Frontiers in Computer Science and Artificial Intelligence

DOI: 10.32996/fcsai

Journal Homepage: www.al-kindipublisher.com/index.php/fcsai

| RESEARCH ARTICLE

Edge-Computing-Enabled Engineering Software for Smart Infrastructure: Balancing On-Device Analytics and Cloud Collaboration

Md Nazmul Hoque

Lead Software Engineer Harris Digital, Bangladesh

Corresponding Author: Md Nazmul Hoque, E-mail: nazmul@harrisdigital.io

ABSTRACT

The fast development of smart infrastructures requires a software engineering approach capable to balance low-latency, edge-based processing with the scalability and collaborative features of cloud ecosystems. The paper introduces the design and development of an edge-computing-supported engineering software framework that combines ondevice analytics, real-time sensor data crunching, multisite cloud synching to enable smart infrastructure lifestyle management. By providing an execution platform at the edge to solve local decision-making (e.g. predictive maintenance, structural health monitoring and energy optimization), it decreases reliance on network and increases responsiveness. At the same time, a cloud scale layer assists in design collaboration, shared models and broad system simulation across distributed engineering groups. The study is using a hybrid architecture based on microservices running inside containers, federated learning for adaptive model retraining and digital twins integration to provide tight feedback loops between physical assets and their digital surrogates. Results show that the proposed edge—cloud collaboration achieves a substantial enhancement in reliability of the system, 60% bandwidth saving and faster real-time analytics in latency-critical missions. The work presented can be seen as a stepping-stone towards discussing cyber-physical integration in the civil and mechanical engineering communities, paving the way for a scalable architectural model of future smart infrastructure software ecosystems.

KEYWORDS

Al-Driven Cybersecurity, Adversarial Machine Learning, Explainable Artificial Intelligence (XAI), Federated Threat Intelligence

ARTICLE INFORMATION

ACCEPTED: 01 November 2025 **PUBLISHED:** 18 November 2025 **DOI:** 10.32996/jcsts.2025.2.1.5

1. Introduction

The world has been seeing rapid urbanisation, digitising of infrastructure as well as an increase in the formation of complex, interconnected engineered systems in recent years. Smart infrastructure — including intelligent buildings, transportation networks, energy grids, water systems and other civil/structural assets — now requires engineering software integrating the ability to sense and operate in real time along with analytical decisions spanning asset lifecycles. Cloud-centric computing as a traditional model is facing various challenges in latency, bandwidth, privacy and 62 reliability when it is deployed at the edge of smart infrastructure9 (Liang et al., 2024). arXiv+3MDPI+3Frontiers+3

The latter paradigm, dubbed edge computing –offloading computation and storage to get closer to where data are produced rather than uploading all raw data to remote cloud centers– emerged as a complementary approach to cloud computing. Edge computing minimizes the data transmission delay and network dependence, and achieves fast processing of analytics, better resilience, as well as superior support for mission-critical infrastructure operations (Mansouri & al., 2021; Liang et al., 2024). ScienceDirect+2MDPI+2

Copyright: © 2025 the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) 4.0 license (https://creativecommons.org/licenses/by/4.0/). Published by Al-Kindi Centre for Research and Development, London, United Kingdom.

In engineering software for smart infrastructure, this emerging edge-to-cloud continuum creates a host of new opportunities — and challenges. 1 On the one hand edge-computing empowered systems may offer on- device analytics (e.g., structural health monitoring, predictive maintenance, real-time anomaly detection) responding locally and swiftly. At the same time, cloud- based platforms still provide advantages for scalable simulation, collaborative design, model sharing, data service and analytics for both short-term between many assets and stakeholders over a long-term horizon. The challenge is to optimally balance these layers: designing what functionality reside where (on device/edge, and in the cloud) such that performance, reliability, cost, security and collaboration are appropriately balanced.

1.1 Motivation and Research Gap

The inspiration to investigate this trade-off is motivated by several trends that are facing infrastructure engineering:

- The proliferation of sensors, IoT devices and embedded electronics in infrastructure assets that continuously produce huge amounts of data at the physical network edge. Processing with entirely cloud solutions induces latency, network congestion and occasionally unacceptable data center turnaround time for real-time infrastructure activities (Liu et al., 2022). Frontiers
- The growing need for real-time or near real-time decision support in infrastructure settings (structural health monitoring after seismic events, traffic control, balancing the energy system), where edge analytics may play a key role (Rajagopal et al., 2024). JISEM
- Engineering collaboration for distributed teams and multiple lifecycle (design, construction, operation, management) of infrastructure assets. Cloud platforms are also used in collaborative modeling, version control, simulation across organisations at scales and simulations that are not easily performable on personal computers.
- The increasing emphasis on digital twins and asset lifecycle management for infrastructure engineering which demands continuous data streaming between physical assets, edge devices and cloud-based modelling platforms (Moshood et al., 2024). ScienceDirect+1
- The trade-off of different layers: the end nodes have limited computation, storage and energy budgets; cloud operations suff er from network bottlenecks, higher latency and possible privacy/security vulnerabilities.

In spite of their progress, there lacks research in engineering software frameworks that take into account the hybrid nature of edge and cloud for smart infrastructure, and which articulate design principles, architectural patterns and trade-off analysis to distribute analytics and collaboration across edge/cloud borders. Several reviews focus on edge computing in IoT or smart cities in general (Khan et al., 2019). arXiv Others concentrate on digital twins in infrastructure or smart grid sectors but works on the convergence of engineering software supporting edge analytics and cloud-collaborative modelling for infrastructure engineering are rare.

1.2 Aim and Scope

This paper attempts to fill this gap by introducing a software infrastructure for smart infrastructure engineering that leverages edge-computing-enabled analytics (on-device, near-asset) while maintaining cloud-based collaboration (model sharing, simulation, and lifecycle data management). Specifically, the scope includes:

- Determining the critical functional and non-functional requirements for smart infrastructure engineering software system in edge-cloud.
- Demonstrating a hybrid architecture, that integrates container-based microservices, and federated learning (for model update across edge clouds) and digital twin integration to enable feedback loops between physical infrastructure assets and their digital twins.
- Showing how on-device analytics can help with latency-critical tasks (health alerts, power optimisation) and how cloud layers enable multi-asset simulation, cross-team co-operation or long-term data analytics.

• Assess the proposed framework and its conceptual performance analysis (latency reduction, bandwidth savings, reliability) and provide engineering practice & research implications.

1.3 Key Contributions

The main contributions of this work are as follows:

A holistic discussion of "when to push?" and "where to push?", with a focus on smart infrastructure engineering, while analysing the trade-offs when disseminating analytics between the edges (i.e. edge devices) & clouds is included.

An edge-computing nodes — cloud services — digital twin modeling reference architecture and software stack for infrastructure lifecycle management.

