-state for reproducibility, then training the model using rf_model.fit(X-train, y_-rain). After training, it made predictions on 

the test set with the rf_model.predict(X-test). The model's performance was then evaluated by printing the accuracy score and a 

detailed classification report. Finally, a confusion matrix was generated and visualized as a heatmap using seaborn.heatmap(), 

providing a clear visual representation of the model's true positive, true negative, false positive, and false negative predictions. 
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Output: 

Table 1:Random Forest Classifier Results 

Accuracy: 0.9675850891410048 

              precision    recall  f1-score   support 

 

           0       0.94      0.97      0.95       205 

           1       1.00      1.00      1.00       208 

           2       0.96      0.94      0.95       204 

 

    accuracy                           0.97       617 

   macro avg       0.97      0.97      0.97       617 

weighted avg       0.97      0.97      0.97       617 

 

The output from the Random Forest Classifier, including the accuracy score and classification report, indicates a highly effective 

model for predicting the target variable, likely related to blockchain performance. The overall accuracy is exceptionally high at 

approximately 96.76%. Examining the classification report, the model demonstrates excellent performance across all three classes 

(0, 1, and 2). Specifically, Class 1 achieves a perfect precision, recall, and F1-score of 1.00, suggesting the model is flawless in 

identifying instances of this class. Classes 0 and 2 also show strong performance, with precision, recall, and F1-scores in the mid-

0.90s. The 'support' column indicates a balanced number of instances for each class in the test set. The consistently high values for 

accuracy, macro average, and weighted average (all at 0.97) across precision, recall, and f1-score further underscore the robust 

and reliable predictive capability of this Random Forest Classifier. 

b) Support Vector Machines Modelling 

The deployed code trained and evaluated a Support Vector Machine (SVM) model for the classification of blockchain performance 

data. It begins by importing the SVC class from sklearn.svm. The model is then initialized with a radial basis function (rbf) kernel, a 

regularization parameter C of 1, and gamma set to 'scale', which automatically adjusts the kernel coefficient. The SVC model is 

trained using svm_model.fit(X-train, y-train). Subsequently, predictions are made on the test set (X-test) using svm_model. Predict 

(X-test). The performance of the SVC model is evaluated by printing the accuracy score and a detailed classification report. Finally, 

a confusion matrix is generated from the actual and predicted values and visualized as a heatmap using seaborn.heatmap(), with 

annotations showing exact counts and a 'Purples' colormap, providing a clear visual summary of the model's classification 

performance. 

Output: 

Table 2: Support Vector Machines Results 

Accuracy: 0.93354943273906 

              precision    recall  f1-score   support 

 

           0       0.86      1.00      0.93       205 

           1       0.99      0.98      0.98       208 

           2       0.97      0.82      0.89       204 

 

    accuracy                           0.93       617 

   macro avg       0.94      0.93      0.93       617 

weighted avg       0.94      0.93      0.93       617 

 

Based on the provided classification report, the Support Vector Machine (SVM) model demonstrates strong overall performance 

with an accuracy of approximately 93.4% on a well-balanced dataset of 617 samples distributed across three classes (0, 1, and 2). 

The model excels at identifying class 1, achieving a nearly perfect F1-score of 0.98, with both high precision (0.99) and recall (0.98). 

The main area for improvement is with class 2, which has a significantly lower recall of 0.82, indicating that the model fails to 

identify 18% of the actual class 2 instances, even though its predictions for this class are highly precise (0.97). Conversely, the 

model achieves a perfect recall of 1.00 for class 0, meaning it correctly identifies every instance of this class, but at the cost of 

having the lowest precision (0.86), which suggests it sometimes misclassifies instances from other classes as class 0. 
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c) Gradient Boosting Classifiers Modelling 

The executed code snippet demonstrated the implementation and evaluation of a Gradient Boosting Classifier using the Scikit-

learn library. First, it imported the necessary Gradient-Boosting-Classifier class. A model instance was then created with specific 

hyperparameters: 100 estimators (decision trees) and a learning rate of 0.1, with random-state=42 ensuring the results are 

reproducible. The model was trained on the X-train and y-train datasets using the .fit() method. Following the training, it makes 

predictions on the X-test data. The evaluation phase consisted of printing the model's accuracy score and a detailed classification 

report. To provide a visual summary of performance, the code generated and displayed a confusion matrix using Matplotlib and 

Seaborn, presented as an annotated heatmap with a green color scheme to clearly show the counts of true positives, false positives, 

true negatives, and false negatives. 

