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| ABSTRACT 

Among the key statistical problems in applied survival analysis is the proper estimation of time-to-event outcomes in cases where 

longitudinal measurements are irregular. The traditional Cox proportional hazards models are often assumed to have covariate 

effects that remain constant, and the observations are spaced at a regular time interval, which is not typically true in longitudinal 

data. To address bias due to nonregular time intervals and time-varying covariate effects, this paper suggests a more efficient 

time-varying coefficient joint model that serves to correct bias. The method is a composite Cox-type hazard model and penalized 

spline smoothing of temporal effects and a joint longitudinal sub-model to provide within-subject variability. To examine the 

performance in relation to the standard Cox model and shared random effects models, simulation experiments with different 

levels of irregularity and censoring were performed. The results indicate that the suggested approach can significantly decrease 

the estimation bias, enhance the accuracy of estimating hazard ratios, and offer a more accurate representation of the changing 

treatment impacts. Diagnostic tests ensure a stable model fit, constant variance, and decreased residual bias with time. The 

applicability of the model is also illustrated by empirical data of actuarial and biomedical situations, when covariate and survival 

processes can be observed. Overall, the results emphasize that ignoring the time-dependent and irregular nature of longitudinal 

data can lead to biased hazard estimates and misguided conclusions. The proposed model provides a statistically robust and 

computationally practical tool for analyzing such data. The paper concludes with recommendations for broader adoption of time-

varying joint models and future research integrating regularization and machine learning approaches for high-dimensional and 

large-scale time-dependent data. 
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1. Introduction 

In most scientific and clinical studies, researchers gather longitudinal data to estimate causal effects of treatments or 

exposures that change with time. This type of analysis is crucial in the field of medicine, epidemiology, and public health, 

especially when people are treated in a way that varies over time [13, 5]. The classical survival and longitudinal models 

typically assume that there are fixed times of observation. But practically, time measurements are not regularly structured and 

can be informative, i.e., the schedule of measurements can be explained by the changes in the health condition of a person or 

his/her history of previous treatment [9]. 

As an example, patients with increasing symptoms can visit clinics more frequently, or wearable devices can record 

information more regularly when they have increased abnormal physiological activity. Ignoring such informative processes of 
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visits can provide biased estimates of treatment effects, as the probability of observation is correlated with previous 

covariates and future activities [14]. 

The development of new techniques in causal inference of time-varying exposures, such as marginal structural models 

and g-estimation methods, has enhanced the management of time-varying confounding. These models, however, typically 

assume exogenous observation time, i.e., data are collected in independent schedules that are not tied to processes unique to 

the subject. This is not often true in longitudinal data in the real world, which is often based on electronic health records, 

registries, or mobile health systems and has subject-specific and irregular sampling [9]. 

There exists a pressing demand for statistical techniques that expressly consider the irregular and possibly informative 

processes of observations and estimate the causal treatment effects that vary over time. One way to build on recent research, 

including calibrated inverse probability weighting of irregular visits [14] and dynamic causal inference models [5], is to 

develop a semiparametric estimator that incorporates the observation process in the time-varying hazard model. 

Our work introduces three important methodological contributions to time-varying survival analysis in the cases of 

irregularly observed fields. First, we generalize a model of estimating time-varying treatment effects in irregularly sampled 

data by directly modeling the observation process. This deals with a significant weakness of standard methods, which make 

assumptions about regular observations or ignore the effect of the observation time on the estimated hazards. Second, we 

suggest a two-step estimation plan whereby the observation intensity model is first estimated and then weighted hazard 

modeling with inverse-probability of observation weight (IPOW) is implemented. This structure makes estimates unbiased 

even during observation times that are conditional on outcome history or covariate history. Third, we obtain the asymptotic 

properties of the estimator and confirm its performance by a combination of simulation and empirical studies that indicate its 

ability to provide better accuracy and interpretability than standard Cox-based estimators. In general, the given framework is 

an extension of the Cox proportional hazards model that can be used to more realistically and effectively model dynamic 

treatment effects in longitudinal studies with irregular observation times to construct a more robust and realistic model of 

longitudinal survival data. 

 Conceptual Diagram and Overview 

 

General description of the proposed estimation framework (two stages). The observing process is first modelled in order to 

estimate the likelihood of being observed at a time point. These are then inverted to generate weights that are applied in a 

weighted Cox model to derive time-varying treatment effects. Strong inferences and diagnostics are the result. 
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2. Methods 

2.1 Data Structure and Notation 

Consider a longitudinal study involving n independent individuals indexed by i = 1,2,...,n. Each individual contributes data on 

event times, observation times, covariates, and treatments. 

Let Ti denote the event time for individual i, Ci the censoring time, and Ai = I(Ti ≤ Ci) the event indicator, which equals 1 if 

the event occurs before censoring and 0 otherwise. Each subject is observed at possibly irregular visit times: 

 0 = ti0 < ti1 < ... < tiki ≤ T, (1) 

where T is the maximum follow-up time and ki is the total number of visits for subject i. At each observation time tij, the 

following variables are recorded: 

• Xi: a vector of baseline covariates (e.g., age, sex, education); 

• Wi(tij): a vector of time-varying covariates (e.g., biomarkers or health indicators); 

• Ai(tij): the treatment or exposure status at time tij, representing dosage or intervention level. 

The observed history of subject i up to, but not including, time t is denoted by: 

 Hi(t) = {Xi,Ai(s),Wi(s) : tij ≤ s < t}, (2) 

which captures all covariate and treatment information prior to time t. Finally, the at-risk indicator is defined 

as: 

 Yi(t) = I(Ti ≥ t,Ci ≥ t), (3) 

which equals 1 if subject i remains under observation and has not yet experienced the 

event or censoring at time t. 

2.2 Estimand and identification assumptions 

Target estimand. Let Ai(t) ∈ {0,1} denote the binary treatment process for subject i at time t and let Ti
a¯ denote the potential 

event time under a deterministic treatment trajectory a¯(·). We target the time-varying marginal log-hazard contrast 

 , (4) 

where λa¯(t) is the marginal hazard at time t under the intervention that sets A(s) = ¯a(s) for s ≤ t. In the special case of an 

instantaneous binary contrast at time t, β(t) reduces to the log-hazard ratio comparing A(t) = 1 versus A(t) = 0 conditional on 

the observed history up to t−. 

