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| ABSTRACT 

Machine learning (ML) represents a breakthrough in drug discovery, markedly increasing efficiency in the search for plant-

derived bioactive compounds with anticancer activity. While compounds derived from plants like vincristine and taxol are 

historical pillars of oncology, the emerging novel therapeutic agents aim to overcome limitations associated with classical 

therapies, such as toxicity and resistance. Some of the important ML algorithms in this context include decision trees, support 

vector machines, neural networks, and ensemble learning which allow predictions about bioactivity by managing complicated 

biological data and determining the effectiveness of different compounds while also optimizing therapeutic profiles. For 

anticancer compound discovery, supervised as well as unsupervised learning is used whereby activity can be predicted from 

known properties or compounds just clustered in huge phytochemical databases. Moreover, deep learning models are 

particularly adept at processing high-dimensional data like multi-omics data and discovering non-linear relationships which 

furthers our understanding of bioactive compounds at a systems level. While optimizing bioactive compounds, QSAR modeling 

alongside generative models helps in fine-tuning the molecular design for improved activity and reduced toxicity. ADMET 

profiling also ensures that the molecules are within the limits of pharmacokinetic and safety standards, thus smoothing out the 

passage from in silico predictions to experimental validation. The discussion closes with the consideration of some challenges, 

such as data integration, interpretability of models, computationally intensive tasks, and regulatory demands to be followed 

versus the promise of the future through cooperative platforms, accessible ML tools together with personalized medicine. 

Further emphasis is given on the need for continued research interdisciplinary collaborations as well as investments that will 

help harness the full potential of ML in plant-based anticancer drug discovery to improve treatment outcomes while minimizing 

adverse effects. 
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1. Introduction 

Cancer continues to be one of the top killer diseases around the world, thus prompting an ongoing search for available treatments 

that are more effective and safer. Historically, plant-based compounds have played a vital role in the treatment of cancer due to 

their wide range of bioactive properties. The anticancer drugs that have been derived from plants show a promise of therapeutic 
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potential in natural products. Vincristine and vinblastine, for example, which are used to treat leukemia and lymphoma, respectively, 

are obtained from Catharanthus roseus (Cragg & Newman, 2005). Another such compound is paclitaxel or taxol, which derives 

from the Pacific yew tree (Taxus brevifolia) and has spectacular efficacy against ovarian and breast cancers (Wani et al., 1971). All 

these have led to further investigation into plant-based sources as potential sources for new cancer therapies. Despite the success 

of plant-derived drugs, conventional therapies are often associated with limitations, such as toxicity and drug resistance, that can 

hinder long-term treatment efficacy (Newman & Cragg, 2016). Many chemotherapy agents are not only aimed at cancer cells but 

also at normal healthy cells resulting in very uncomfortable side effects that spoil the patients' quality of life under treatment. 

Besides, drug resistance is a major problem since cancer cells can change and develop mechanisms to counteract the drugs used 

against them; this makes previously effective medications lose their potency after a short period (Vasan et al., 2019). Thus, owing 

to these challenges, the search and development for novel phytobioactive compounds continue with high enthusiasm that could 

provide selective cytotoxicity along with target-specific action and fewer side effects compared to conventional therapies for a 

more sustainable and effective approach towards cancer management. 

 

However, ML as part of artificial intelligence has dramatically changed contemporary drug discovery by facilitating the speedy 

accessing and interpreting of enormous datasets, a process that would otherwise be very lengthy and cumbersome with classical 

approaches. ML comprises numerous algorithms and statistical models that use data to learn, discover unseen patterns, and make 

predictions without being explicitly programmed for each task (LeCun et al., 2015; Rahaman et al., 2023; Islam et al., 2023). In the 

context of drug discovery, ML has been applied to predict biological activity, refine lead compounds, and detect possible adverse 

effects through the mining of complex datasets that include chemical structures, genomic information, and pharmacokinetic 

profiles (Chen et al., 2018). An explicit advantage of using ML in the drug discovery process is that it can undertake virtual screening. 