Output: 

Table 3: Gradient Boosting Classifier Results 

Accuracy: 0.9562398703403565 

              precision    recall  f1-score   support 

 

           0       0.93      0.96      0.95       205 

           1       0.99      0.99      0.99       208 

           2       0.95      0.92      0.93       204 

 

    accuracy                           0.96       617 

   macro avg       0.96      0.96      0.96       617 

weighted avg       0.96      0.96      0.96       617 

 

The Gradient Boosting Classifier demonstrates excellent and well-balanced performance, achieving an overall accuracy of 

approximately 95.6% on the 617-sample dataset. The model's consistency is highlighted by the macro and weighted average F1-

scores, both at an impressive 0.96. It performs almost perfectly on class 1, with precision, recall, and an F1-score all at 0.99. The 

model's primary, though minor, area for improvement is in the recall for class 2, which at 0.92 is the lowest individual metric, 

indicating that the model fails to capture about 8% of the actual class 2 instances. Despite this, its precision for class 2 is high at 

0.95, and its performance on class 0 is also robust with an F1-score of 0.95, making this a highly effective and reliable classifier 

overall. 

 

Comparison of Confusion Matrices 

   
 

 Comparison of the Confusion Matrices 

The above visualizations provide a side-by-side comparison of the performance of three different classification models: Random 

Forest, Support Vector Machine (SVM), and Gradient Boosting, through their respective confusion matrices. It is immediately 

apparent that the Random Forest and Gradient Boosting models significantly outperform the SVM. The most glaring issue is with 

the SVM, which exhibits a major weakness in classifying class 2; it misclassifies a large number of actual class 2 instances as class 

0 (33 instances). In contrast, both Random Forest and Gradient Boosting show much better performance. The Random Forest 

model appears to be the top performer, achieving the highest number of correct predictions, and notably, it perfectly classifies 
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every instance of class 1 (208 true positives) without any errors. Its main confusion is misclassifying 12 instances of actual class 2 

as class 0. The Gradient Boosting classifier is also very strong and competitive, with its errors being slightly more distributed than 

those of the Random Forest. Overall, the visualization indicates that while all models perform reasonably well, the Random Forest 

classifier is the most accurate and reliable for this specific task. 

Comparison of all Models 

This code script, adopted by our team, provided a structured and efficient method for comparing the performance of multiple 

machine learning models. It began by initializing a dictionary to store the evaluation results, with keys for the model name and 

various performance metrics like Accuracy, Precision, Recall, and F1 Score. A helper function, evaluate-model, is defined to 

streamline the evaluation process; this function takes the model's name, true labels (y-true), and predicted labels (y-pred) as input. 

For each model, it calculated the overall accuracy, as well as the macro-averaged precision, recall, and F1-score, ensuring that each 

class is weighted equally in the final metrics. The script then called this function for three different models—Random Forest, SVM, 

and Gradient Boosting—populating the dictionary with their respective performance scores. Finally, it converted the dictionary 

into a pandas Data Frame and printed it, creating a clear, tabular summary that facilitates a direct and standardized comparison 

of the models' effectiveness. 