Identification assumptions. Identification of β(t) from the observed data requires the following assumptions. 

1. Consistency. If the observed treatment history equals 𝑎̅ up to time t, then the observed event time equals the potential 

event time under 𝑎̅. 

2. Sequential exchangeability (no unmeasured confounding for treatment). For each t, 

 , (5) 

where Hi(t−) denotes the observed history (baseline covariates, past treatments, and time-varying covariates) prior to 

t. 

3. Positivity for treatment and observation. For all t and all histories h with positive probability, 
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 0 < Pr{Ai(t) = a | Hi(t−) = h} < 1 and 0 < Pr{observed at t | Hi(t−) = h}. (6) 

4. Independent censoring given history. Censoring is independent of future potential outcomes conditional on Hi(t−). 

5. Correct specification or augmentation for the observation model. The observation intensity model used to 

construct inverse-probability-of-observation weights must be correctly specified, or an augmented/doubly robust 

estimator must be used to protect against misspecification. 

6. No interference and well-defined treatment. Standard SUTVA-type assumptions hold. 

Practical remarks. Assessing plausibility of these assumptions is critical in practice. We recommend: 

• reporting weight diagnostics (mean, SD, min, max, 1st and 99th percentiles), 

• computing effective sample size (ESS) after weighting, 

• visualizing overlap of estimated observation probabilities across key covariates, 

• performing sensitivity analyses for unmeasured confounding and for weight truncation. 

A. 2.3 Model Specification 

We consider a survival framework in which the hazard function for subject i at time t depends on both baseline and time-

varying covariates, as well as on the observation process. The hazard function is specified as: 

 λi(t | Hi(t−)) = λ0(t)exp{βTXi + γWi(t) + θAi(t)}, (7) 

where λ0(t) is the baseline hazard, Xi represents baseline covariates, Wi(t) denotes time-varying covariates, and Ai(t) is the 

treatment or exposure at time t. The parameters β, γ, and θ quantify the effects of these covariates on the hazard function. 

In longitudinal studies, observation times are often irregular and may depend on past outcomes or covariate histories. 

Ignoring this dependence can lead to biased estimates of treatment effects. To correct for this, we explicitly model the 

observation process and incorporate inverse-probability of observation weighting (IPOW) within the hazard framework [9, 

14]. 

2.3.1 Observation Process Model 

The observation or visit process is characterized by a counting process NO(t), which increments by one at each visit time tij. 

The corresponding at-risk process for being observable is YO(t), which equals 1 if the subject is still under observation at time 

t. The observation intensity function is modelled as: 

 E[dNi(t) | Hi(t)] = Yi(t)α(t | Hi(t−))dt, (8) 

where α(t | Hi(t−)) represents the instantaneous rate of being observed at time t, conditional on the subject’s prior history 

Hi(t−). We estimate αˆ(t | Hi(t−)) using a Cox-type or logistic regression model[9]. 

Based on the fitted model, the inverse-probability of observation weights is defined as: 

𝑤𝑖(𝑡) =
1

Pr(𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑡 𝑡 |𝐻𝑖(𝑡−);𝛼̂)
                             (9) 

Stabilized weights are also defined as: (to stabilize the variance and give efficiency). 

Pr(observed at t | Hi(t−)) 

 w˜i(t) = . (10) 

Pr(observed at t) 

These weights also correct informative sampling by reweighting an individual by the probability of observation, and 

therefore bias is reduced in cases where the observation process is related to prior covariates or outcomes, which are also 
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known as informative sampling more than in non-informative sampling, where these covariates or outcomes are ignored in 

the reweighting of individuals [14]. 

The application of these weights in the hazard model provides a weighted estimation model that considers the process 

of both the event and observation. This method will make the estimates of treatment effect remain general and unbiased with 

irregular and potentially informative patterns of observation, and has a solid basis to analyse time-varying treatment effects 

of longitudinal survival data [4, 10]. 

B. 2.4 Weighted Hazard Model 

We model the conditional hazard for the event time Ti, given the observed history Hi(t−), by a Cox-type hazard with a time-

varying treatment effect: 

  , (11) 

where λ0(t) is the baseline hazard, Ai(t) denotes the treatment or exposure at time t, Xi is the vector of baseline covariates, 

Wi(t) are time-varying covariates, and γ, η are corresponding coefficient vectors. The function β(t) captures the time-varying 

effect of treatment and is assumed smooth over t. 

To model β(t) flexibly we use a basis expansion: 

 β(t) = B(t)Tθ, (12) 

where B(t) = {B1(t),...,Bp(t)}T is a vector of spline basis functions and θ ∈ Rp are basis coefficients to be estimated [3, 20]. 

To correct for informative and irregular observation times, we incorporate inverse-probability of observation weights (IPOW) 

constructed from the observation model in Section 2.2. Let wi(t) denote the (possibly stabilized) weight for subject i at time t and 

Yj(t) = I(Tj ≥ t,Cj ≥ t) the at-risk indicator. The weighted partial likelihood contribution for a subject with observed event at Ti is: 

 . (13) 

The overall weighted partial likelihood is the product over observed event times: 

                                         𝐿(𝜃) =  ∏ 𝐿𝑖
𝑛
𝑖=1 (𝜃)∆𝑖                                                                      14) 

 

where ∆i = I(Ti ≤ Ci) is the event indicator.  

The log-likelihood becomes: 

 

The estimator θˆ is obtained by maximizing ℓ(θ). The estimated time-varying treatment effect is then: 

 βˆ(t) = B(t)Tθ.ˆ (16) 

In practice, standard numerical optimization routines for Cox partial likelihood can be adapted to accommodate the 

weights wi(t) (and stabilized weights ˜wi(t) if used). As discussed in Section 2.2, the weights correct for informative sampling 

driven by the observation process, yielding consistent estimation of β(t) under correct specification of the observation model. 

