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| ABSTRACT 

The particle size distribution (PSD) of substances is important to their transportation and packaging. The crystal nucleation 

kinetics measured from the metastable zone width (MSZW) and/or the induction time are vital to the control of the PSD. In this 

work, the existence of three polyelectrolyte additives (sodium polystyrene sulfonate (SPS), Polyacetic acid (PAA) and sodium 

carboxymethylcellulose (CMC)) showed varying effects on the MSZW and induction times of NaHCO3-Na2CO3-H2O system. SPS 

lowers the MSZW and induction time while both parameters were increased in the presence of CMC and PAA. The nucleation 

inhibition effects were observed to be prominent for both PAA and CMC resulting in observed finer PSDs as cooling rate, b 

increases from 0.5 K/min to 2.65 K/min. The PSD increases with b for both pure and SPS additive, whereas they decrease for both 

PAA and CMC. 
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1. Introduction 

Sodium bicarbonate (NaHCO3) is an essential green inorganic chemical widely used in various industries. NaHCO3 is produced by 

passing CO2 into an aqueous solution to precipitate NaHCO3. Small needle-like NaHCO3 crystals (prone to agglomeration) are 

obtained [Kang,, 2021, Jiang, 2019]. The addition of Na2CO3 to a solution of NaHCO3 promotes its crystal growth, size and 

nucleation [Jiang, 2019]. The particle size distribution (PSD) of substances is important to their transportation and packaging. The 

crystal nucleation kinetics (measured from the metastable zone width (MSZW) and/or from the induction time) can be obtained 

from various model adaptations of the CNT and are vital to the control of final crystal properties such as the PSD [Shiau, 2021; 

Sangwal, 2010; Kashchiev, 2010; Małysiak, 2021]. 

 

In the present work, the effect of three polyelectrolyte additives on the nucleation parameters, and PSD of NaHCO3-Na2CO3 system 

was investigated. The Nyvlt and Sangwal approaches were used to estimate the nucleation kinetics parameters of NaHCO3-Na2CO3 

from MSZW and induction time data. 

 

1.1 Theories for the MSZW 

The MSZW (ΔTm) denotes the temperature difference between the saturation temperature (T0) and the temperature at which 

nucleation is detected, (Tm) for a given b; i.e., ΔTm = T0 - Tm. The Nyvlt’s model and its modification by Sangwal are two of the most 

important models for studying the nucleation kinetics by fitting MSZW data against the cooling rates based on CNT. While the 

Nyvlt’s model indicates a linear relationship between ln(ΔTm) vs lnb, the Sangwal’s modification, called the self-consistent Nyvlt-

like approach proposes a relationship between (
∆𝑇𝑚

𝑇0
) vs b. Both models and can used to fit accurately the additive effects on MSZW 
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data. The nucleation order, m (which is an indication of the nucleation/growth mechanism) can be obtained from the slope of the 

models. 

Eqs. (1) depicts the Sangwal’s self-consistent Nyvlt-like model [Ma, 2009; Li, 2019].  

(
∆𝑇𝑚

𝑇0
) =  (

𝑓

𝐾𝑇0
)

1

𝑚
(
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𝑅𝑇𝑚
)

1−𝑚

𝑚
𝑏

1
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where the slope in Eq. (1) = 1/m, and m is the apparent nucleation order, K is the nucleation constant. Both m and K are related to 

the appearance of visible crystals at Tm.  

Eq. (1) can be expressed in linear form; 

𝑙𝑛 (
∆𝑇𝑚

𝑇0
) = 𝛷′ − 𝛽𝑙𝑛𝑇0 + 𝛽𝑙𝑛𝑏 =  𝛷 + 𝛽𝑙𝑛𝑏     (2) 

A plot of ln(
∆𝑇𝑚

𝑇0
) vs lnb enables the determination of the value of m from the inverse of the slope, 1/𝛽 [10, 11]. 