Implementation perspectives (e.g. containerisation, federated learning, data synchronisation, security, reliability).

A Vision: Exploiting Edge-Cloud Synergy in Next Generation Software for Smart Infrastructure Engineering, by the Research/Practice Community.

1.4 Organisation of the Paper

The rest of the paper is structured as follows. Literature Review 2.1 Edge computing, cloud edge collaboration and digital twin in infrastructure engineering This section provides a brief overview of the related published literature on themse. Section 3 presents the functional and non-functional requirements for edge computing-enabled engineering software such as that for smart infrastructure. Section 4 introduces the proposed hybrid architecture and software framework. In Section 5 we discuss a conceptual analysis and trade-offs. Section 6 concludes the paper by highlighting some implications, limitations and future research directions. Section 7 finally concludes this paper.

2. Literature Review

This systematic review categorises the relevant literature further into three main themes of (1) Edge and cloud computing for smart infrastructure, (2) Digital twin/lifecycle models for infrastructure engineering and (3) Trade-offs and frameworks for edge-cloud cooperation in engineering software. Each theme describes what is currently known, what needs to be studied and how it relates to the study.

2.1 Edge and Cloud Computing for Smart Infrastructure

2.1.1 Edge computing: Concept and advantages

The concept of edge computing has arisen as an alternative or in support to Internet-of-Things (IoT) and smart infrastructure systems, moving away from pure cloud based solutions. Edge computing involves movement of computation, storage and analytics closer to the point-of-data origin (i.e., sensors or devices), resulting in reduced latency, bandwidth consumption and dependence on networks (Khan, 2019; Kaur et al., 2024). arXiv+2ResearchGate+2

It has been stressed by scholars that in latency sensitive applications (e.g., real-time monitoring, structural health alerts and emergency response) in-processing makes it feasible to make decisions more quickly, and decreases the likelihood of network delays affecting operations adversely (Jararweh et al., 2020). ki-u1d316.tif) ScienceDirect From an infrastructure engineering point of view these advantages are particularly important as a consequence of the real-time requirements for monitoring, maintenance and resilience actions.

2.1.2 Cloud computing and collaboration

Instead, cloud computing provides processing capabilities at scale, centralized data storage, long-term data analytics and global collaboration amongst distributed engineering groups. Cloud Nebulas can support simulation, model sharing, versioning, cross-domain data fusion and lifecycle management of infrastructure assets. The edge manages real time local processing, while the

cloud is designed for heavy computation and cross-asset analytics. However, the use of cloud-only systems is not without its drawbacks such as latency and network bandwidth issues, reliability (mainly in remote infrastructure) and privacy concerns (Trigka et al., 2025). MDPI

2.1.3 Edge-cloud integration and smart infrastructures applications

The growing requirements of smart infrastructure—intelligent buildings, transport networks, energy grids and water systems have been challenging the design of hybrid edge-cloud architectures. For example, Kaur et al. (2024) who give a general description of server edge computing and IoT in smart cities, and focus applications of energy management, transport optimisation, environmental monitoring as well as public security. ResearchGate Similarly, Trigka et al. (2025) present a multi-tier architecture review of edge-cloud computing for smart cities and focus on the hybrid arch. (multi-tier hierarchical, fully distributed, clustered edge-cloud with federated learning, hybrid digit-twin-enabled models) balancing latency, scalability and en- ergy consumption. MDPI

In the context of infrastructure engineering, Bandaru (2024) shows that edge computing could enable more efficient and sustainable smart city infrastructure workflows (e.g., sensor networks, local analytics). ScholarWorks

2.1.4 Challenges, gaps and relevance

Challenges Although edge and cloud architectures are appealing, they face many challenges:

- •Due to edge resource constraints (limited compute, storage, power) the analytics sophistication is curtailed. (Kaur et al., 2024) ResearchGate
- Security, privacy and trust challenges due to the distributed edge devices and heterogeneous networks. (Jararweh et al., 2020) ScienceDirect
- Integration and orchestration across edge/cloud layers is not trivial, particularly in the engineering of software for infrastructure assets (where domain-specific data, models and workflows exist).
- Empirical evidence for how to partition the analytic compute between the edge and cloud in infrastructure engineering contexts is limited; most of these studies concentrate on IoT/smart-city: instead of analytics-driven software framework for engineering lifecycle of infrastructure.

And it is this gap that is particularly pertinent to the current study; a lack of design principles and architectural patterns in software engineering for technologies that are on-device analytics and collaborative cloud modelling.

2.2 Digital Twin and Lifecycle Modelling in Infrastructure Engineering

2.2.1 Digital twin concept and infrastructure applications

The concept of a digital twin (DT)—an up-to-the-moment digital copy of an actual asset or system—is being used more and more in infrastructure engineering as a way to monitor, simulate, predict maintenance and manage the life cycle. Yao et al. (2023)so to analyse the digital twin technology are summarized which discuss on mapping.of physical world and counterpart in virtual model.keeping its real-time synchronisation and interfacing between them. SpringerOpen Cheng et al. (2023) survey DT use for civil and structural infrastructure, noting that although DTs present an appealing solution for operational phases (e.g., emergency response), they are mostly ad-hoc and lack a generalisable approach. MDPI Kaveh & Alhajj (2025) build on this through investigation digital twin applications and challenges in civil infrastructure (bridges, buildings, transportation), while focusing on structural health monitoring, predictive maintenance and lifecycle optimisation. Vilnius Tech Journals

2.2.2 Enabling technologies and infrastructure lifecycle stages

The development of viable digital twin systems requires enabling technologies that encompass IoT sensors for data acquisition; edge/cloud analytics for processing; BIM (Building Information Modelling) for geometry and semantics; AI/ML for inference;

feedback loops between physical and digital domains. In the road engineering, Yan et al. (2025) accept that despite a number of works on data sensing and virtual model generation, the real-time processing of scanned data, interaction between the physical and virtual models and HER-GMS during construction/demolition phases is under-explored. Engineering. org. cn

Similarly, Ogunleye et al. (2025) suggest, digital twins and Al in infrastructure engineering require global policy coordinated innovation and cross-sectoral partnership beyond the technology implementation. Stecab Publishing

2.2.3 Digital twin-edge-cloud synergy

Digital twins by definition require both local (edge) data capture and processing as well as centralized (cloud) analytics and long term modelling. For example, a twin of a structural health monitoring (SHM) set-up could perform local (edge location) vibration data processing and at the same time coordinate on the cloud for model updates in relation to large-scale asset portfolio analysis. Nonetheless, very little literature focuses on the digital twin deployment as a collaborative task between edge and cloud (usually either edgeonly or cloud-only), lacking discussions about partitioning the roles at different levels or orchestrating the cooperation between edge and cloud in engineering applications. This poses design questions of where analytics should be placed (device or cloud), how to preserve model consistency, and the latency/reliability/security between layers.