This is a computational approach that quickly evaluates thousands of compounds for biological activity. Virtual screening allows 

researchers to simulate interactions between natural product compounds and particular cancer targets, thereby predicting binding 

affinities and ranking the most promising candidates for further experimental evaluation (Stokes et al., 2020). The combination of 

molecular docking with machine learning algorithms enhances the predictive capability of virtual screening by enabling the 

identification of compounds with high therapeutic potential and specificity for cancer cells. In addition, machine learning plays an 

important role in the optimization phase of drug discovery when QSAR models are used to refine structures toward higher activity 

and lower toxicity as well as improved pharmacokinetics (Cherkasov et al., 2014). 

 

This review applies machine learning in search, optimization, and validation of bioactive compounds from plant origins for targeted 

therapies against cancer. The overview touches upon some of the crucial ML algorithms used in the process of drug discovery, 

which include data collection, virtual screening, optimization of compounds and experimental validation. In addition, the review 

discusses challenges and possible directions in applying ML to plant-based drug discovery focused on the potential of ML to 

expedite the search process for safer and more effective natural remedies for cancer. 

 

2.0 Machine Learning Techniques in Drug Discovery 

2.1 Overview of ML Algorithms Used in Drug Discovery 

The advent of machine learning (ML) has become feasible as it provided us with predictive models capable of handling and 

analyzing complicated biological data specifically for the identification of bioactive compounds. Some of the ML algorithms used 

are decision trees, support vector machines (SVM), neural networks, and ensemble learning models which play quite an important 

role in the drug discovery process. In decision trees, trees are widely used as modeling tools, mostly because of their simplicity 

and interpretability. Such an architecture enables researchers to visualize pathways of decisions that lead to a particular 

classification or prediction. In the context of modeling bioactivity, decision trees precisely indicate how the characteristics of 

compounds relate to biological responses (Chen et al., 2018). For the Support Vector Machines (SVM), SVMs are especially powerful 

in dealing with classification problems and have been extensively used to classify bioactive versus inactive compounds. SVMs 

determine an optimal hyperplane to differentiate between the compounds based on their molecular descriptors, which makes 

these classifiers highly Relevant for binary classification problems involved in the drug discovery process (Cortes and Vapnik,1995). 

In the case of Neural Networks, Deep neural networks are especially appropriate for capturing complex representations, many of 

which are intrinsically nonlinear. Their capability to learn from vast amounts of data makes them particularly useful for multi-task 

predictions and also exemplifies the application in toxicity prediction, as deep learning does (LeCun et al., 2015). Also, in Ensemble 

Learning, Techniques of ensemble learning, like random forests and gradient boosting, use multiple models to make more accurate 

predictions. This is a particularly robust approach because it minimizes overfitting, a characteristic that is especially sought after in 

high-dimensional biological data (Breiman 2001). Such algorithms are crucial in highlighting the intrinsic complexity of biological 

data, predicting the activity of compounds, and optimizing therapeutic potential; all three thus permit the development of plant-

derived bioactive compounds with anticancer properties (Vamathevan et al., 2019). 
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2.2 Supervised and Unsupervised Learning in Bioactive Compound Discovery 

Machine Learning models for drug discovery can be broadly categorized into supervised and unsupervised models. In Supervised 

Learning, the primary approach used to predict the activity of compounds is supervised learning. It relies on an already established 

database that contains known molecular descriptors and bioactivity outcomes. In supervised learning, random forests, neural 

networks, and support vector machines play a crucial role in determining anticancer activity by uncovering patterns in the given 

data set (Hughes et al., 2016). A model purely based on phytochemical information with bioactivities can screen unknown 

compounds for potential anticancer properties effectively, thus presenting a nice alternative to the screening done in laboratories 

through traditional methods (Lavecchia, 2015). For the Unsupervised Learning, Applications of unsupervised learning are evident 

in clustering and pattern recognition, where the method reveals inherent structures in data without any labels. K-means clustering 

and hierarchical clustering facilitate the grouping of compounds based on structural similarity or bioactivity characteristics, which 

may assist further in the discovery of new bioactive compounds (Xie et al., 2020). Very efficient unsupervised methods seek to 

mine huge databases of phytochemicals for clusters of newly identified compounds with potentially therapeutic uses (Zhang et al., 

2018). 

