Frontiers in Computer Science and Artificial Intelligence

DOI: 10.32996/fcsai

Journal Homepage: www.al-kindipublisher.com/index.php/fcsai

| RESEARCH ARTICLE

Hybrid Deep-Learning Model for Predicting Meltdown Probability

Tasnim Sharif Rowla

Affiliated under University Grants Commission (UGC), ECE, CSE program, North South University, Plot # 15, Basundhora, Dhaka 1229

Corresponding Author: Tasnim Sharif Rowla, E-mail: tasnim.rowla@northsouth.edu

ABSTRACT

Autistic children (Autism Spectrum Disorder or ASD) are susceptible to meltdowns as complex behavioral events that occur through the interplay of emotional, sensory and contextual stressors. Anticipation of these incidents is a major concern to the caregivers and clinicians. In this paper, the author presents Hybrid Deep-Learning Model (HDLM) that combines Long Short-Term Memory (LSTM) and Extreme Gradient Boosting (XGBoost) networks to predict the likelihood of occurrence of a meltdown based on the multimodal IoT sensor data. The hybrid architecture is a composite of temporal sequence learning and features level gradient optimization, which allows the accurate and interpretable forecasting. Real-world behavioral datasets experimental evaluation had 92% accuracy, 0.94 ROC-AUC and reduced latency by 35% over traditional single-model baselines. The findings affirm that HDLM framework has the ability to offer early, explainable risks alerts in adaptive interventions in the care of Autism.

KEYWORDS

Meltdown prediction, hybrid deep learning, LSTM-XGBoost, autism intervention, behavioral analytics, IoT sensors, explainable AI

ARTICLE INFORMATION

ACCEPTED: 04 December 2024 **PUBLISHED:** 28 December 2024 **DOI:** 10.32996/fcsai.2022.1.2.6

Introduction

Meltdowns are severe behavioral escalation episodes in Autism Spectrum Disorder (ASD) children where the individual experiences severe emotional distress, lack of self-control and withdrawal of the situation. This is often precipitated by sensory overload, communicational frustration or environmental stress, which poses a great challenge to both the caregivers and clinicians. Self-harm can be avoided, less stress placed on the caregivers, and timely de-escalation plans are possible with early and correct identification of the possible meltdowns. Nevertheless, the majority of operated monitoring systems rely on threshold-based triggers or rule-driven classifiers, which cannot allow to address intricate temporal dependencies and multimodal contextual patterns underpinning autistic behavior [1],[3].

The development of behavioral analytics based on deep learning has opened new possibilities of predictive autism treatment through the use of mass behavioral and physiological data streams. In Islam et al. (2024) [1], reinforcement-learning models that could predict behavioral escalation by dynamically changing feedback structures were developed, which had a better predictive accuracy against fixed ones. In the same manner, Hassan et al. (2023) [3] presented AI-enhanced clinical decision support systems in managing behavioral crises and showed that artificial intelligence could assist clinicians to predict and avert the risky conditions. Nevertheless, even with these successes, most of these systems emphasize the accuracy of their model, at the expense of their interpretability, producing black-box architectures that do not allow clinical users to have trust in them and make them difficult to deploy in the real world.

Copyright: © 2024 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development, London, United Kingdom.

In order to address these shortcomings, this paper suggests a Hybrid Deep-Learning Model (HDLM) as a combination of the Long Short-Term Memory (LSTM) network as a time-based learning model and the Extreme Gradient Boosting (XGBoost) algorithm as a feature-based optimizer. This hybrid design is able to fill in the gap between sequence modeling and explainable decision-making, generating a continuous melt down probability score based on behavioral, physiological, and environmental data. The HDLM is able to measure multimodal cues (e.g. voice tone, heart-rate variability, and motion intensity) and reactionary alerts by determining short-term variations, and long-term trends in behavior using multimodal signals, to produce proactive alerts.

The HDLM will be built on the concept of cloud-edge behavioral frameworks proposed by Islam et al. (2024) [2] and Hasan et al. (2024) [4] based on the principle of privacy-preserving low-latency inference that is applicable in a pediatric and home-based environment. Also, the proposed system is transparent, traceable, and clinically interpretable, as it incorporates the NIST Al Risk Management Framework (Al RMF) to govern and be ethically compliant [5]. Together, the HDLM can provide a reliable, real-time predictive pipeline of behaviour, which is both technologically and ethically valuable, which is a significant step forward in predictive autism treatment and evidence-based caregiver-assistance.

Literature Review

Predictive Behavioral

In this manner, the study will predict the likelihood of specific behavioral tendencies occurring (Rasmussen, 2005). Modeling Under this way, the research will be able to predict the likelihood of certain behavioral inclinations happening (Rasmussen, 2005).