Output: 

Table 4: Comparison of Models’ Performance 

              Model  Accuracy  Precision    Recall  F1 Score 

0      Random Forest  0.967585   0.967573  0.967376  0.967356 

1                SVM  0.933549   0.939293  0.933164  0.932477 

2  Gradient Boosting  0.956240   0.956178  0.956009  0.955931 

 

 

 

The table and bar charts compare the classification performance of three machine learning models—Random Forest, SVM (Support 

Vector Machine), and Gradient Boosting—across four key metrics: Accuracy, Precision, Recall, and F1 Score. According to the table, 

the Random Forest model outperforms the others slightly, achieving the highest accuracy of 96.76%, with near-identical precision, 

recall, and F1 score values around 0.967, indicating consistent and reliable predictions across all classes. Gradient Boosting closely 

follows with an accuracy of 95.62%, and strong balance across other metrics, suggesting it is nearly as effective and particularly 

useful for more nuanced prediction tasks or imbalanced datasets. The SVM, while still competent with over 93% accuracy, lags 

slightly behind the ensemble-based methods in all four metrics, implying it may not capture the complexity of the feature space 

as effectively. The bar plots visually reinforce this hierarchy, with Random Forest and Gradient Boosting forming higher bars across 

all histograms. These findings suggest that ensemble learning methods, especially Random Forest, are the most robust for 

predicting performance classes in multi-machine blockchain systems. 
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Feature Importance  

The analysis of feature importance identified some of the most crucial variables that have a strong impact on the 

slowdown and optimizations of the performance of multi-machine blockchain systems. Of the most significant features, block 

confirmation variance and average node delay were the most significant measures of poor performance. The large figures in these 

measures were frequently accompanied by high latency and low throughput, indicating that the inefficiency of synchronization 

among nodes and the variability of the time required to finalize a consensus are the fundamental factors in system slowness. There 

were also some factors, such as block size; larger block sizes at peak send rates were linked to higher propagation delays and 

resource pressure, suggesting that dynamic block size or transaction batching techniques are necessary. The ratio of resource 

consumption (CPU-to-memory usage) was also useful in defining the performance bottlenecks, where the CPU-intensive 

operations at high throughput caused the processing lags. Their ranking of importance recurrently appeared as the most significant 

features in ensemble models, such as Random Forest and Gradient Boosting, proving their universal significance with regard to 

various algorithmic solutions.                                                                                                                                                                                        On 

the optimization aspect, the analysis indicated that features that indicated load balancing and consistency, like peer count stability 

and latency range, were related to better system performance. The presence of a constant number of active peers made sure that 

the procedure of transaction propagation was more balanced, and it was unlikely that the nodes were going to get congested. A 

small latency range meant that all the nodes were able to communicate at similar velocities, which allowed faster creation of 

consensus and completion of blocks. Remarkably, transaction arrival patterns, including variability in send rates, also had a 

secondary, yet not insignificant effect; a smoother and more predictable input load was associated with improved overall efficiency, 

which might be due to pre-allocated resources and reduced queuing delays. Such lessons indicate that, besides ensuring that the 

individual nodes are optimally configured, performance tuning requires the system to be consistent and predictable in workload 

and node behavior. With these powerful characteristics in mind, system designers and developers can anticipate them in advance 

and develop blockchain systems that can scale effectively in the real world and under high-load scenarios. 

 

VI. Practical Implications in the U.S. Tech Ecosystem 

Industry Application 

The real-life implications of the improved performance of the multi-machine blockchain are particularly topical in a 

number of large industries in the United States that require fast, secure, and scalable digital infrastructure (Al-Refaie & Al-Hawadi, 

2025). Banking and financial institutions like JPMorgan Chase and the Bank of America are already using safe interbank transfers 

and fraud detection by utilizing private blockchain networks in the financial services industry. These networks are highly benefit 

by the optimizations that enhance the speed of consensus and lower the time of transaction confirmation. As an illustration, the 

legacy systems usually take between T+1 to T+3 days to settle, whereas optimization of blockchain-enabled systems can lead to 

a near real-time settlement (Chouksey et al., 2023). In supply chain management, large companies such as Walmart and IBM use 

blockchain frameworks of Hyperledger to trace the provenance of their products and make sure they comply with regulations. 