 

2.3 Deep Learning and Its Advantages for Complex Data Analysis 

One of the important areas of machine learning, deep learning, has recently proven to be highly effective in drug discovery just 

due to its capability to handle high-dimensional and complex data. Specifically, convolutional neural networks and recurrent neural 

networks are types of deep learning architectures used in the drug discovery process. Such as Convolutional Neural Networks 

(CNNs), a crucial virtual screening when dealing with image-based data. In this sense, virtual screening allows obtaining visual 

representations of the structures of different compounds. CNNs are trained on thousands of images of chemicals, learning patterns 

in molecular structures that are indicative of bioactivity and thus speeding up and making the screening process more accurate. 

One of the most widely taught classes is Recurrent Neural Networks (RNNs). This specialized class addresses sequential data, like 

time series data relevant to pharmacokinetics. RNNs embody dependencies in sequences, which is especially handy for analyzing 

drug interactions over time or predicting gradual changes in the effect of drugs on cancer cells (Chen et al., 2018). Deep learning 

models are especially useful in drug discovery, precisely because of their ability to capture non-linear relationships that exist in 

multi-omics data. This data comprises genomic, transcriptomic, and metabolomic information all integrated with chemical 

structure information. It hence allows a truly holistic approach to understanding bioactivity by considering how compounds from 

plant sources interact within biological pathways (Gawehn et al., 2016). Indeed, deep learning models added to the integration of 

multi-omics for the profiling of compounds interacting with specific targets and therefore relevant toward the pursuit of multi-

target anticancer therapies (Zhao & So, 2019). 

 

3.0 Data Collection and Preprocessing for ML Applications 

Identifying bioactive phytochemical compounds with anticancer activity requires a comprehensive database that contains 

information about phytochemicals, genomic profiles, and traditional medicine. In the case of PubChem, PubChem is a widely used 

repository with vast information regarding the structures, properties, and biological activities of molecules. It allows researchers to 

find substances that have potential anticancer effects and explore already known interactions with targets related to cancer, 

especially in the context of bioactivity assays (Kim et al., 2016). ChEMBL is a manually curated bioactivity database for small 

molecules. Such a database is fundamental in the drug discovery process since it provides information about the activity of 

compounds against biological targets, pharmacokinetics, and toxicity-all these factors are crucial determinants for ML-driven 

predictions (Gaulton et al., 2017). For the Phytochemical and Ethnobotanical Databases, these types of databases hold the 

information about substances used in traditional medicines, hence providing details on plant species that have historical medicinal 

value. Ethnobotanical data aid in the selection of potential species; it may exhibit anticancer activity and help the researcher to 

prioritize plants for further investigation (Daniyal & Ahmad, 2015). Such resources are invaluable in ML applications for drug 

discovery, offering precious datasets on phytochemicals, their chemical properties, and potential therapeutic effects. 

However, Data regarding quality and consistency is what supports effective machine learning modeling, and thus data cleaning 

and preprocessing are needed steps. Missing Data and Normalization: Feature normalization will adjust the scales of the features 

so that variables, for instance, molecular weight and hydrophobicity become comparable with one another, thus enhancing the 

model's performance. Inherent in biological datasets like these are missing data that can also be handled through imputation 

methods such as K-nearest neighbors or mean substitution, ensuring robust ML modeling (Kotsiantis et al., 2006). Overfitting and 

increased computational expense accompany high-dimensional data. Dimensionality reduction methods, such as PCA and t-SNE, 

retain the most relevant features of the data, thus making models more interpretable and efficient. While PCA changes the data 

into principal components that hold most of the variance, t-SNE clusters akin data points—very vital in visualizing complex 

groupings within massive datasets. These steps of preprocessing form the backbone upon whose accuracy and efficiency the final 

ML models rely, meaning that algorithms would be able to find interesting patterns in aggregated data. In Molecular Descriptors, 

the three most popular molecular descriptors used to characterize any chemical compound are molecular weight, the number of 

hydrogen bond donors, and hydrophobicity. This determination is crucial for assessing a compound's bioactivity, permeability, and 

drug-like characteristics, all of which relate to anticancer activity (Todeschini & Consonni, 2009). For instance, molecular weight 
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influences absorption and bioavailability; the number of hydrogen bond donors is pertinent to binding affinity for protein targets, 

both of which are critically important in anticancer applications (Lipinski, 2004). For the Feature Selection Techniques, a feature 

selection technique, such as RFE, determines the most relevant features. Such techniques enhance not only the accuracy of the 

model but also the efficiency of processing models. RFE iteratively removes less informative features, hence refines the dataset 

which in turn helps the model to concentrate more on significant variables (Guyon et al., 2002). This becomes particularly important 

in high-dimensional biological datasets where redundant features can mask the performance of a model and also lead to 

overfitting. 