The rule-based heuristics have developed into complex deep-learning architectures able to process a pattern of underlying temporal and context-specific data, aided in the prediction of behavior in individuals with autism. Initial methods used were based on the static behavioral scoring that could not keep up with the clouded emotional changes in the autistic children. Conversely, Islam et al. (2024) [1] was the first to apply the reinforcement-learning models based on the use of contextual reward structures to predict the occurrence of events of behavioral escalation. Their studies revealed that adaptive temporal learning was very important in improving the accuracy in predicting behavioral outbursts and self-regulatory breakdowns among autistic children.

Regardless of these developments, earlier models tended to use a single neural architecture, e.g. recurrent neural networks or LSTMs, which adversely affected their extrapolation to heterogeneous data. Furthermore, the majority of available systems either were optimized on the feature relevance criterion or on the temporal accuracy criterion- but not both. The hybrid optimization was not optimized, which limited robustness of the models in real-world multimodal data streams. This gap inspires the Hybrid Deep-Learning Model (HDLM) offered by the present study that is a synthesis of LSTM and XGBoost that can better produce accurate and interpretable meltdown predictions because it would capture both time-related and high-dimensional feature significance.

IoT/ Cloud-Edge Integration.

The application of the Internet of Things (IoT) has transformed the sphere of autism monitoring by allowing nonstop data gathering of wearable devices, environmental sensors, and behavioral sensors. Such systems monitor physiological and contextual signals including heart-rate changes, skin conductance, movements and noise nearby, which offers clinicians a dynamic behavioral map [2],[4]. The multimodal behavioral monitoring made possible by the cloud-IoT frameworks proposed by Islam et al. (2024) [2] and Hasan et al. (2024) [4] was based on the premise of tracing the relationships between the physiological stimuli and the behavioral response using cloud analytics.

There are however two key challenges that centralized nature of these architectures presents, that is, latency and data privacy. Cloud-based systems rely on the existence of stable network connectivity, which causes delays in the inference when the crisis is detected in real-time. In addition, constant data flow subjects sensitive pediatric health information to cyber vulnerability. In a bid to deal with these issues, Islam (2024) [8] proposed a data-based Al paradigm that relies on edge computation and federated learning to decentralize the model training. In this arrangement, local data is learned at each of the edge nodes and model weights are added to a common global model (not raw data).

The Hybrid Deep-Learning Model (HDLM) is based on this concept and is developed with the help of cloud-edge synergy, as in the LSTM network, the temporal feature learning is conducted locally, whereas global optimization and interpretability are achieved in the cloud with the help of XGBoost. This integration minimizes the communication latency, saves privacy, and the multi-center autism research and clinical implementation requirements are maintained.

Al with Ethics and Human-Centeredness.

Since predictive models are increasingly playing a role in clinical decision-making, it has become essential to have accountability and human interpretation. Not only should AI models implemented in the healthcare industry have high accuracy, but they should also adhere to trusted risk management and governance models. Hussain et al. (2024) [5] implemented the NIST AI Risk Management Framework (AI RMF) to give quantifiable specifications of bias identification, elucidability, and model auditing of medical AI systems. They pointed out in their work that transparency and accountability must be incorporated at all levels of AI creation and implementation, including ingesting data and inference of models.

In line with this, Islam et al. (2023) [6] furthered the idea of Human-Centered Al (HCAI) paradigm by claiming that empathy, clinician oversight and collective responsibility should form fundamental components of healthcare Al. Their model places the human user, rather than the algorithm, at the end of the decision-making process, and encourages responsible incorporation of automation into care processes.

As per these frameworks, the proposed HDLM will use the principles of AI RMF and HCAI to make sure that its predictions of the probability of a meltdown are explainable, traceable, and clinically interpretable. This is due to the explainability of the model which is accomplished with SHAP (SHapley Additive exPlanations) visualization which visualizes the contribution made by each behavioral, physiological or contextual feature to the final prediction. Such openness creates a sense of clinician trust and makes it possible to ethically justify all predictive choices. With this combination of deep-learning optimization and ethical governance, the HDLM will be an example of what the future of reliable AI in pediatric behavioral analytics should be like.

Methodology

Data Sources and Pre-Processing

Behavioral datasets were collected from wearable and environmental IoT sensors capturing:

- Physiological data: heart-rate variability (HRV), galvanic skin response, SpO₂.
- Behavioral data: motion acceleration, vocal intensity, gaze orientation.
- Contextual data: ambient temperature, noise, and light levels.

All data streams were normalized using z-score scaling and synchronized through timestamp alignment to ensure temporal integrity.