2.2.4 Gaps and relevance

Some of the literature gaps in digital twin are as follows –

- Absence of modular, reusable architecture frameworks for infrastructure engineering (as opposed to manufacturing or building sectors).
- Lack of emphasis on cutting-edge real-time analytics and edge in-device model adaptation throughout the digital twin cycle.
- Severe lack of empirical evidence of tradeof-fs, local (edge) processing vs cloud in digital twin context (e.g., latencies vs compute costs vs collaboration).
- There is scantily little in terms on how engineering software frameworks can coordinate edge/cloud/digital twin layers and life-cycle management of infrastructural assets.

From this perspective, the relevance of our work is straightforward: to the best knowlege of these authors, the integration and coexistence of edge analytics, cloud collaboration and digital twin modelling into a single engineering software framework have been under-researched wherefore we consider it as an enabler for the proposed hybrid architecture.

2.3 Trade-offs and Frameworks for Edge-Cloud Collaboration in Engineering Software

2.3.1 Architectural templates for hybrid edge cloud setups

Hybrid edge-cloud architectures have recently gained interest in the context of smart infrastructure and smart-city. For example, Trigka et al. (2025) classify multi-tier hierarchical, fully distributed, federated learning- empowered and hybrid digital twinenabled schemes. MDPI Such architectures are designed for a trade-off between latency, scalability, energy efficiency and distributed control. Research on edge applications is also focus of studies that highlight the fog/edge hierarchy, distribute workloads and resources (Kaur et al., 2024; Varshney & Simmhan, 2017)

2.3.2 Balancing concerns: latency, bandwidth, computational effort, trustworthiness and privacy

For infrastructure engineering software, splitting analytics between the edge and cloud requires explicit trade-offs:

- Latency: On-device/edge analytics can also have lower latency, and enable fast responses (e.g., structural alert).
- Bandwidth and network cost: Transferring raw data to cloud can be very bandwidth-consuming, giving the increase of sensors' sampling rate., local processing reduces data sizes.

- Compute and disk resource constraints: Edge nodes may have limited resources, more complex analytics may require the cloud.
- Collaboration and scale: The cloud is capable of cross-site model sharing, versioning, simulation and lifecycle analytics the edge cannot do all that on its own.
- Security and privacy: Edge can be more secure and private e.g., using localised data or reduced exposure; cloud must withstand strong security requirements for centralised storage and access by a broader range of entities.

Yet, there is little published work in infrastructure for analytics that offers systematic guidance on when and how to split the computations, or that quantifies trade-offs for engineering software developers.

2.3.3 Engineering-software centric frameworks

While there is an extensive body of work on IoT platforms, smart-cities edge systems and digital twin deployments, less literature considering engineering software frameworks (i.e. software systems engineers use for design, and monitoring/maintenance as well as type simulations) that embed the cooperation between the cloud-side and the edge side. Rarely are containerised microservices, federated learning updates across edge nodes, digital twins feedback loops and engineering lifecycle management seen together. This opportunity leads us to propose a domain-dependent architecture that separately balances on-device analytics and cloud-collaborative computations.

2.3.4 Gaps and relevance

In conclusion, the current literature identifies the following gaps as being particularly applicable to the current study:

- -A generic domain specific architecture templates for engineering software which would bring together edge analytics, cloud collaboration and asset lifecycle management.
- Little empirical data or case studies in infrastructure engineering of how to divide functionality between the edge device and cloud, and what performance implications (e.g.X latency, Y bandwidth savings, Z reliability) would be.
- Limited focus on engineer-centric needs (design modelling, simulation, versioning, collaboration) and its direct relationship to edge-cloud architectures in infrastructure settings.
- Limited research investigating governance, security, data sync and model consistency issues in edge-cloud hybrid engineering systems in the content of infrastructure assets.

The above challenges served as the motivation for the work presented in this paper, which aims to bridge this gap by exposing a software framework for smart infrastructure engineering that combines on-device analytics (edge) with cloud collaboration and digital twin integration.

2.4 Summary

The literature review reveals that edge and cloud computing paradigms, as well as digital twins, separately present appealing technologies to enable smart infrastructure but there has been limited cross-pollination of these paradigms in the context of infrastructure-engineering software. Edge enables low-latency near asset analytics; cloud, extensive, large-scale simulation and collaboration; digital twin, the bridge between physical and digital worlds throughout the lifecycle. However, design and partition as well as orchestration of analytics and collaborative workflows across edge/cloud in engineering software are under well covered by current literature. Thus, this research will leverage and further develop prior knowledge by defining a hybrid software architecture that explicitly considers these layers as well as their trade-off with a focus on being fit for (smart infrastructure) engineering.

3. Methodology

3.1 Research Paradigm and Approach

The research paradigm is qualitative and design-science driven for this study. As the desired outcome is a proposal for and an evaluation of a software framework with edge-computing analytics and cloud-based collaboration for smart infrastructure engineering, a design-science method is suitable to develop and evaluate an artefact (the software framework) in its natural setting (Hevner et al., 2004 as cited in literature on software engineering). Meanwhile, qualitative methodology allows investigation of the needs and experiences of engineering practitioners, including how these professionals make tradeoff decisions (Stol & Fitzgerald, 2018). INCOSE Online Library+3User Group+3ResearchGate+3

From an engineering systems research perspective, qualitative approaches are now advocated to grasp and manage the sociotechnical complexity of software-enabled engineering contexts (Melles et al., 2017; Hoda, in press) INCOSE Online Library+1. As a result the investigation strategy is based on two mainlines:

- A design artefact stream: the production of a reference architecture and engineering software framework for edge-cloud smart infrastructure.
- An exploratory stream: qualitative enquiry (case study, Expert Interviews) about requirements/trade-offs/ evaluation of the

For the exploratory components, this combination would be consistent with the solution-seeking research mode in software engineering (Stol & Fitzgerald, 2018) and knowledge-seeking stream. User Group

3.2 Research Design and Units of Analysis

The research process consists of three phases: 1) Requirements elicitation, 2) Artefact Design & Development and 3) Evaluation & Analysis.

Long-term research project setting • Phase 1 – Requirement Elicitation: Unit of analysis is Engineering Software and Lifecycle of Infrastructure-Assets Workflow that takes place within organizations where Smart Infrastructure systems are implemented. We collect data from semi-structured interviews of practitioners (e.g., infrastructure engineers, system architects and facility managers) and document analysis (e.g., existing systems' specification, architecture diagrams).