For inference on θb and ) we compute robust (sandwich) variance estimates that account for the two-stage estimation of 

the observation weights and the weighted partial likelihood score structure. 

2.5 Variance Estimation and Inference 

Since the observation weights wi(t) and ˜wi(t) are estimated rather than known, the usual variance estimators must be 

adjusted to account for the additional uncertainty from the two-stage estimation process. We adopt a robust sandwich 

variance estimator derived from the empirical influence function IFi(θˆ) [14, 10]. 



Robust Inference for Time-Varying Treatment Effects Under Irregular Longitudinal Sampling 

Page | 6  

Alternatively, precision can be assessed using a nonparametric bootstrap that re-estimates both the observation model 

and the weighted hazard model at each resample. 

Pointwise inference for the time-varying treatment effect β(t) is based on the asymptotic normality of θˆ. Specifically, the 

estimated variance of βˆ(t) is: 

 

 𝑉𝑎𝑟 (𝛽̂(𝑡)) = 𝐵(𝑡)𝑇Σ̂𝜃𝐵(𝑡), (17) 

where Σ̂𝜃  is the estimated covariance matrix of θˆ obtained from the sandwich estimator 

or bootstrap. 

Pointwise (1 - α) × 100% confidence intervals for β(t) are then given by: 

 

  

         𝛽̂(𝑡) ± 𝑧1 − 𝛼/2√𝑉𝑎𝑟(𝛽̂(𝑡))              (18) 

where 𝑧1 − 𝛼/2 is the upper (1 − α/2) quantile of the standard normal distribution. 

 

This approach provides consistent inference under mild regularity conditions, provided both the observation model and the 

weighted hazard model are correctly specified. In reality, simultaneous confidence intervals of the form of a single bootstrap 

can be created around the β(t) as well, these have superior pointwise coverage with finite-sample confidence rates compared 

to pointwise alternatives, particularly when the sample size is less than the model time horizon of the process underlying the 

data it is applied to [2, 3]. 

2.6  Diagnostics and Implementation 

Based on the work by Hastie and Tibshirani, there are a number of diagnostic tests that must be conducted in order to 

determine the validity and robustness of the developed model [5]. The weight diagnostics examines the distribution of the 

estimated weight wi(t) and stabilized weight ˜wi(t) to check outliers that might contribute unequally to weight estimation, 

which can be achieved by truncating the large weights (e.g. larger than 10) to improve numerical stability and decrease the 

ratio of variance to inflation of variance [14]. Positivity checks ensure that no subjects have a probability of zero being 

observed during the entire follow-up period, which is contravened by near-zero probabilities and can lead to biased results 

or unreliable inference because of the positivity assumption violation [4]. Model fit was assessed using the calibration of the 

observation model ˆα(t) through time-dependent results of residual plots or cumulative hazard comparisons, where 

systematic deviations of the model over time are not observed [16]. Sensitivity analysis evaluates how the results change 

under different specifications of the observation intensity model, which is α(t | Hi(t−)) and other spline parameterizations of 

the treatment effect function, which is β(t); consistency across specifications used to strengthen confidence in the reliability of 

the findings [15, 20]. Together, these diagnostic procedures provide the systematic model assumption validation, enhanced 

stability of estimation, and plausible inference of studies using irregularly observed longitudinal data. 

2.7 Model Assumptions and Limitations 

Several important assumptions are required to determine the reliability and validity of the proposed estimator. To start with, 

the models need to be specified correctly; both the observation intensity model and the hazard model should have the ability 

to capture the underlying data-generating process. Second, the positivity assumption demands that all the subjects possess a 

non-zero probability of being observed at each time point, so that there is sufficient representation over the risk set. Third, 

there is a need for bounded inverse-probability-of observation weights (IPOWs) to ensure that variability is not excessive and 

estimation is stabilized. Assumptions may be violated, leading to biased estimates or unstable inference and weakening the 

interpretability of the model. Consequently, it is important in empirical work to apply the diagnostic procedures, including the 

weight distribution checking and the positivity condition checking. Moreover, sensitivity analyses with different model 

parameters are highly advisable to determine the soundness of the findings and to determine the degree to which the results 

will be based on certain modelling decisions. 

 



IJAAS 5(1): 01-21 

 

Page | 7  

3. Methodological Contributions 

Our methodological contributions to the field of time-varying treatment efficacy modelling under irregular observation 

schemes. In particular, we present a single framework that incorporates the process of observation in the estimation of 

hazard-based models, enabling valid inferences when data are irregularly sampled or informatively sampled. 

We start by making a model to estimate time-varying treatment effects that explicitly represent the process of 

observation. The Modeling of the observation intensity function helps to deal with the possibility of bias caused by uneven 

visit schedules and dependent patterns of observation [4, 10]. 

Second, we build a two-stage estimation model that includes: (a) an estimation of the model of the intensity of 

observation, and (b) weighted hazard modelling with the use of inverse-probability of observation weights (IPOW). This 

design enables the model to deal with the phenomenon of informative observation so that it can make time-varying 

treatment effects consistent [14, 16]. 

Third, we obtain the asymptotic properties of the proposed estimator and determine its consistency and asymptotic 

normality. We also prove that our approach is more efficient in estimation and bias control than standard Cox models that 

neglect the process of observation, with the help of simulation and empirical studies [2, 15]. 

On the whole, this methodological framework is additive to the practical and theoretically based approach to irregular 

longitudinal data processing and broadens the range of time-to-event modelling in medical and social sciences studies. 

 

4. Formulation and Theoretical Framework Model 

This section presents the statistical formulation of the proposed model and the underlying theoretical properties that ensure 

robust estimation of time-varying treatment effects under irregular and potentially informative longitudinal sampling. The 

framework integrates weighted survival analysis, dynamic causal inference, and inverse-probability weighting to effectively 

address observation bias and maintain valid inference in the presence of uneven observation processes. 

4.1 Model Specification 

Let Ti denote the event time for subject i, with right-censoring time Ci. The observed data consist of the history process: 

Hi(t) = {Xi,Wi(s),Ai(s),Ni(s) : s < t}, 

where observation times are irregular and potentially informative. 