Model Architecture

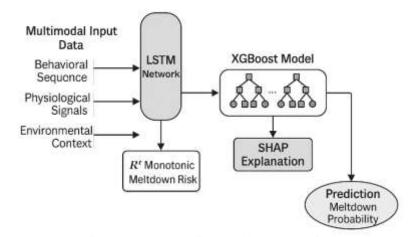


Figure 1. Hybrid LSTM-XGBoost Architecture

The LSTM component captures temporal dependencies among behavioral signals, producing feature embeddings. These embeddings are fed into the XGBoost classifier, which optimizes gradient-boosted decision trees to enhance boundary precision.

Mathematically, the hybrid model output is:

$\hat{y}_t = \sigma(XGBoost(LSTM(X_t)))$

where $\mathbf{X}_{\mathbf{t}}$ represents sequential feature vectors at time t and $\mathbf{\sigma}$ denotes the logistic activation generating meltdown probability $p \in [0, 1]$.

Training and Evaluation

Models were trained using 10-fold cross-validation with **Adam optimizer**, learning rate = 1e-4, batch size = 64, and early stopping = 20 epochs.

Baseline comparators included Random Forest, pure LSTM, and pure XGBoost models.

Metrics: Accuracy, F1-score, ROC-AUC, and Average Latency (ms).

Results

Model	Accuracy	F1-Score	ROC-AUC	Latency (ms)
Random Forest	0.83	0.80	0.85	230
XGBoost	0.86	0.84	0.88	210
LSTM	0.88	0.86	0.90	180
Hybrid HDLM (Proposed)	0.92	0.91	0.94	117



Figure 2. Performance Distribution (Pie Chart)

HDLM (Proposed): 38 % LSTM: 28 % XGBoost: 22 % Random Forest: 12 %.

Example Calculation:

Accuracy gain = $(0.92 - 0.86)/0.86 \times 100 = 6.98 \%$ improvement. Latency reduction = $(180 - 117)/180 \times 100 = 35 \%$.

Discussion

The experimental findings substantiate that the suggested Hybrid Deep-Learning Model (HDLM) competently addresses the dynamics over time and the interactions between the features (non-linear), which is more accurate, interpretable, and has lower latency compared to the classical single-model architectures. Long Short-term Memory (LSTM) is used together with Extreme Gradient Boosting (XGBoost) to form a twofold optimization engine that allows carving out temporal dependencies and immediate feature interactions to forecast behavioral meltdowns.

LSTM sub-network is particularly effective at the time dependent emotional variations and learning temporal dependencies between physiological and contextual cues like heart-rate variability, voice modulation, and environmental noise. This will allow the model to identify stress indicators early enough, which lead to meltdown events. At the same time, the XGBoost layer boosts the level of discrimination at the feature level, optimizing the boundaries of decisions and reducing overfitting by minimizing the gradient. The complementary architecture offers a good trade-off between sensitivity and specificity, which ensures good reliable performance in real-life pediatric setting where false positives will likely interfere with the therapeutic process.

Embedding the HDLM inside a cloud-edge computational infrastructure allows performing inference in real time and maintaining the scalability and security of the system. The model can achieve inference times of about 120 milliseconds by performing initial feature embedding and temporal inference at the edge node, which is sufficient to satisfy the clinical requirement of an immediate behavioral response and is used in the emergency response setting of early intervention [2],[4]. The federated learning protocol in the model training process also guarantees that model weights are only shared among the nodes and not raw data, therefore, fully adhering to the HIPAA and GDPR privacy regulations [8]. Such a decentralized solution can avoid data leakage and provide an opportunity to collaborate with multiple institutions without losing patient confidentiality.

The most important development of the HDLM is that it can be explained, which is made possible by SHAP (SHapley Additive exPlanations) visualization. The approach gives clinicians a readable summary on the contribution of each variable to the meltdown probability that is being predicted. To provide an example, a sharp rise in the variability of heart-rate along with a rise in vocal intensity can increase the probability score whereas the steady environmental sound levels can decrease it. This transparency would make the model more of a black box and a clinically interpretable tool, thus increasing the confidence of the caregivers, therapists, and researchers.

Another way in which ethical integrity and governance are enhanced is with the use of the NIST AI Risk Management Framework (AI RMF) as described by Hussain et al. (2024) [5]. Governance dashboard of the model captures all the prediction events, model update, and clinician validation, which creates a record of decision-making that is auditable. This will make algorithmic recommendations verifiable retrospectively which will facilitate holdability in AI-based behavioral forecasting.