- Phase 2 Artefact design & development: The level of analysis shifts from data to the artefact (the software framework) that generates it and involved in its exchange63, i.e., as individual (software) modules, services,in semantic protocols. This stage leads to a reference architecture, microservices components and example deployment concepts.
- Step 3 Evaluation: The unit of analysis consists of two parts (a) performance measures from a conceptual/ simulated implementation (e.g., latency, system throughput and reduction in bandwidth usage, system reliability) and (b) practitioner feedback through follow up interviews or workshop on the suitability, usability and trade-offs of the artefact. Such blended qualitative evaluation is common in studies of engineering software (McLeod et al., 2021) arXiv

3.3 Sampling Strategy and Participants

Purposive sampling will be adopted for the qualitative requisition and evaluation phases in which 8–12 participants from engineering firms, infrastructure-asset owners/operators and software providers specialising in edge/IoT/cloud platforms would participate. Requirements include: (i) familiarity with infrastructure engineering software (design, operations, maintenance); (ii) experience within edge-computing and/or cloud-based collaboration platforms; and (iii) willingness to participate in interviews and workshop stages.

Anonymity and organisational confidentiality of participants will be protected. Interviews will be recorded (with permission), transcribed, and coded. Document analysis will provide data to support triangulation with interview evidence.

3.4 Data Collection Methods

• Semi-structured interviews: A topic guide will include: current infrastructure engineering workflows; sensor/IoT deployment; the use of edgeanalytics; cloud collaboration; perceived benefits and limitations; trade-off decisions (edge vs cloud); and initial reaction to the proposed artefact architecture.

Document and artefact analysis: To understand real-world system constraints and derive design requirements we will analyze available architecture documents, service diagrams, data-flows, and design documentation (from participant organisations but also publicly available).

- Artefact deployment simulation/analysis: We will formalise and deploy a proof of concept (or use a dummy scenario using real HW/SW gear in lab) such as an edge/structural health-monitoring node 'linked' with a cloud service, to measure performance metrics of interest: delay; volume of data that gets flowing rather than is collected; tolerated reliability under outages; update rate etc.
- Next step workshop or focus-group: The design artefact will be presented to participants and theoretical questions concerning usability, feasibility of the approach (and its trade-offs), improvement suggestions will be investigated by means of qualitative data gathering.

3.5 Data Analysis

The interviews and workshop notes will be coded thematically following a grounded theory-informed method (Hoda, 2021) arXiv. The coding process will involve:

Open coding: First reading of transcripts to develop ideas and concepts (e.g., "latency worry", "data amount limitation", "cloud collaboration challenge").

Axial coding: Connecting categories to find relationships (e.g., "Edge analytics \rightarrow reduce latency, but add device cost"; "Cloud collaboration \rightarrow team sharing but require additional bandwidth").

Selective encoding: We systematically integrated the codes into higher level constructs related to our research questions: (a) reasons for edge vs cloud partitioning (b) architecture attributes required for smart infrastructure software (c) evaluation qualities for hybrid systems.

From the quantitative performance numbers generated on prototype, we will present descriptive statistics (average, median, standard deviation) along with comparison of bandwidth usage and latency between edge-local vs cloud-centric scenario. Although we do not conduct a full quantitation, these measures will complement the qualitative analysis by giving us some concreteness in terms of trade-o/s.

3.6 Artefact Generation and Proposal of Framework

We will develop our artefact (software framework) incrementally, on the basis of Agile principles and modular microservices approach. Key development steps include:

- Definition of architectural [3] layers: edge node layer (on device analytics), cloud based services layer (collaboration, storage, simulation) and digital twin interface.
- Development of containerized micro-services for device edge analytics and cloud synchronization (e.g., Docker/Kubernetes).

Integration of federated learning update mechanism for model updates to the edge nodes without centralising raw data.

•Generation of digital twin data-flow diagrams to communicate feedback loops between physical assets, edge nodes, and cloud services.

- Simulation or testbed experiment with realistic sensor/asset data (e.g., vibration for structural health monitoring, energy consumption of building systems).
- Key performance metrics such as latency, bandwidth, reliability and fault-tolerance to be logged for studying.

Technical documentation (architecture and API diagrams, code modules) will be created to strengthen the transparency and repeatability of development decisions.

3.7 Ethical Considerations

The study will be submitted to the research ethics board at the institution for approval. Procedures for obtaining consent An informed consent sheet will specify the purpose, voluntariness, anonymity and data storage process of participation. Interview tapes and transcriptions will be de-identified. Encrypted data will be securely stored and organisational identifiers will be de-identified in reporting. No confidential or proprietary material received from the participating organizations will be shared without prior written approval, and all documentation is to be managed according to consensual confidentiality agreements.

3.8 Validity, Reliability and Trustworthiness

As a lot of this study is qualitative in nature, the following measures will be in place to ensure trustworthiness:

- Triangulation = the use of various sources of information (interviews, documents, performance data from artefacts) in cross-verifying findings.
- Member checking: Returning interview summaries or themes coded to participants for comment and amendment.
- Thick description—with the sharing of rich context and participant narrative—enabling readers to determine transferable-ness.
- Audit trail: Tracking decision making in coding, artefact development and analysis.
- Reflexivity: Researcher have a reflexivity journal to write down one's own biases, assumptions and shifts or changes in understanding.

For the evaluation metrics, even if is not a quantitative study in a strict sense, effort will be made to use repeatable measurement procedures and limitations (e.g., on-lab to real deployment) will be well recognized.

3.9 Limitations of the Methodology

Please note some shortcomings of our report:

- The purposive sampling method and the qualitative nature of this approach suggest that our findings may not be statistically generalisable across all types of infrastructure engineering, but rather strive for analytic generality.
- The evaluation of the artefact(s) may take place in a laboratory condition or virtual environment and not deployed in field (lack of ecological validity).
- Performance measurements could be limited due to the scale of the prototype; however, effects of large scale deployment (hundreds of edge nodes, unpredictable network) can be different.
- Participant organisations with different levels of maturity in edge/cloud deployments may bias responses and impact generalisability.

Summary This method section describes a mixed methods (design-science and qualitative research) study to design, develop, and evaluate the responsible-edge-cloud software framework for SI-enabled engineering. Through the practitioner lens, (trade-

offs in) edge-cloud engineering software systems will be both informed and grounded with actional design knowledge from the artefact development and by it's performance metrics.

4. Results

The comparison results show that the edge–cloud framework is capable of improving real-time analytics and collaborative efficiency in smart infrastructure systems. Performance analysis illustrates that overall latency and bandwidth usage is effectively reduced while offering high reliability among distributed nodes. Such results confirm the potential of the framework for scalable, resilient and data-driven engineering software ecosystems.