 

4.0 Machine Learning Approaches for Identifying Bioactive Compounds 

4.1 Virtual Screening and Molecular Docking 

Virtual screening is a high-throughput screening method used in drug discovery to screen large libraries of compounds for 

potential biological activity (Figure 1). This was applied by machine learning (ML) algorithms to facilitate the detection of bioactive 

compounds. Machine learning quickly analyzes chemical libraries and predicts which compounds are likely to have the desired 

biological effects, thus reducing considerably the need for extensive experimental testing (Stokes et al., 2020). Molecular docking 

is an integral part of the virtual screening process, especially in the anticancer drug discovery process since it provides an insight 

into the binding affinity of a given compound against a target protein associated with cancer. In such an approach that imitates 

molecular interactions, docking scores are able to predict the chances of a compound successfully binding to a protein, which is 

tremendously important in inhibiting processes collapsed within cancer cells. The AutoDock and PyMOL combination, along with 

machine learning models, permit scientists to zero in on lead compounds that interact with proteins critical to cancer progression, 

such as kinases and growth factor receptors (Trott & Olson, 2010). Virtual screening along with molecular docking eliminates 

potential candidates in the discovery process based on anticipated binding affinities and emphasizes exertional effort on those 

identified as highly promising candidate’s anticancer agents. Therefore, the integration of machine learning with virtual screening 

enhances the drug discovery pipeline and proves effective in identifying plant-based bioactive compounds exhibiting anticancer 

properties (Sliwoski et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Applications of AI/ML in drug discovery. 

 

4.2 Integration with Omics Data for Multi-Target Drug Discovery 

Integration of multi-omics data, including genomics, transcriptomics, and metabolomics, along with phytochemical data is a 

powerful strategy to find multi-target anticancer agents. The integration of multi-omics enables researchers to study the impact 

of compounds on cancer cells at several levels and pinpoint targets in diverse biological pathways. Researchers can devise 

integrative models by combining omics data with ML that will predict the interactions of plant compounds within the biological 
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systems of cancer cells. Genomics tells about the gene expressions that respond to drug interactions. Transcriptomics show what 

these drugs do to RNA transcription levels, whereas metabolomics follows up with metabolic changes. Researchers can be 

supported by multi-omics in finding bioactive compounds that affect signaling pathways in cancer cells and metabolism, which 

would imply the identification of compounds capable of simultaneously modulating several cancer-related processes (Hasin et al., 

2017). The holistic identification and optimization of bioactive compounds with multi-omics and ML in drug discovery can thus be 

targeted. Such an approach particularly highlights the insight into the synergistic action of compounds at multiple targets, which 

is invaluable for cancer therapy since intervention through multiple pathways minimizes the chances of drug resistance 

development and thereby increases therapeutic efficacy (Zhao & So, 2019). 

 

5.0 Challenges and Limitations of ML in Plant-Based Drug Discovery 

The performance of machine learning (ML) in drug discovery is critically dependent on data quality. Some of the most prevalent 

problems that affect models in this setting include data inconsistency, incomplete information, and integration obstacles with 

heterogeneous datasets. Inconsistency in data among multiple sources arises due to different formats, standards, and 

measurement methods; this ultimately leads to erroneous predictions (Sadiq & Indulska, 2000). The issue of missing values is a 

major problem for all biological datasets; gaps in key attributes for instances (like efficacy or toxicity of compounds) introduce bias 

into model training and predictive accuracy. Besides that, datasets from diverse fields themselves are very heterogeneous 

regarding their structures and scales of measurements; this calls for complex data harmonization techniques (Zhu et al., 2019). 