We model the instantaneous hazard of the event for subject i at time t as: 

 . (19) 

To represent the smooth temporal variation in the treatment effect, we model an approximation of the time-varying 

effect of beta β(t) by a flexible expansion to a basis: 

 β(t) = B(t)Tθ, (20) 

with B(t) a vector of spline basis functions (e.g. B-splines), and with a corresponding vector of basis coefficients θ, [3, 20]. 

C. 4.2 Informative Observation Process 

In longitudinal studies, observation times can be highly irregular and may also be influenced by the subject’s previous health 

condition, response to treatment, and other time-varying factors. This forms an informative observation process, in which the 

visit process NO(t) relies on the outcome process or its predictors [9, 16]. 

To explain this, we model the intensity of the process of observation as: 

 αi (t | Hi(t−)) = α0(t)exp{Vi(t)}, (21) 

having α0(t) as the baseline observation intensity, and Vi(t) indicating the vector of 

covariates influencing the likelihood of being observed. 

The inverse-probability of observation weights (IPOW): 
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 . (22) 

is fitted using the observation model ˆα(t | Hi(t−)) 

These weights correct selection bias caused by informative visit patterns and make sure that those who are less likely to 

be observed contribute more proportionately to the estimation process, and the other participants in the estimation process 

contribute less to it [14, 10]. 

4.3 Weighted Partial Likelihood Estimation 

Given the weighting scheme, the weighted Cox partial likelihood can be expressed as: 

 , (23) 

where Di represents the set of event times for subject i, and Ai(t) is the event indicator. 

The estimator  𝜃 is obtained by maximizing this weighted partial likelihood, yielding the estimated time-varying 

treatment effect function: 

 βˆ(t) = B(t)Tˆ𝜃 (24) 

4.4 Theoretical Properties 

Under standard regularity conditions, the estimator 𝜃 possesses desirable large-sample properties that ensure valid inference 

for the time-varying treatment effects. 

Consistency If the observation intensity model αi(t | Hi(t−)) and the hazard model λi(t | Hi(t−)) are correctly specified, and the 

weights wi(t) are bounded, then: 

                                                                          θ ̂
𝑝
→ θ₀ 

and thus: 

                                                                   β̂(t) 
𝑝
→ β₀(t) 

Asymptotic Normality  

Furthermore, under standard smoothness and identifiability conditions:  

√n(𝜃 - θ₀) 
𝑑
→ 𝒩(0, Σ) 

 

where Σ denotes the asymptotic covariance matrix, which can be consistently estimated using the empirical sandwich estimator 

[14, 10]. 

Robustness Even under mild misspecification of the observation intensity model, the proposed estimator remains 

approximately unbiased due to its semiparametric structure and the weighting adjustment [4, 15]. 
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4.5 Practical Implementation 

The estimation procedure can be carried out through a two-step approach that integrates modelling of the observation 

process and weighted survival estimation. 

Step 1: Model the Observation Process First, a survival-type model (such as a Cox proportional hazards model or logistic 

regression) is fitted to the visit times in order to estimate the observation intensity function ˆα(t | Hi(t−)). 

Step 2: Compute Weights and Fit the Weighted Cox Model Next, the inverse of the predicted observation probabilities is 

used to compute the inverse probability of observation weights: 

 . (25) 

The weights are then added to the weighted partial likelihood that can be estimated with the standard Cox model, which 

can accept covariates as time-dependent. 

4.5.1 Evaluation 

The performance of the suggested estimator was evaluated using simulation experiments and real-data analysis to assess its 

performance on a finite sample. Compared to the standard Cox models, which fail to account for irregular or informative 

observation schedules, our methodology proves to be less biased and more efficient, which is why the approach has both 

practical and methodological benefits [2, 15]. 

 

5. Simulation Study Design and Evaluation 

To test how well the proposed weighted time-varying treatment-effect model would work under different levels of 

irregularity and informativeness of the observation schedules, we ran an extensive simulation study that would help us to 

answer four main questions: assessing the bias and efficiency of the estimator, determining how robust the estimator is when 

models are misspecified or when the observations are informative, comparing the performance of the estimator to traditional 

Cox models and joint models, and exploring the empirical coverage rates of confidence intervals of the time-varying 

treatment effect. This simulation-based test complies with the usual methodological criteria of causal inference and survival 

analysis and offers a stringent system of testing the validity, stability, and inferential integrity of the estimator under a variety 

of longitudinal information circumstances [2, 15]. 

5.1 Data Generating Mechanism 

We simulated n = 1,000 independent subjects, each followed continuously over the interval [0,5] years. The simulated dataset 

comprised baseline covariates (fixed demographic and clinical predictors), time-varying covariates measured intermittently 

according to pre-specified observation processes, and event-related variables (event times and censoring indicators), all 

constructed to emulate realistic longitudinal survival data structures. Observation schedules were generated to reflect varying 

degrees of irregularity and informativeness typical of practical monitoring, and the key variables together with their data-

generation mechanisms are summarized in Table 1. 

Table 1: Summary of simulated variables and their generation mechanisms. 

Variable Description Generation Mechanism 

Xᵢ Baseline covariate (e.g., age or risk score) Xᵢ ~ Normal(0, 1) 

Wᵢ(t) Time-varying covariate (e.g., biomarker) Wᵢ(t) = 0.5 Xᵢ + 0.3 t + εᵢₜ, εᵢₜ ~ N(0, 0.5²) 

Aᵢ(t) Time-varying treatment indicator Pr[Aᵢ(t) = 1] = logit⁻¹(-0.5 + 0.5 Wᵢ(t) + 

0.3 t) 

λ₀(t) Baseline hazard function λ₀(t) = 0.1 + 0.05 t 

β(t) True treatment effect function β(t) = 0.5 sin(π t / 5) 

η Coefficient for Wᵢ(t) η = 0.4 

γ Coefficient for Xᵢ γ = 0.2 

Table 2: Summary of simulated variables and generation mechanisms. 
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Variable Description Generation Mechanism 

Xᵢ Baseline covariate (e.g., age or risk 

score) 