High performance indicators, including shorter block propagation times and efficient use of CPUs, mean faster data retrieval and 

a reduced number of network delays, which is crucial to logistics, where perishable goods are involved or real-time inventory 

management. Moreover, blockchain is being looked at in the healthcare industry, where patient records are managed, and sharing 

the data securely and fast between institutions is critical. The Office of the National Coordinator for Health Information Technology 

(ONC) has overseen the development of projects that have stressed the importance of high-performance distributed systems that 

can support interoperable electronic health records (EHRs) (Ajayi & Saadawi, 2023). 

 

Infrastructure Benefits 

 From an infrastructure perspective, machine learning-based benchmarking results can be used to optimize hardware and 

software settings of blockchain nodes being used in data centres and clouds based in the U.S. (Govindasamy& Antonidoss, 2022). 

Blockchain-as-a-service (BaaS) solutions (provided by companies such as Amazon Web Services (AWS) and Microsoft Azure) are 

beginning to provide hosted distributed ledgers on multi-machine platforms. Such platforms have an advantage of insights into 

the contention of resources, the trade-offs between CPU and memory, and the balancing of the workloads, which allows them to 

supply containers or virtual machines with the most appropriate specifications (Arani et al., 2020). As an example, the 

standardization of node configuration profiles can be informed by benchmark results indicating shorter latency with nodes running 

on CPUs of at least 3.0 GHz and 16 GB of RAM and above. Beyond this, the software-level choices (e.g., choice of consensus 

algorithms (e.g., RAFT vs. PBFT)) can be more informed by predictive modeling that indicates the algorithm-specific performance 

effects. In that way, data analytics-based tuning decisions will not only result in reduced operational costs but also high reliability 

and service quality within blockchain networks in the U.S. digital ecosystem (Ayayi & Saadawi, 2023). 

 

 



Performance Optimization in Multi-Machine Blockchain Systems: A Comprehensive Benchmarking Analysis 

Page | 372  

Policy Relevance 

Policy-wise, the consequences of the performance optimization research are rather close to the current federal efforts 

related to the enhancement of digital trust infrastructure (Govindasamy & Antonidoss, 2022). The National Institute of Standards 

and Technology (NIST) has already provided guidelines on blockchain performance, security, and interoperability, but emphasizes 

the necessity of empirical benchmarking studies to define scalable frameworks (Feng et al., 2024). The results of this work confirm 

those national orders by providing some measurable indicators And predictive models that can be used to certify network 

configurations and discover the weaknesses before their implementation. On top of that, governments and legislative agencies 

such as the U.S. Congress and the Federal Trade Commission (FTC) are actively researching data governance and blockchain 

regulation to guarantee fair use and transparency (Hakeem et al., 2025). Optimization frameworks, based on machine learning, 

may provide the regulators with detailed performance logs and audit reports, improving the transparency of decentralized systems 

used to vote, verify identities, or implement social welfare programs. In turn, the research not only contributes to technical 

developments but also helps to create safe, stable, and regulation-friendly blockchain infrastructure in the United States (Han et 

al.,2022). 

 

VII. Discussion and Future Research 

Interpretation  

Machine learning applied to benchmarking multi-machine blockchain systems uncovers the performance patterns that 

are easily overlooked by the conventional diagnostic toolset. As an example, ensemble models such as Random Forest and 

Gradient Boosting can capture non-linear associations between node-level metrics (e.g., CPU spikes) and systemic outputs such as 

block confirmation delays. Such models detect latent anomalies like small surges in consensus delays when certain thresholds in 

the rate of transactions being sent are reached, which are only discoverable through statistical learning. Moreover, explanatory 

methods such as SHAP values provide insight into the influence of features, and can allow system designers to track the source of 

performance degradation to a particular cause, e.g., unbalanced node workloads, or poor peer-to-peer networking setup. The 

revelations are essential in a decentralized architecture, whose system behavior is emergent and difficult to control with 

conventional rules. As a result, ML-based benchmarking can not only drive performance but also provide a predictive foresight to 

the blockchain developers, which turns troubleshooting into optimization. 