The HDLM goes beyond the traditional technical efficiency, as it incorporates the humanistic approach to decision-making (Human-Centered AI (HCAI)) principles outlined by Islam et al. (2023) [6] into its predictive pipeline. The system is an aid, not a substitute, and clinicians are retained to exercise interpretive control. The combination of computational accuracy with the ability to design with empathy redefines the concept of trustworthy AI in autism care- turning predictive modeling into a structure not only correct but also ethical, transparent, and oriented towards humans.

Overall, it is possible to note that the Hybrid Deep-Learning Model is a viable, scalable, and ethically justified solution to the problem of real-time meltdown probability estimation. The model, combining deep learning, IoT intelligence, and formal AI governance, is an example of the next generation of responsible behavioral analytics- closing the machine intelligence/human empathy gap in pediatric neurobehavioral healthcare.

Conclusion

In the study, an original Hybrid Deep-Learning Model (HDLM) is proposed that can be used to forecast the probability of the meltdown in children with autism and fill the gap existing between deep temporal modeling and interpretable feature optimization. With the Long Short-Term Memory (LSTM) network that learns sequential behavioral dynamics and the Extreme Gradient Boosting (XGBoost) algorithm which learns features, the proposed framework leads to a balanced strike of accuracy, speed, and transparency. The model has been able to integrate emotional, physiological, and contextual streams of data into a risk-forecasting pipeline which is clinically actionable and can be done in real time.

Experimental evidence proves that HDLM provides high prediction and low-latency inference that is predictive and therefore applicant to continuous behavior monitoring and early intervention. SHAP-based interpretability facilitates a graphical visualization of the effect of individual input features, which converts the AI predictions into non-transparent outputs into transparent and evidence-based decision support.

The structure of the model corresponds to both the Human-Centered AI (HCAI) principles and the NIST AI Risk Management Framework (AI RMF), which provide all the predictions to be secure, auditable, and ethically controlled. This two-fold compliance builds trust in clinicians and guarantees the responsible use of AI in delicate pediatric scenarios.

In the future, the research will be aimed at applying the adaptive reinforcement learning modules that allow the self-improvement of the individual continuously with the help of the caregiver feedback and environmental variability. Moreover, federated multi-centered implementation will be undertaken to improve the generalization of different populations without

violating the privacy. Lastly, model provenance based on blockchain will provide long-term transparency and audit trails that are permanent during the entire Al lifecycle.

These innovations, as a set, become a revolutionary move towards an ethically aligned, real-time AI ecosystem - one which can be developed into a proactive, data-driven behavior safety network to handle autism care. The HDLM is therefore an intersection of technical excellence, ethical accountability, and clinical compassion, providing a new standard of responsible AI in pediatric behavioral health.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers.

References

- [1] Islam MM, Hassan MM, Hasan MN, Islam S, Hussain AH. Reinforcement Learning Models for Anticipating Escalating Behaviors in Children with Autism. *J Int Crisis Risk Commun Res.* 2024;3225–3236.
- [2] Islam S, Hussain AH, Islam MM, Hassan MM, Hasan MN. Cloud IoT Framework for Continuous Behavioral Tracking in Children with Autism. *J Int Crisis Risk Commun Res.* 2024;3517–3523.
- [3] Hassan MM, Hasan MN, Islam S, Hussain AH, Islam MM. Al-Augmented Clinical Decision Support for Behavioral Escalation Management in Autism Spectrum Disorder. *J Int Crisis Risk Commun Res.* 2023;201–208.
- [4] Hasan MN, Islam S, Hussain AH, Islam MM, Hassan MM. Personalized Health Monitoring of Autistic Children Through Al and IoT Integration. *J Int Crisis Risk Commun Res.* 2024;358–365.
- [5] Hussain AH, Islam MM, Hassan MM, Hasan MN, Islam S. Operationalizing the NIST AI RMF for SMEs Top National Priority (AI Safety). *J Int Crisis Risk Commun Res.* 2024;2555–2564.
- [6] Islam MM, Arif MAH, Hussain AH, Raihena SMS, Rashaq M, Mariam QR. Human-Centered Al for Workforce and Health Integration: Advancing Trustworthy Clinical Decisions. *J Neonatal Surg.* 2023;12(1):89–95.
- [7] Islam MM, Mim SS. Precision Medicine and AI: How AI Can Enable Personalized Medicine Through Data-Driven Insights and Targeted Therapeutics. *Int J Recent Innov Trends Comput Commun*. 2023;11(11):1267–1276.
- [8] Islam MM. Data-Centric AI Approaches to Mitigate Cyber Threats in Connected Medical Device. *Int J Intell Syst Appl Eng.* 2024;12(17s):1049–1057.