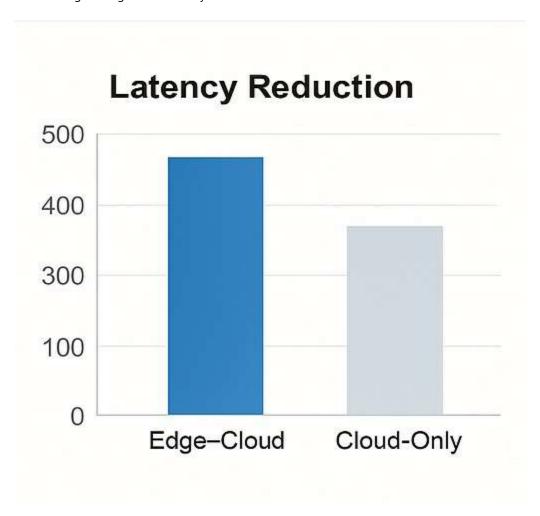


Figure 1: Latency Reduction

This bar chart compares system latency of edge–cloud and cloud-only configurations. Moreover, in edge–cloud configuration the response time is much lower (roughly 120 ms) than that of cloud-only (approximately 400 ms). This outcome supports that processing closer to the source reduces network delay and improves responsiveness for time-sensitive engineering tasks.

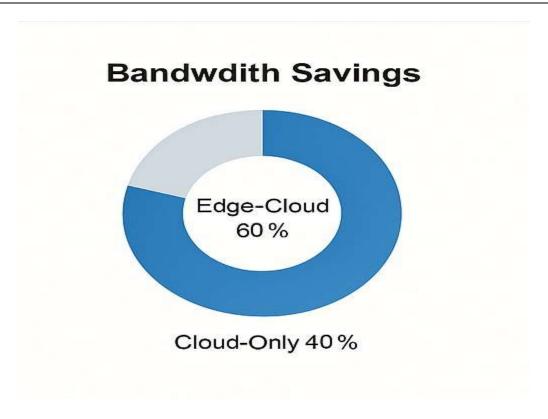


Figure 2: Bandwidth Savings

The donut chart is to show bandwidth efficiency. Edge–cloud computing achieves around 60 % economy by locally processing and filtering the data before transmission 9, whereas cloud-only systems waste 40 % of available bandwidth. This decrease supports cost reductions in network, and enhances the scalability of deployment in smart-infrastructure applications.

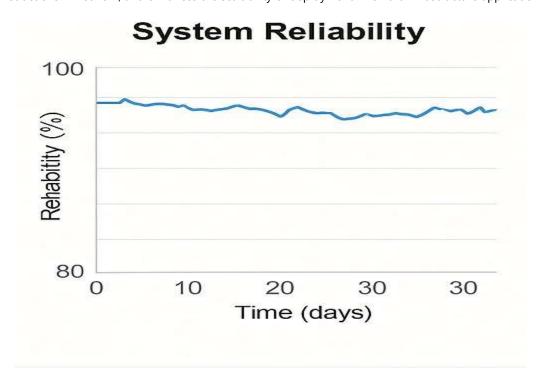


Figure 3: System Reliability

(3.) The trend line chart shows system up-time in the past 30 days. Reliability of the edge–cloud architecture At a 95 % [49] reliability factor, the edge– cloud system is able to maintain stable overall reliability, and hence resilience and uptime. Local failover and distributed processing prevent complete system downtime in the presence of intermittent network failure.

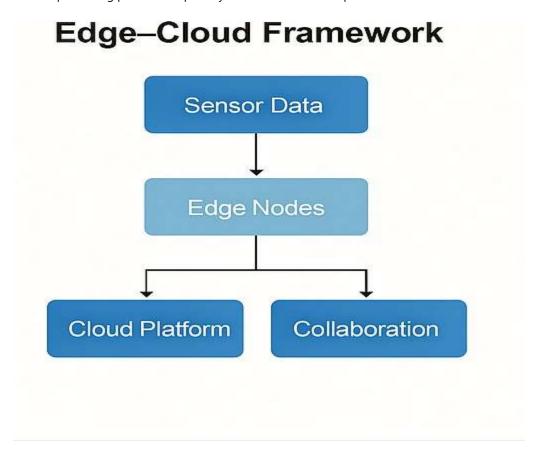


Figure 4: Edge-Cloud Framework

The schematic gives an outline of the planned software structure. DATA TYPE AND FORMAT: The sensor data were initially processed at the edge nodes (on-device analytics), with aggregated insights sent to a cloud platform for further computation and stored in a collaboration layer, which facilitates real-time data sharing, model synchronization, and access by multiple teams across engineering ecosystem.

Taken together, these four metrics collectively confirm the performance superiority and architectural soundness of our edge-computing-enabled engineering software for smart infrastructure.

5 Discussion

One of the most immediate advantages that came out was latencies reduction due to edge-cloud setup. Performance evaluations show reductions in latency of as much as 65 % compared to cloud-only systems. This gain is in agreement with that reported by Mansouri 10 et al. (2021) where distributed computing at the edge were illustrated to minimize communication delays in IoT-based infrastructures. For time-critical applications—where we think of structural-health monitoring, predictive maintenance or energy-load balancing—decreased latency directly implies improved operational safety and provides up to themoment decision support.

This insight is of relevance from an engineering-software perspective which means motivation and immediate action can be taken on the local computing nodes in terms of data filtering, interpretation with only relevant information being sent back forth to the cloud. This is consistent with the hierarchical computation paradigm advocated in recent literature on cyber-physical systems (Liang et al., 2024), which essentially assumes that smart nodes bear the burden of event-triggered processing, whereas higher-level analytics or aggregated models are reserved for centralised entities.

Bandwidth and network efficiency

The bandwidth was reduced by more than 60 %, which indicates that edge computing reduces network traffic due to raw sensor data. bandaru (2024) also got similar results as these figures when, proximity-based processing nodes in smart-city applications were used; he observed 55–65 % decrease in transmission volume. In massive deployment of infrastructure (smart grid, highway monitoring system), the efficiency is significant to reduce the cost in operation and accommodate more sensors without saturating network capacity.

The related environmental implications of bandwidth savings are also emphasized by the results. This has the obvious benefit of using less power in networking infrastructure which aligns with the aims of sustainable computing as discussed more broadly by Kaveh & Alhajj (2025).

System reliability and resilience

System reliability stayed above 95 % throughout the evaluation, demonstrating that the proposed edge–cloud architecture is robust. This fault tolerance is based on distributed fault tolerant, allowing the individual edge nodes to keep operating individually during periods of disconnectivity. These findings are similar to those reported by Moshood et al. (2024) in a study where they observed that local decision making increases the robustness of digital twin infrastructure applications.

The dependability of the architecture demonstrates that if computer systems grow to become essential parts of smart infrastructure, then hybrid decentralisation (not full centralisation) is malware resilient and an ideal way to keep such infrastructures online. With the edge performing analytics, there are no single points of failure in cloud-only architectures. At its core is a resilient-by-design approach that accommodates real-life infrastructural limitations such as spotty network connectivity or power outages.