These issues need advanced data preprocessing, like imputation for missing values and standardization to harmonize datasets. 

Data integration tools, data lakes, or data warehouses also help consolidate and organize large volumes of data to make big data 

more usable and of higher quality in drug discovery (Kambatla et al., 2014). The more complex many ML models are, and especially 

deep learning algorithms, the more they challenge to interpret; interpretability is vital for establishing the reliability and 

trustworthiness of a prediction. Complex models like deep neural networks often operate as "black boxes," hiding their internal 

decision-making process from researchers. The opacity poses a grave problem in drug discovery: knowing how a model predicts 

(for instance, that a compound has bioactivity) is necessary for scientific validation of the result (Doshi-Velez & Kim, 2017). 

Furthermore, Techniques like SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) 

have been proposed as tools for enhancing interpretability through the explanation of model outputs. However, in particular for 

deep models, much of their actual decision process is opaque, and furthering the understanding gained from these methods; a 

central postulate is that interpretability is obtained at the cost of decreasing accuracy in the model being built. This remains a 

great challenge (Ribeiro et al., 2016). Machine learning, especially deep learning, is very resource-intensive and thus a form of 

adoption in drug discovery would be greatly impeded by the availability of resources. The training of deep learning models typically 

requires large datasets and high-performance computing resources like GPUs and TPUs, which are quite expensive and energy-

consuming to accumulate (Strubell et al., 2019). Inference in ML models is computationally cheap compared to the training phase. 

In resource-limited environments, these overheads with computational infrastructure greatly limit the ability to develop and 

validate ML models productively. Cloud computing and distributed computing architectures are indeed the prevailing solutions 

for resource scalability. Google Cloud and AWS offer on-demand, flexible computing resources so that researchers can conduct 

large-scale ML experiments without the upfront investment in physical infrastructure (Cresswell et al., 2018). However, cloud-based 

resources introduce additional challenges, including data security and long-term costs, thus emphasizing the need for effective 

and scalable solutions in ML-driven drug discovery. ML in drug discovery raises ethical and regulatory concerns, especially about 

data privacy, ethical transparency, and adherence to regulatory standards. Data privacy is a critical issue since sensitive health 

information is often used by ML models to predict drug efficacy and patient responses. Regulations such as the GDPR (General 

Data Protection Regulation) in the European Union must be complied with to guarantee that personal data is utilized in an 

accountable and safe manner (Voigt & Von dem Bussche, 2017). The ethical considerations also extend to the question of 

transparency in algorithmic decision-making and the discrimination that may be inherited by ML models. Regulatory bodies like 

the FDA are paying closer attention to claims regarding the ethical use of AI and ML in drug discovery, as they put out guidelines 

stressing data integrity, reproducibility, and validation of models, (FDA, 2018). These regulatory requirements must be met so that 

drugs predicted by ML can enter clinical trials and obtain market approval. In summary, therefore of these challenges data quality, 

model interpretability, computational costs and also the ethical and regulatory standards must be in accordance for the successful 

integration of ML in drug discovery. 

 

6.0 Future Directions and Applications 

A significant step forward in exploring the anticancer activity of compounds is the application of integrated multi-omics data, 

including genomics, proteomics, and metabolomics (Figure 2). The use of multi-omics strategies permits researchers to investigate 

the intricate interplay between genes, proteins, and metabolites in neoplastic cells, thereby giving an almost complete picture of 

the mechanisms through which plant-derived substances exert their therapeutic effects (Hasin et al., 2017). Researchers can then 

zero in on molecular pathways that bioactive compounds influence more precisely to facilitate targeted drug development. For 

instance, proteomic data reveal protein targets involved in signaling within cancer cells while metabolomic data explain how 

compounds perturb cellular metabolism; both are critical for developing therapies that target multiple pathways simultaneously 
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(Zhang et al., 2018). An integrative multi-omics approach allows ML algorithms to capture patterns that would not be possible 

with a single omics distinction, thus providing a better insight into the efficacy of compounds and possibly uncovering synergistic 

effects. This can make the anticancer drug discovery much more accurate and could also towards the development of personalized, 

multi-targeted therapies against cancer (Zhou et al., 2019). It is suggested by collaborative platforms and open-source data sharing 

that they are important to speed up the research in herbal medicine for drugs. Open-access databases, for example, ChEMBL and 