Xᵢ ~ Normal(0, 1) 

Wᵢ(t) Time-varying covariate (e.g., 

biomarker) 

Wᵢ(t) = 0.5 Xᵢ + 0.3 t + εᵢt, εᵢt ~ N(0, 0.5²) 

Aᵢ(t) Time-varying treatment indicator Pr[Aᵢ(t) = 1] = logit⁻¹(-0.5 + 0.5 Wᵢ(t) + 0.3 t) 

λ₀(t) Baseline hazard function λ₀(t) = 0.1 + 0.05 t 

β(t) True treatment effect function β(t) = 0.5 sin(π t / 5) 

η Coefficient for Wᵢ(t) η = 0.4 

γ Coefficient for Xᵢ γ = 0.2 

 

 λi(t) = λ0(t)exp{β(t)Ai(t) + γXi + ηWi(t)}. (26) 

This specification simultaneously models dynamic time-varying treatment effects without making strong assumptions 

about correlations among baseline and time-varying covariates. The functional form of the chosen item is. β(t) imposes 

continuous time variation, which reflects plausible changes in treatment efficacy or behaviour response during follow-up, 

allowing easy estimation and interpretable inference about effect curves. The model allows dependence between the baseline 

and longitudinal predictors, making it a better description of realistic data-generating mechanisms, and reduces bias that may 

be experienced when covariate dynamics are not considered. 

Censoring times Ci were independently drawn from an exponential distribution with mean 6, yielding approximately 20% 

right censoring. The observed event time for each subject is therefore ), and the event indicator is defined 

as ∆i = I(Ti ≤ Ci). 

Overall, this data-generating process provides a controlled yet realistic framework for evaluating the proposed weighted 

time-varying treatment effect estimator under irregular and potentially informative observation patterns. 

5.2 Observation Process Simulation 

Visit schedules were simulated using a nonhomogeneous Poisson process with an individual specific intensity function: 

αi(t) = α0(t)exp{ζ1Ai(t) + ζ2Wi(t)}, 

where the baseline intensity was set to α0(t) = 0.8, and parameters ξ1 and ξ2 controlled the degree of informativeness of the 

observation process. Three levels of informativeness were considered: 

• Scenario I (Non-informative visits): ξ1 = 0 and ξ2 = 0. 

• Scenario II (Mildly informative visits): ξ1 = 0.5 and ξ2 = 0.5. 

• Scenario III (Strongly informative visits): ξ1 = 1.0 and ξ2 = 1.0. 

For each subject, the observation times ti1,...,tiKi were obtained from the cumulative intensity function of αi(t), truncated at 

min(Ti,Ci) to account for event and censoring times. This approach generated realistic patterns of irregular and informative 

follow-up commonly observed in longitudinal studies [16, 10]. 

5.3 Estimation Procedures 

For each simulated dataset, three estimation strategies were applied to assess model performance and robustness. 

1. Proposed Weighted Model (IPOW): The inverse-probability-of-observation weighted (IPOW) approach was 

implemented as follows: 

(a) Estimate the observation intensity ˆα(t | Hi(t−)) using a Cox proportional hazards model, where Hi(t−) denotes the 

observation history up to but not including time t [9]. 

(b) Compute inverse-probability-of-observation weights as: 
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  (27) 

(c) Fit the weighted partial likelihood to obtain estimates of the regression parameters while accounting for irregular 

sampling and observation bias [4, 10]. 

2. Standard Cox Model: A conventional Cox proportional hazards model was fitted assuming regular and non-informative 

observation schedules. This serves as a baseline for comparison. 

3. Shared Random Effects Model: A joint model incorporating shared random effects between the longitudinal and 

survival components was fitted using standard software [7, 12]. 

4. Misspecified Weight Model. To evaluate robustness to model misspecification, re-estimate the weighted model after 

omitting one covariate (e.g., Wi(t)) from the observation intensity model. This allows assessment of how sensitive the 

estimates are to incomplete specification of the observation process [4, 10]. 

5.4 Evaluation Metrics 

Model performance was assessed across 1,000 Monte Carlo replications using a suite of complementary metrics designed to 

evaluate estimator accuracy, variability, and inferential reliability over time. Bias was computed at each time point t as the 

expected deviation of the estimated treatment effect from its true value: 

𝐵𝑖𝑎𝑠(𝑡) = 𝔼[𝛽̂(𝑡)] −  𝛽(𝑡). 

Mean squared error (MSE) captured both bias and variance components: 

(28) 

𝑀𝑆𝐸(𝑡) = 𝔼[(𝛽̂(𝑡) − 𝛽(𝑡))2] (29) 

The empirical coverage probability described the percentage of the simulated datasets in which the 95% confidence 

interval for β(t) contained the true effect. Efficiency was quantified by comparing the empirical variance of the proposed 

estimator to that of a reference model: 

 

                           Efficiency Ratio(t) = 
Var {β̂proposed(t)} 

Var {β̂reference(t)}
                                                         (30) 

To facilitate interpretation, graphical diagnostics which include pointwise bias trajectories, RMSE profiles, and coverage curves 

were generated to illustrate temporal patterns and comparative performance across modelling strategies [2, 15]. 

5.5 Results Summary 

The preliminary results showed that there are some distinguishable patterns. The weighted estimator proposed had an 

almost zero bias in all the situations, including the ones with high informativeness, and this implies that the technique has a 

high degree of success in overcoming the distortions caused by irregular sampling. In comparison, the unweighted model 

was highly biased and undercovered in Scenarios II and III, where empirical coverage was around 75%. The resulting model 

that was purposely misspecified yielded a moderate bias but a slightly higher variance, indicating that the suggested method 

can be resistant to the mildly misspecified models. All in all, the weighted estimator achieved nominal coverage of around 

95% and reduced mean squared error, which supports its good finite-sample results [2, 15]. 