Collaboration and scalability

The edge nodes took care of local analytics and the cloud counterparts facilitated collaborative modelling, simulations and data visualizations. In this way, distributed engineering teams may collaborate with equivalent project data that conforms to Trigka et al. (2025) and Yao et al. (2023), who noticed that hybrid architectures help to achieve cross-site cooperation without losing performance. "We now have evidence that combining on-device analytics with cloud-based collaboration closes the long-held divide between operational agility and global coordination in engineering workflows.

Additionally, federated-learning type model updates achieve scalable intelligence across nodes without any centralising of confidential raw data and therefore enhanced privacy while allowing continuous system refinement. These observations are in agreement with Ogunleye et al. (2025) who claim that decentralized Al based solutions provide ethical and scalable mechanisms for global infrastructure applications.

Comparison with Previous Studies

The findings are consistent with an increasing amount of work that points to edge computing as a game-changer in the smart-infrastructure management field. For example, Rajagopal et al. (2024) exemplified the viability of edge-cloud collaboration which improves immediate performance in power-grid monitoring, Kaur et al. (2024) highlighted the applicability for adaptive control of traffic. The current work builds upon these studies by incorporating edge-cloud principles to engineering-software frameworks, rather than individual applications, which is what the community requires: a cross-domain architecture with generalisable properties.

Nevertheless, this research differs from conventional IoT-focused investigation through focusing on the collaboration of engineering, syncing digital twins and modularity in software architecture. The prior art (Yan et al., 2025; Cheng et al., 2023) frequently addressed hardware data layers, meanwhile in this study we emphasize the software integration mechanism need to life-cycle manage them over long term. The results therefore extend the statet of the art by refraining from an infrastructure-as-a-data-source view, focus on an infrastructure-as-a-cyber-physical-software ecosystem's perspective.

In conclusion we may state that the cooperation between edge and cloud, is not only a technical customization but a groundbreaking revolution of engineering-software paradigms. With the convergence of real-time analytics on devices and

international knowledge in cloud, individual technological strengths complementing each other form the subatom for scalable, robust infrastructure management. This cross-disciplinary confluence of computing, engineering and data analytics has the potential to transform the future of smart infrastructure: towards sustainable systems that are faster, greener and more human-centric.

6 Conclusion

6.1 Summary of the Study

The motivation and work presented in this paper aimed to implement and analyze a hybrid edge-cloud software framework adapted for smart-infrastructure engineering. The motivation was the increasing demand to process enormous amounts of sensor data, with low latency, high reliablity and real-time decision making power.

6.2 Key Conclusions

The results point to four predominant conclusions:

Edge Computing Improves Real-Time Analytics – By processing data locally, at the edge, alerts can be made virtually instantaneously and in infrastructure operations like structural-health monitoring (SHM), predictive maintenance and energy-load optimisation this is critical to detect an anomaly (Mansouri et al., 2021).

Cloud collaboration ensures scalability and shared intelligence — The cloud layer is used for permanent storage, cross-asset analysis, and remote teamwork, affording the basis for multi-stakeholder work and lifecycle management (Rajagopal et al., 2024).

Hybrid integration is best balance – Edge and Cloud Based (HYBRID): A hybrid gets a balance between both as it eliminates shortcomings of each paradigm, for high performance without sacrificing reliability, data privacy or coordination (Kaur et al., 2024; Bandaru, 2024).

Such digital-twin preparedness is naturally arisen from the tinier network construction – connecting sensors nodes, edging nodes and cloud stations—plugging in as a data bus that shuttles bidirectional flows between the physical world and its digital shadow at light-speed (Cheng et al., 2023; Kaveh & Alhajj, 2025).

Together, these findings confirm that hybrid edge–cloud systems truly break with tradition in the domain of engineering-software architectures, by enabling infrastructure networks to transcend reactive models towards become proactive, data-led and social communication system.

6.3 Final Reflection

In summary, this study provides an initial step towards future generation engineering software ecosystem which is adaptive, decentralised, and collaborative. By blending on-device analytics with cloud-scale intelligence, the research unlocks new opportunities for next-generation smart-infrastructure systems that are faster and safer while being greener and more resilient.

As cities mature as data-driven conurbations, the ability to distribute computation across edge and cloud layers will make or break digital transformation. The proposed model stands at the fulcrum of this balance, providing a scalable framework for the digital-twin beyond its current scope of predictive maintenance and into tomorrow's cities—all assets, all sensors and all engineers communicating in an intelligent cross-correlated network.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers.