 

Limitations 

Although the results are encouraging, the study is susceptible to the fact that it was conducted in simulated environments, 

instead of real deployments. Simulation enables manipulation of variables and repeatability of experiments, but does not 

encompass the full complexities of live systems, like network jitter, unpredictable users, or malicious actors. Furthermore, the data 

is also still not representative of operations at a global scale, using data centers that have been geographically distributed. This 

will have an impact on the generalizability of the results, especially in the case of application scenarios within public blockchain 

networks such as Ethereum or Bitcoin, where the diversity of nodes and user behavior creates a lot of variance. The other limitation 

is the comparative uniformity of hardware settings used. In practice, particularly in open blockchain environments, the hardware 

may have a wide variety in memory size, processor speed, and disk I/O capacity. Such differences can influence the soundness of 

optimization approaches based on the present research, and it is important to be cautious to generalizing the models to untested 

settings. 

 

Future Direction 

In the future, it would be interesting to investigate the possibility of including Machine Learning-based benchmarking 

systems into real-time optimization engines, allowing for tuning node behavior on the fly using telemetry about performance. This 

would enable the adaptive blockchain networks that would self-regulate based on load or security threat. Resilience and 

transparency may be enhanced further through a hybrid machine learning and rule-based decision systems approach, which is 

more suited to regulated settings, such as healthcare or public administration. Furthermore, it is critical to extend the analysis to 

the cross-chain performance since interoperability between such chains as Ethereum, Polkadot, and Hyperledger Fabric is 

increasingly becoming popular. The awareness of the differences between the performance behaviors in the architectures and 

consensus models will contribute to the standardization of optimization. Partnership with the agencies of the U.S., like DARPA and 

NIST, would also enhance the influence of this research on national priorities in the field of cybersecurity, digital identity, and 

decentralized data infrastructure. 

 

VIII. Conclusion 

The prime objective of the current work was to develop a predictive and dynamic benchmarking framework that allows 

optimizing the performance of multi-machine blockchain systems. This research utilized machine learning algorithms such as 

random forests, gradient boosting, and support vector machines. The data prepared to conduct this study is high-resolution 
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performance logs of a simulated multi-machine blockchain environment during 30 days, both with permissioned (Hyperledger 

Fabric) and accessible (Ethereum) frameworks. Important metrics captured are block propagation times, that is, the time taken by 

a new block to reach every node in the network, and transaction confirmation latencies, which indicate the time it takes between 

the time a transaction is submitted and when it is eventually confirmed in the distributed ledger. Three supervised machine learning 

models were chosen to be deployed because they were expected to deal with high-dimensional, nonlinear, and possibly 

imbalanced performance classification issues. Various evaluation measures were calculated to give an overall picture of the 

classification abilities of each of the models. Accuracy was used to measure the overall correctness of the predictions, precision, 

recall, and the F1-score helped understand the performance of minority classes, which are critical in detecting rare but severe 

degradations of the performance of blockchains. The ROC-AUC score was also calculated to determine how well the models 

distinguished between classes at any threshold level, and confusion matrix analysis was applied to identify particular kinds of 

errors. The Random Forest model was superior to the other algorithms and has the highest accuracy, and the values of precision, 

recall, and F1 score are almost the same, which says that the predictions are reliable and consistent in all classes. Gradient Boosting 

is quite similar, and good balance in other metrics, which indicates it is almost equivalent in performance, and especially applicable 

to more complex prediction tasks or imbalanced data. The real-life implementations of the improved multi-machine blockchain 

performance are particularly important in a variety of industries in the U.S. that require a high-speed, safe, and scalable digital 

platform. In terms of infrastructure, the results of machine learning-based benchmarking may be used to optimize hardware and 

software settings of blockchain nodes deployed on the U.S.-based data centers and cloud platforms. Policy-wise, the implications 

of the performance optimization research are also close to the current federal efforts towards enhancing digital trust infrastructure. 

As a future direction, it is suggested that future work consider how to integrate Machine Learning-based benchmarking systems 

into real-time optimization engines, so that the behavior of individual nodes can be tuned on-the-fly by incoming performance 

telemetry. 
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