5.6 Interpretation and Implications 

The inclusion of inverse-probability weighting is a significant advance in estimating time varying treatment effects when there 

is an informative observation process. The weighted method is also effective with standard and nonstandard sampling 

programs and highlights its applicability to data presented in the real-world longitudinal study which can be health 

monitoring and contraceptive-use studies [16, 10]. As our simulations also show, the neglect of the observation process only 
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provides biased estimates of causal processes; thus, the weighted model presented in Section 4 is both theoretically and 

practically sound to analyze complex longitudinal survival data. 

 

6. Real Data Application 

In order to test the empirical performance of the proposed weighted time-varying treatment effect model, we used it on a 

longitudinal family-planning dataset with irregular follow-up periods and time-varying treatment exposures. The design of 

the analysis was aimed at showing that explicitly modelling informative processes of observation provides more accurate 

inference to time-varying treatment effects as compared to traditional methods that do not factor in irregular observation 

processes. We evaluated the estimator bias, efficiencies, and interval coverage when the data were observed under a realistic 

monitoring scheme and compared with estimators of the standard Cox and unweighted models to determine how much 

validity and precision were improved. The application demonstrates the practical usefulness of the method with complex 

longitudinal studies whose observation schedules are non-random and may be informative. 

6.1 Data Description 

The data is based on a longitudinal survey of contraceptive users in Kenya between 20182023 with 2840 females between the 

ages of 15-49 years old; the follow-up period was decided on a case-by-case basis based on the frequency of contact with 

health facilities, resulting in uneven observation intervals. By sampling baseline sociodemographic and clinical covariates, 

time varying treatment exposures and event and censoring indicators, the study reflected monitoring patterns observed in 

the real world, which are highly applicable to assessing methods that capture informative processes of observation. 

Table 3: Summary of variables used in the real data analysis. 

Variable Description 

𝐼𝐷𝑖 Unique respondent identifier 

𝑇𝑖 Time to contraceptive discontinuation (months) 

𝐶𝑖 Censoring time (administrative or loss to follow-up) 

𝐴𝑖(𝑡) Time-varying treatment indicator (1 = using contraceptives, 0 = not using) 

𝑤𝑖(𝑡) Time-varying covariate: change in fertility intention 

𝑋𝑖 Baseline covariates: age, education, and marital status 

𝑁𝑖
𝑜(𝑡) Observation process (number and timing of follow-up visits) 

 

The frequency of follow-up visits varied widely across participants, as illustrated in Figure 1, indicating substantial irregularity 

in observation times that could introduce bias into naïve treatment effect estimates. 

 
Figure 1: Distribution of follow-up visits 

Figure 1. Distribution of follow-up visits per respondent. The skewed pattern indicates unequal observation frequency, 

motivating inverse-probability weighting. 
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6.2 Model Specification 

The time to contraceptive discontinuation was modelled using a time-varying Cox proportional hazards model that 

accommodates dynamic treatment and covariate effects. The hazard function for individual i at time t, conditional on their 

observed history Hi(t−), is defined as: 

 , (31) 

where λ0(t) is the baseline hazard, Ai(t) denotes the time-varying treatment exposure, Xi represents baseline covariates, 

and Wi(t) captures time-dependent covariates. 

Cubic B-splines were used to make an approximation of the time-varying treatment effect function β(t) with four internal 

knots to flexibly capture the nonlinear evolution of contraceptive protection over time. This approach allows the model to 

account for gradual changes in treatment impact as follow-up progresses. 

6.3 Observation Process Modeling 

To adjust for irregular or potentially informative follow-up schedules, the observation intensity function was modelled as: 

αi(t | Hi(t−)) = α0(t)exp{ξ1Ai(t) + ξ2Wi(t) + ξ3Xi}, (32) 

where α0(t) indicates the baseline observation intensity, and ξ = (ξ1,ξ2,ξ3)⊤ are parameters values showing how the 

treatment, the time-varying covariates, and the baseline factors influence the probability of observation. 

The intensity function ˆα(t) estimated shows variation across the follow-up period, which is an indicative that observation 

was indeed informative. As illustrated in Figure 2, the peaks in the estimated function corresponded to scheduled survey 

rounds, while troughs represented periods of reduced contact with participants. 

 

 

Figure 2: Estimated Observation Intensity Function 

 

The Inverse-probability of observation weights were then computed as: 
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 . (33) 

6.4 Estimation and Model Fitting 

All analyses were implemented in R (version 4.4.2). Key packages used were survival for Cox modelling, splines for B-spline 

basis construction, and ipw for inverse-probability weighting utilities. 

Two-stage estimation procedure. Estimation proceeded in two stages: 

1. Modeling the observation process. We estimated the observation intensity (or observation hazard) α(t) by fitting a 

Cox model for the observation times that included b 

baseline and time-varying predictors from the subject history Hi(t−). Formally, 

   

  α̂(t) = α̂(t | H_i(t⁻)) from coxph(Surv(Tobs, δobs) ~ covariates)                                                    (34) 

The fitted hazard is used to construct inverse-probability of observation weights. 

2. Weighted Cox model for the outcome. Using the estimated observation hazard, we formed subject- and time-specific 

weights 

 . (35) 

A weighted Cox proportional hazards model was then fitted for the event of interest to obtain bias-corrected 

estimates of the time-varying effects β(t). In practice we implemented the weighted partial likelihood by supplying the 

weights wi(t) to the Cox fitting routine (subject-level weights or time-dependent weights as appropriate). 

Practical implementation notes. 

• Spline basis. Time-varying covariates and coefficient functions were represented using cubic B-splines evaluated on a 

common dense time grid; knots were placed at equally spaced quantiles of observed event times in the primary analysis. 

• Tuning and cross-validation. Penalty parameters were selected by subject-level cross-validation (five folds stratified 

by event indicator) using the cross-validated partial log-likelihood. 

• Reproducibility. All scripts set a fixed seed per replicate, log package versions via sessionInfo(), and save intermediate 

objects (fitted models, selected tuning parameters, and diagnostic outputs) to disk. 

Diagnostics. Model diagnostics included checks for proportional hazards and influential observations: 

• Weighted Schoenfeld residuals. We computed weighted Schoenfeld residuals and examined their correlation with 

time to assess departures from proportional hazards. In R this was implemented by applying cox.zph to the weighted 

Cox fit (or by computing residuals manually when time-dependent weights were used) and plotting residuals against 

time with a smooth trend line. 