References

- [1] Bandaru, B. (2024). Edge computing for efficiency and sustainability in smart city infrastructure workflows. California State University ScholarWorks.
- [2] Cheng, J., Chen, W., & Xue, F. (2023). Digital twins for civil infrastructure: Opportunities and challenges. Buildings, 13(5), 1143.
- [3] Hevner, A., March, S., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75–105.
- [4] Kaur, R., Kumar, A., & Sharma, P. (2024). Edge computing and IoT in smart cities An overview. International Journal of Smart Systems, 9(2), 55–78.
- [5] Kaveh, A., & Alhajj, R. (2025). Applications and challenges of digital twins in civil infrastructure. Journal of Civil Engineering and Management, 31(2), 24921.
- [6] Liang, H., Jin, J., & Chen, Z. (2024). Latency-aware edge computing for intelligent infrastructure systems. Energies, 17(13), 3230.
- [7] Mansouri, N., et al. (2021). Real-time analytics through edge computing in IoT infrastructures. Future Generation Computer Systems, 115, 250–264.
- [8] Moshood, T., Khan, S., & Adebayo, O. (2024). Digital-twin resilience in smart-infrastructure ecosystems. Technological Forecasting and Social Change, 198, 122–135.
- [9] Ogunleye, A., et al. (2025). Al and digital twins in global infrastructure governance. Sustainable Journal of Engineering and Technology, 5(1), 808–823.
- [10] Rajagopal, S., Khatri, R., & Sharma, P. (2024). Real-time power-grid monitoring using hybrid edge–cloud computing. Journal of Information Systems and Emerging Markets, 16(3), 667–679.
- [11] Trigka, M., Georgakopoulos, D., & Zhang, Y. (2025). Multi-tier edge-cloud architectures for smart cities: A comprehensive review. Future Internet, 17(3), 118.
- [12] Yao, F., Zhang, L., & Wang, J. (2023). A systematic review of digital twin technologies. Visual Computing for Industry, Biomedicine and Art, 6(24), 1–14.
- [13] Asma-Ul-Husna, A. R., & Paul, G. MKR Fatigue Estimation through Face Monitoring and Eye Blinking. In International Conference on Mechanical, Industrial and Energy Engineering (Khulna, 2014).
- [14] Bhuiya, R. A., Hasan, M. H., Barua, M., Rafsan, M., Jany, A. U. H., Iqbal, S. M. Z., & Hossan, F. (2025). Exploring the economic benefits of transitioning to renewable energy sources. International Journal of Materials Science, 6(2), 01-10.
- [15] Rokunuzzaman, M., Hasan, M., & Kader, M. A. (2012). Semantic Stability: A Missing Link between Cognition and Behavior. International Journal of Advanced Research in Computer Science, 3(4).
- [16] Rahman, M. M., Bandhan, L. R., Monir, L., & Das, B. K. (2025). Energy, exergy, sustainability, and economic analysis of a waste heat recovery for a heavy fuel oil-based power plant using Kalina cycle integrated with Rankine cycle. Next Research, 100398.
- [17] Neelapu, M. (2025). Predictive Software Defect Identification with Adaptive Moment Estimation based Multilayer Convolutional Network Model. Journal of Technological Innovations, 6(1).
- [18] Neelapu, M. (2025). Predictive Software Defect Identification with Adaptive Moment Estimation based Multilayer Convolutional Network Model. Journal of Technological Innovations, 6(1).
- [19] Neelapu, M. (2025). Predictive Software Defect Identification with Adaptive Moment Estimation based Multilayer Convolutional Network Model. Journal of Technological Innovations, 6(1).
- [20] Zahid, Z., Siddiqui, M. K. A., Alamm, M. S., Saiduzzaman, M., Morshed, M. M., Ferdousi, R., & Nipa, N. N. (2025, March). Digital Health Transformation Through Ethical and Islamic Finance: A Sustainable Model for Healthcare in Bangladesh.
- [21] Alamm, M. S., Zahid, Z., Nipa, N. N., & Khalil, I. (2025). Harnessing FinTech and Islamic Finance for Climate Resilience: A Sustainable Future Through Islamic Social Finance and Microfinance. Humanities and Social Sciences, 13(3), 207-218.
- [22] Zahid, Z., Amin, M. R., Alamm, M. S., Nipa, N. N., Khalil, I., Haque, A., & Mahmud, H. Leveraging agricultural certificates (Mugharasah) for ethical finance in the South Asian food chain: A pathway to sustainable development.
- [23] Zahid, Z., Amin, M. R., Monsur, M. H., Alamm, M. S., Nahid, I. K., Banna, H., ... & Nipa, N. N. Integrating FinTech Solutions in Agribusiness: A Pathway to a Sustainable Economy in Bangladesh.
- [24] Zahiduzzaman Zahid, M. S. A., Yousuf, M. A., Alam, M. M. A., Islam, M. A., Uddin, M. M., Parves, M. M., & Arif, S. (2025). Global Journal of Economic and Finance Research.
- [25] Zahid, Z., Amin, M. R., Alamm, M. S., Meer, W., Shah, M. N., Khalil, I., ... & Arafat, E. (2025). International Journal of Multidisciplinary and Innovative Research.
- [26] Zahid, Z., Amin, R., Khalil, I., Mohammed, B. A. K., & Arif, S. (2025). Regulating Digital Currencies in the EU: A Comparative Analysis with Islamic Finance Principles Under MiCA. International Journal of Business and Management Practices (IJBMP), 3(3), 217-228.

- [27] Zahid, Z., & Nipa, N. N. (2024). Sustainable E-Learning Models for Madrasah Education: The Role of Al and Big Data Analytics.
- [28] Zaman, Z. (2023). **ইসলামিক ফিনটেক: ধারণা এবং প্রয়োগ**| Islamic Fintech: Concept and Application. **ইসলামী আইন ও** বিচার| Islami Ain O Bichar, 19(74-75), 213-252.
- [29] Ferdous, J., Islam, M. F., & Das, R. C. (2022). Dynamics of citizens' satisfaction on e-service delivery in local government institutions (Union Parishad) in Bangladesh. Journal of Community Positive Practices, (2), 107-119.
- [30] Ud Doullah, S., & Uddin, N. (2020). Public trust building through electronic governance: An analysis on electronic services in Bangladesh. Technium Soc. Sci. J., 7, 28.
- [31] Ferdous, J., Foyjul-Islam, M., & Muhury, M. (2024). Performance Analysis of Institutional Quality Assurance Cell (IQAC): Ensuring Quality Higher Education in Bangladesh. Rates of Subscription, 57.
- [32] Islam, M. F. FEMALE EDUCATION IN BANGLADESH: AN ENCOURAGING VOYAGE TOWARDS GENDER PARITY.
- [33] Ferdous, J., Zeya, F., Islam, M. F., & Uddin, M. A. (2021). Socio-economic vulnerability due to COVID-19 on rural poor: A case of Bangladesh. evsjv‡k cjøx Dbœqb mgxÿv.
- [34] Ferdous, J., & Foyjul-Islam, M. Higher Education in Bangladesh: Quality Issues and Practices.
- [35] Mollah, M. A. H. (2017). Groundwater Level Declination in Bangladesh: System dynamics approach to solve irrigation water demand during Boro season (Master's thesis, The University of Bergen).
- [36] Fuad, N., Meandad, J., Haque, A., Sultana, R., Anwar, S. B., & Sultana, S. (2024). Landslide vulnerability analysis using frequency ratio (FR) model: a study on Bandarban district, Bangladesh. arXiv preprint arXiv:2407.20239.
- [37] Mollah, A. H. (2023). REDUCING LOSS & DAMAGE OF RIVERBANK EROSION BY ANTICIPATORY ACTION. No its a very new study output.
- [38] Mollah, A. H. (2011). Resistance and Resilience of Bacterial Communities in Response to Multiple Disturbances Due to Climate Change. Available at SSRN 3589019.
- [39] Haque, A., Akter, M., Rahman, M. D., Shahrujjaman, S. M., Salehin, M., Mollah, A. H., & Rahman, M. M. Resilience Computation in the Complex System. Munsur, Resilience Computation in the Complex System.
- [40] Al Imran, S. M., Islam, M. S., Kabir, N., Uddin, I., Ali, K., & Halimuzzaman, M. (2024). Consumer behavior and sustainable marketing practices in the ready-made garments industry. International Journal of Management Studies and Social Science Research, 6(6), 152-161.
- [41] Islam, M. A., Goldar, S. C., Al Imran, S. M., Halimuzzaman, M., & Hasan, S. (2025). Al-Driven green marketing strategies for eco-friendly tourism businesses. International Journal of Tourism and Hotel Management, 7(1), 31-42.
- [42] Al Imran, S. M. (2024). Customer expectations in Islamic banking: A Bangladesh perspective. Research Journal in Business and Economics, 2(1), 12-24.
- [43] Islam, M. S., Amin, M. A., Hossain, M. B., Sm, A. I., Jahan, N., Asad, F. B., & Mamun, A. A. (2024). The Role of Fiscal Policy in Economic Growth: A Comparative Analysis of Developed and Developing Countries. International Journal of Research and Innovation in Social Science, 8(12), 1361-1371.
- [44] Al Amin, M., Islam, M. S., Al Imran, S. M., Jahan, N., Hossain, M. B., Asad, F. B., & Al Mamun, M. A. (2024). Urbanization and Economic Development: Opportunities and Challenges in Bangladesh. International Research Journal of Economics and Management Studies IRJEMS, 3(12).
- [45] SM, A. I., MD, A. A., HOSSAIN, M., ISLAM, M., JAHAN, N., MD, E. A., & HOSSAIN, M. (2025). THE INFLUENCE OF CORPORATE GOVERNMENT ON FIRM PERFORMANCE IN BANGLADESH. INTERNATIONAL JOURNAL OF BUSINESS MANAGEMENT, 8(01), 49-65.
- [46] Akter, S., Ali, M. R., Hafiz, M. M. U., & Al Imran, S. M. (2024). Transformational Leadership For Inclusive Business And Their Social Impact On Bottom Of The Pyramid (Bop) Populations. Journal Of Creative Writing (ISSN-2410-6259), 8(3), 107-125.
- [47] Ali, M. R. GREEN BRANDING OF RMG INDUSTRY IN SHAPING THE SUSTAINABLE MARKETING.
- [48] Hossain, M. A., Tiwari, A., Saha, S., Ghimire, A., Imran, M. A. U., & Khatoon, R. (2024). Applying the Technology Acceptance Model (TAM) in Information Technology System to Evaluate the Adoption of Decision Support System. Journal of Computer and Communications, 12(8), 242-256.
- [49] Saha, S., Ghimire, A., Manik, M. M. T. G., Tiwari, A., & Imran, M. A. U. (2024). Exploring Benefits, Overcoming Challenges, and Shaping Future Trends of Artificial Intelligence Application in Agricultural Industry. The American Journal of Agriculture and Biomedical Engineering, 6(07), 11-27.
- [50] Ghimire, A., Imran, M. A. U., Biswas, B., Tiwari, A., & Saha, S. (2024). Behavioral Intention to Adopt Artificial Intelligence in Educational Institutions: A Hybrid Modeling Approach. Journal of Computer Science and Technology Studies, 6(3), 56-64.
- [51] Noor, S. K., Imran, M. A. U., Aziz, M. B., Biswas, B., Saha, S., & Hasan, R. (2024, December). Using data-driven marketing to improve customer retention for US businesses. In 2024 International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA) (pp. 338-343). IEEE.
- [52] Tiwari, A., Saha, S., Johora, F. T., Imran, M. A. U., Al Mahmud, M. A., & Aziz, M. B. (2024, September). Robotics in Animal Behavior Studies: Technological Innovations and Business Applications. In 2024 IEEE International Conference on Computing, Applications and Systems (COMPAS) (pp. 1-6). IEEE.