2. Materials and Methods 

Cooling crystallization experiments were conducted in a 300 mL double-jacketed glass vessel using a programmable temperature 

bath. Pure analytical grade NaHCO3, Na2CO3 and the polyelectrolye additives were purchased from Sinopharm Chemical Reagent 

Co. Ltd. and Zichuan Yaodong Chemical Co. Ltd, respectively. 18g of NaHCO3 + 0.4 mol Na2CO3 were added to a jacketed vessel 

with 100 g water. The procedure was repeated with water + 10 ppm each of 3 different polyelectrolye additives, sodium polysterene 

sulfonate (SPS), Polyacetic acid (PAA) and sodium carboxymethylcellulose (CMC). The solutions were heated and stirred at 400 rpm 

to achieve complete dissolution of all solutes and cooled at varying cooling rates (0.5-2.67 K/min)) from 361.15 K to 308.15 K. The 

particle size distribution (PSD) was examined by a microscope and ImageJ. 

3. Results and Discussion  

3.1 Effect of additive and cooling rates on MSZW 

The existence of three polyelectrolyte additives showed varying effects on the MSZW of NaHCO3-Na2CO3 system. The MSZW data 

is listed in Table 1 and fitted to the Sangwal’s self-consistent Nyvlt-like model in Figure 1. From Table 1, it can be observed that 

whilst SPS lowers the MSZW, both CMC and PAA raise it, in the order SPS < Pure < CMC < PAA. Likewise, the trend in MSZW 

correlates with the nucleation temperatures, To (Figure 2), which can be seen to decrease with increasing cooling rates for all 

measured systems.  

The nucleation kinetics of NaHCO3-Na2CO3 system was studied according to the effects of cooling rate and three polyelectrolyte 

impurities, and the data is listed in Table 1. At the same To, the MSZW of NaHCO3-Na2CO3 system increases with the cooling rate, 

attributable to the temperature gradient To-Tm, which widens as cooling rate increases. That is to say, at a constant To, increasing 

the cooling rate results in decreasing Tm, a factor that lowers the supersaturation and consequently the temperature at which the 

appearance of the crystal nucleus is detected thereby making the MSZW to widen. The temperature gradient To-Tm =𝛥Tm and b 

are also associated with the duration, tm (referred to as the induction time and calculated as tm = ΔTm/b) at which the crystals are 

detected, from To (Table 2). The tm is associated with the likely growth of critically sized nuclei to visible entities [Sangwal, 2009]. 

The tm decreases with increasing b, and is also in the order SPS<Pure<CMC<PAA.  

Table 1. MSZW of NaHCO3-Na2CO3 system at a constant To = 361.15 K 

b, K/min 𝛥𝑇𝑚 

 Pure SPS CMC PAA 

0.50 22.30 21.04 26.76 28.32 

0.706 26.75 24.22 30.37 31.15 

1.177 28.12 26.22 34.60 36.35 

2.650 30.36 28.66 36.69 37.99 
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Table 2. Induction time of NaHCO3-Na2CO3 system at a constant To = 361.15 K 

b, K/min 𝑡𝑚 (s) 

 Pure SPS CMC PAA 

0.50 2677.07 2525.81 3212.48 3399.75 

0.706 2274.65 2059.52 2582.48 2648.80 

1.177 1433.23 1336.39 1763.50 1852.70 

2.650 687.34 648.85 830.65 860.08 

 

 

Figure 1. Fitting (solid lines) by the self-consistent Nyvlt-like approach Eq. (3). 

 

 

Figure 2. Observed nucleation temperatures indicating the inhibition of nucleation by various additives. 
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3.2 Effect of cooling rate on nucleation behaviour 

The introduction of impurities into the crystallizing solution has different effects on the growth mechanism and the interfacial 

tension of crystals. Table 3 shows the fitting results from Eq. (2). The nucleation order, m, values suggest the type of nucleation 

and growth mechanisms such that 3 < m < 7.5 depicts progressive nucleation, and 2 < m < 3 depicts instantaneous nucleation [13]. 