• Influence and leverage. We inspected deviance residuals, score residuals, and case-deletion diagnostics to identify 

influential subjects and to verify that no single subject unduly affected the estimated trajectories. 

• Bootstrap uncertainty. For inference on β(t) we used subject-level bootstrap resampling (typically B = 200 resamples) 

to construct pointwise and simultaneous confidence bands  
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Figure reference. Figure 3 displays the weighted Schoenfeld residual plots for the primary weighted Cox fit; no systematic 

time trends were observed, supporting the proportional hazards assumption for the weighted model. 

 

Figure 3: Schoenfeid Residual Diagnostics 

6.5 Results 

The estimated time-varying treatment effects from the weighted and unweighted analyses are plotted in Figure 1. The 

unweighted fit, which ignores the irregular observation process, suggests an approximately constant protective effect over 

follow-up. By contrast, the weighted analysis that accounts for the observation intensity reveals a clear temporal pattern: the 

treatment effect attenuates gradually over time. Bootstrap pointwise and simultaneous bands (Figure 4) indicate that this 

attenuation reflects a genuine temporal change rather than random sampling variability.  

 

For ease of interpretation, we display the corresponding hazard ratios exp{βb(t)} in Figure 3. Over the first 12 months the 

weighted model implies a substantial protective effect of contraceptive use (hazard ratio ≈ 0.6), whereas the effect weakens 

thereafter and approaches unity by approximately month 24. These results imply that the immediate benefit of the exposure is 

large but transient; 

practitioners and policymakers should therefore consider both the magnitude and the temporal persistence of effect when 

designing interventions or counselling contraceptive users. All point estimates are shown with bootstrap-based 95% 

pointwise and simultaneous confidence bands to reflect estimation uncertainty and the impact of sparse event information at 

later follow-up times. 

Overall, the weighted model provided a more realistic depiction of the time-varying treatment dynamics, consistent with 

behavioral adaptation patterns commonly observed in family planning programs. 
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Figure 4: Estimated Time-Varying Treatment Effect 

 

 

Figure 5: Hazard Ratios Over Time 

6.6 Interpretation 

The proposed model was effective in correcting the bias created by irregular schedules of observation, indicating the real 

dynamic trend of contraceptive effect over time. The progressive attenuation of the treatment effect, after about 18 months, 

is presumably due to a declining treatment adherence and fatigue to service among the participants, which is consistent with 

the field-based monitoring. 

The weighted method explicitly modelled the process of observation and therefore took into consideration the selection 

bias due to non-randomness in intervals of follow-up. Consequently, it created more credible and statistically efficient 

estimates [9, 14]. 
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6.7 Sensitivity Analysis 

Sensitivity tests were verified by increasing the spline knots (3 to 6) and cutting off extreme weights at the 1st and the 99th 

percentiles. In these variations, the treatment effect curves, which were estimated, were consistent, with maximum variation in 

hazard ratios of less than 5%. The stability shows that the proposed model is resistant to moderate modifications in 

specifications. 

6.8 Summary 

The empirical results underscore that irregular or informative follow-up cannot be treated as a nuisance: analyses that ignore 

the observation process tend to overstate treatment effects and understate uncertainty. In our experiments the unweighted 

Cox fits produced systematically stronger protective effects and narrower confidence bands than analyses that account for 

the visit process. By explicitly modelling the observation intensity and applying inverse-probability-of-observation weights, 

the proposed procedure corrects this bias and yields effect trajectories that are both more plausible and better calibrated. 

Bootstrap-based pointwise and simultaneous bands further reveal where estimates are driven by sparse event information, 

allowing practitioners to distinguish well-identified temporal features from regions of high uncertainty. 

Figures 1–5 collectively illustrate three practical strengths of the approach: (i) it captures the temporal dynamics of 

treatment effects, (ii) it mitigates bias induced by non-periodic or informative observation schemes, and (iii) it produces 

estimates that align with the theoretical properties established in Section 3. These features make the method broadly 

applicable to public-health, demographic, and actuarial settings where exposures vary over time and observation schedules 

are irregular. In such contexts the model framework provides a principled way to obtain interpretable, robust effect 

trajectories and to quantify uncertainty in a manner that directly accounts for the data collection process. 

7. Conclusion and Recommendations 

7.1 Conclusion 

This study develops a robust methodological framework for modelling time-to-event data when covariates are observed 

irregularly over time. By explicitly modelling the observation process and incorporating inverse-probability-of-observation 

weights into a time-varying Cox framework, the proposed approach addresses a key limitation of standard Cox models: bias 

induced by uneven visit schedules and unaccounted within-subject variability. Through a combination of simulation 

experiments and an empirical application, the method substantially improves the accuracy of hazard estimates and yields 

smooth, interpretable trajectories for time-varying effects. 

Key findings. Our results show that ignoring irregular observation patterns leads to systematically exaggerated treatment 

effects and underestimation of uncertainty. Correcting for the observation process with IPOW produces effect curves that are 

more plausible and better calibrated, with wider uncertainty bands in regions where event information is sparse. Visual 

diagnostics (Figures 1–5) and numerical summaries demonstrate that the weighted estimator captures both short-term 

fluctuations and long-term trends more faithfully than unweighted Cox fits or ad hoc penalized alternatives. 

Practical implications. The proposed framework is directly applicable to public-health, epidemiological, and actuarial studies 

where exposures and measurements vary over time and observation schedules are non-periodic. By combining trajectory-

level regularization with observation-process correction, practitioners obtain parsimonious models that balance 

interpretability, predictive performance, and inferential validity. Routine use of these techniques can reduce bias in effect 

estimation and provide more reliable guidance for policy and clinical decision making. 

Broader impact and future directions. Methodologically, this work bridges longitudinal data analysis and time-to-event 

modelling by integrating observation-process modelling, weighted partial likelihood, and smooth functional representations 

of effects. Future extensions include relaxing censoring assumptions, accommodating measurement error and irregular 

sampling more flexibly, and generalizing the approach to competing risks and multi-state settings. These developments will 

further increase the utility of the framework for complex longitudinal survival studies. 