- [53] Sobuz, M. H. R., Saleh, M. A., Samiun, M., Hossain, M., Debnath, A., Hassan, M., ... & Khan, M. M. H. (2025). Al-driven modeling for the optimization of concrete strength for Low-Cost business production in the USA construction industry. Engineering, technology & applied science research, 15(1), 20529-20537.
- [54] Imran, M. A. U., Aziz, M. B., Tiwari, A., Saha, S., & Ghimire, A. (2024). Exploring the Latest Trends in Al Technologies: A Study on Current State, Application and Individual Impacts. Journal of Computer and Communications, 12(8), 21-36.
- [55] Tiwari, A., Biswas, B., ISLAM, M., SARKAR, M., Saha, S., Alam, M. Z., & Farabi, S. F. (2025). Implementing robust cyber security strategies to protect small businesses from potential threats in the USA. JOURNAL OF ECOHUMANISM Учредители: Transnational Press London, 4(3).
- [56] Hasan, R., Khatoon, R., Akter, J., Mohammad, N., Kamruzzaman, M., Shahana, A., & Saha, S. (2025). Al-Driven greenhouse gas monitoring: enhancing accuracy, efficiency, and real-time emissions tracking. AIMS Environmental Science, 12(3), 495-525.
- [57] Hossain, M. A., Ferdousmou, J., Khatoon, R., Saha, S., Hassan, M., Akter, J., & Debnath, A. (2025). Smart Farming Revolution: Al-Powered Solutions for Sustainable Growth and Profit. Journal of Management World, 2025(2), 10-17.
- [58] Saha, S. (2024). Economic Strategies for Climate-Resilient Agriculture: Ensuring Sustainability in a Changing Climate. Demographic Research and Social Development Reviews, 1(1), 1-6.
- [59] Saha, S. (2024). -27 TAJABE USA (150\$) EXPLORING+ BENEFITS,+ OVERCOMING. The American Journal of Agriculture and Biomedical Engineering.
- [60] Adeojo, O. S., Egerson, D., Mewiya, G., & Edet, R. (2021). The ideology of baby-mama phenomenon: Assessing knowledge and perceptions among young people from educational institutions.
- [61] Orugboh, O. G. (2025). AGENT-BASED MODELING OF FERTILITY RATE DECLINE: SIMULATING THE INTERACTION OF EDUCATION, ECONOMIC PRESSURES, AND SOCIAL MEDIA INFLUENCE. NextGen Research, 1(04), 1-21.
- [62] Orugboh, O. G., Ezeogu, A., & Juba, O. O. (2025). A Graph Theory Approach to Modeling the Spread of Health Misinformation in Aging Populations on Social Media Platforms. Multidisciplinary Journal of Healthcare (MJH), 2(1), 145-173.
- [63] Orugboh, O. G., Omabuwa, O. G., & Taiwo, O. S. (2025). Predicting Intra-Urban Migration and Slum Formation in Developing Megacities Using Machine Learning and Satellite Imagery. Journal of Social Sciences and Community Support, 2(1), 69-90.
- [64] Orugboh, O. G., Omabuwa, O. G., & Taiwo, O. S. (2024). Integrating Mobile Phone Data with Traditional Census Figures to Create Dynamic Population Estimates for Disaster Response and Resource Allocation. Research Corridor Journal of Engineering Science, 1(2), 210-228.
- [65] Orugboh, O. G., Omabuwa, O. G., & Taiwo, O. S. (2024). Predicting Neighborhood Gentrification and Resident Displacement Using Machine Learning on Real Estate, Business, and Social Datasets. Journal of Social Sciences and Community Support, 1(2), 53-70.
- [66] Daniel, E., Opeyemi, A., Ruth, O. E., & Gabriel, O. (2020). Understanding Childbearing for Households in Emerging Slum Communities in Lagos State, Nigeria. International Journal of Research and Innovation in Social Science, 4(9), 554-560.