By fitting the MSZW values of NaHCO3-Na2CO3 to Eq. (2), the m values were; m(Pure) = 6.12, m(SPS) = 5.80, m(PAA) = 5.66, and 

m(CMC) = 5.46. The observed m values show that the growth and nucleation mechanism of NaHCO3-Na2CO3 was by progressive 

nucleation. Sangwal associated the dimensionless quantity Φ in Eq. (2) to the adsorption of impurity on the crystal nuclei, which 

affects the diffusion of solute molecules in the solution [Huang, 2009]. It can be speculated from Table 3 that the diffusion of solute 

molecules was also impacted to some extent by the additives. 

Table 3. Fitting results from Figure 1 and Eq. (2) 

 β 𝛷 m Eq. (2) R2 

Pure 0.16352 -1.93809 6.11546 ln(ΔTm/To) = 0.16352lnb -1.93809 0.8168 

CMC 0.18308 -1.68199 5.46209 ln(ΔTm/To) = 0.18308lnb -1.68199 0.8889 

PAA 0.17666 -1.66657 5.66059 ln(ΔTm/To) = 0.17666lnb -1.66657 0.8832 

SPS 0.17254 -1.97267 5.79575 ln(ΔTm/To) = 0.17254lnb -1.97267 0.9100 

 

3.3 Effect of cooling rate on nucleation behaviour 

NaHCO3 crystals with different morphologies were obtained in water (pure) and in the presence of various additives; needle-like 

(pure), columnar (SPS), and also flaky (PAA and CMC), at different cooling rates as shown in Figure 3. Varying PSDs were observed 

as shown in Figure 4; the PSD increases with b for both pure and SPS additive, whereas they decrease with b for both PAA and 

CMC. The PSD is highest in the presence of SPS additive. In all cases, a higher b corresponds to an observed smaller Tm, leading to 

varying nucleation inhibition effect, PSDs and MSZWs. The nucleation inhibition effect was prominent for both PAA and CMC 

resulting in observed finer PSDs as b increases from 0.5 K/min to 2.65 K/min. However, the opposite is true for pure and SPS 

systems whereby PSDs and crystal sizes increased with increasing cooling rate. That is to say, at a higher b, in both pure and SPS 

systems, faster nucleation was promoted resulting in larger PSDs with bigger size. The observed PSD and MSZW in the various 

additives are consistent since the PSD is directly related to MSZW, and a smaller or narrower MSZW is usually associated with an 

increase in PSD [Huang, 2009].  

 

 

Figure 3. Morphology of NaHCO3-Na2CO3 in different additives, b = 0.7 K/min, scale = 100 μm 
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Figure 4. PSD of NaHCO3-Na2CO3 crystals in different additives 

4. Conclusion  

The effect of three polyelectrolyte additives (sodium polysterene sulfonate (SPS), Polyacetic acid (PAA) and sodium 

carboxymethylcellulose (CMC)) on the nucleation parameters, and particle size distribution (PSD) of NaHCO3-Na2CO3 was 

investigated. By estimating the nucleation kinetics of NaHCO3-Na2CO3 from the metastable zone width data, it was seen that whilst 

SPS lowers the MSZW, CMC and PAA raised it in the order SPS < Pure < CMC < PAA. The PSD increases with cooling rate, b for 

both pure and SPS additive, whereas they decrease with b for both PAA and CMC. A higher b corresponds to an observed smaller 

nucleation temperature leading to varying nucleation inhibition effect, PSDs and MSZWs. The nucleation inhibition effect was 

prominent for both PAA and CMC resulting in observed finer PSDs as b increases from 0.5 K/min to 2.65 K/min. The results can 

guide the crystallization of NaHCO3 for improved particle size distribution, transportation and packaging. 
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