7.2 Recommendations 

The findings of the empirical and simulation studies encourage a number of practical and methodological suggestions. First, 

when analysing longitudinal survival data, applied researchers must always bear in mind that time-varying coefficient models 
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can be used when the observation schedule is irregular, intermittent or incomplete; otherwise the analysis will be biased, and 

uncertainty will not be quantified more realistically. Second, methodological improvement should aim at closer integration 

with modern machine-learning and regularization technologies: integrating the trajectory level adaptive shrinkage framework 

with scalable penalties (e.g. Lasso, Ridge, Elastic Net) or Bayesian hierarchical priors can be used to better perform in high-

dimensional contexts and propagate uncertainty. Third, the framework is to be expanded to wider contexts of event history 

such as recurrent events, competing risks and multi-state models to make it relevant to more complex longitudinal studies. 

Fourth, the methods need to be packaged in well-documented, easy-to-use software modules of popular environments (R 

and Python), with examples, unit tests and a Dockerfile to describe the computing environment to facilitate reproducibility 

and uptake. Lastly, they ought to be used by the practitioners and policymakers when the effects of time are important (e.g., 

medical prognosis, insurance pricing, program evaluation) because the consideration of irregular observation and time 

dynamics contributes to more accurate risk evaluation and informed decision-making. 
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Appendix A: Influence-function derivation and sandwich variance 

This appendix derives the first-order influence function for the two-stage estimator θb that results from (i) estimating an 

observation model parameter γ and (ii) maximizing a weighted partial likelihood for the time-varying coefficient parameter θ. 

The derivation follows a standard joint Taylor expansion and provides practical formulas for an empirical sandwich variance 

that accounts for uncertainty in both stages. 

Notation and estimating equations 

Let n denote the sample size. For subject i define: 

• Ni
E(t) the event counting process and Yi(t) = I(Ti ≥ t,Ci ≥ t) the at-risk indicator. 

• Ni
O(t) the observation (visit) counting process and Yi

O(t) its at-risk indicator. 

• α(t | Hi(t−);γ) the observation intensity model with parameter γ. 

• ) = Pr(observed at t | Hi(t−);γb) the estimated observation probability. 

• 𝑤̂𝑖(𝑡) =
Pr (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑡 𝑡)

𝑝̂𝑖(𝑡)
 the stabilized inverse-probability-of-observation weight. 

 

• B(t) the spline basis vector and θ the basis coefficients so that β(t) = B(t)⊤θ. 

Write the (scaled) weighted score for θ as 

, 

where ψi(θ,γ) is the individual score contribution from the weighted partial likelihood (explicit form given below). The 

observation model score is 

, 

with si(γ) the individual score for the observation model (Cox partial score or discrete-time 

logistic score depending on the chosen model). 

The estimators (θ,b γb) satisfy the estimating equations 

. 

D. Taylor expansion and linearization 

Perform a joint Taylor expansion about the true parameters (θ0,γ0): 

, 
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0 =  𝑆𝑛(𝛾)  =  𝑆𝑛(𝛾0)  + 𝐷𝑛(𝛾0) (̂𝛾  − 𝛾0)  + 𝑜𝑝(𝑛−
1

2), 

Where 

          An(θ, γ) = ∂θUn(θ, γ), Cn(θ, γ) = ∂γ Un(θ, γ), Dn(γ) = ∂γ Sn(γ). 

Solve the second expansion for 𝛾  − 𝛾0: 

 𝛾 − 𝛾0   =  −𝐷𝑛(𝛾0)−1𝑆0(𝛾0)  + 𝑜𝑝(𝑛−
1

2). 

Substitute into the first expansion and rearrange: 

. 

Define the probability limits A = An, C = Cn, D = Dn. Then 

. 

Influence function and asymptotic variance 

The influence function for θb is 

IF . 

Consequently, the asymptotic variance is 

 , . 

An empirical estimator of the asymptotic variance is obtained by replacing population quantities with their sample 

analogues. Define 

 , , 

and estimate 

. 

Explicit expressions for components 

Below we give practical expressions that can be implemented numerically. 

Score contribution ψi(θ,γ) 

Let the linear predictor for the hazard be 

. 

Define the weighted risk sums 

n 

S(k)(t;θ,γ) = XYj(t)wj(t)exp{ηj(t;θ)}[Zj(t)]⊗k, b j=1 

where Zj(t) = B(t)Aj(t) is the covariate vector associated with θ, and [x]⊗0 = 1, [x]⊗1 = x, [x]⊗2 = xx⊤. Then the individual score is 
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. 

Information matrix A 

The matrix A is the negative expected derivative of the score with respect to θ: 

, 

 where Λ0(t) is the cumulative baseline hazard. In practice use the empirical version 

obtained by summing over observed event times. 

Observation model score si(γ) and D 

The form of si(γ) depends on the chosen observation model: 

• For a Cox model for visits, si(γ) is the usual Cox partial score and D is the observed information (negative derivative of the 

partial score). 

• For a discrete-time logistic model, si(γ) is the logistic score and D the corresponding observed information matrix. 

Compute Db as the empirical observed information at γb. 

Cross derivative C 

The cross derivative C = ∂γE[ψi(θ,γ)] captures how the weighted score changes when γ varies because wi(t) depends on γ. Write b 

, 

so that 

 

. 

In practice compute Cb by either: 

1. analytic differentiation of log ) with respect to γ (available for Cox and logistic models), or 2. numerical differentiation: 

perturb γ by a small amount and recompute wi(t) to apb proximate the derivative. 

E. 7.3 Remarks and diagnostics 

• Always compare analytic sandwich standard errors to bootstrap standard errors that re-estimate both stages; large 

discrepancies indicate numerical or modeling issues.  

• Report weight diagnostics (mean, SD, min, max, percentiles) and effective sample size after weighting. 

• If Db is ill-conditioned (near singular), consider regularization or alternative observation model specifications. 

• For complex observation models fit with machine-learning methods, numerical differentiation may be the most practical 

route to obtain Cb. 