PubChem databases, offer abundance of information on compound structures, bioactivities and pharmacological properties that 

help in establishing collaboration at the international level (Kim et al., 2016). Furthermore, initiatives like Open-Source Drug 

Discovery (OSDD) provide an opportunity for the researchers from various backgrounds to have equal access to contribution and 

data so that drug discovery could be democratized and data analysis conducted more thoroughly (Kaur et al., 2014). Such 

collaborations enhance the availability of information and make it reproducible because open data allow other researchers to 

confirm results and build upon what has already been done. With the culture of sharing and openness with data, collaborative 

platforms contribute significantly to plant-based therapeutics, which in turn accelerates the finding and confirmation of bioactive 

compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Various fields in drug discovery by using machine learning. 

 

Moreover, the increased information available in the context of drug discovery has created a need for machine learning tools that 

do not require specialized knowledge. Accessible, user-friendly platforms are needed so that computational analyses become 

available to those researchers who might be less technically skilled but still have an important role to play in the discovering and 

analyzing of bioactive compounds. Such platforms as KNIME and Orange, which provide drag-and-drop usability, have proven 

potentially useful in enabling researchers with no programming knowledge to conduct sophisticated data analysis techniques like 

clustering and regression (Berthold et al., 2009). More inclusive availability of ML platforms would democratize the computational 

approaches in drug discovery, allowing botanists, pharmacologists, and clinicians to efficiently handle large data sets. By lowering 

barriers to entry, these tools facilitate interdisciplinary collaboration, which is crucial for the comprehensive nature of plant-based 

drug discovery. The promise of an ML-enabled personalized medicine lies in the ability to process enormous volumes of patient 

data and identify treatments that will be most effective for individuals based on their molecular profiles. This could revolutionize 

the management of cancer by allowing therapies to be used that are targeted, more effective, and less toxic than the conventional 

approaches (Ashley, 2016). Among these, plant-based compounds possess unique biological activities and relatively low toxicity; 

thus, they are especially appropriate for personalized treatment regimens which may lead to more effective and patient-oriented 

anticancer therapies. 
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7.0 Conclusion 

Bioactive compounds- Specifically, machine learning (ML) has brought tremendous progress in the preliminary discovery of plant-

based anticancer agents by facilitating identification, optimization, and validation of bioactive compounds. During the 

identification phase, ML methods allow compound libraries of millions to be screened quickly instead of traditionally painstakingly 

screening with laboratories-compound practically predicting the bioactivity of a compound from its structural features and history. 

Hence, it speeds up the discovery process for plant-derived antimicrobial agents with significant anticancer activity against 

reducing dependence on traditional time-consuming laboratory screening methods. Modern algorithms such as random forests 

support vector machines and neural networks enable ML models to learn about bioactivity patterns among plant constituents and 

thereby flag those with promising therapeutic properties potential. Once promising molecules are identified, machine learning 

helps in the optimization phase by predicting changes to the structure of the molecule that would increase efficacy and reduce 

toxicity. In this regard, QSAR modeling and generative models allow scientists to investigate changes in the structure of bioactive 

molecules, thereby fine-tuning plant-derived compounds for better binding affinity as well as pharmacokinetic profiles. This 

computational optimization is crucial in the drug development process because it creates a corridor toward developing compounds 

that will be therapeutic and safe for use. The impact of ML-guided plant-based discoveries on future cancer treatments is profound. 

As ML algorithms develop and become capable of integrating multi-omics data, the dream of personalized, targeted therapies for 

cancer just gets more realistic: plant-derived compounds will always be naturally varied in chemistry and can be tailored to target 

pathways in cancer, thus providing a more specific treatment possibly with fewer side effects than classical chemotherapy. 

Continuous research and interdisciplinary collaboration are required to fully exploit the potential of ML in plant-based anticancer 

drug discovery. Investments in the quality of data, computational infrastructure, and accessible ML platforms will further enhance 

teamwork among biologists, chemists, and data scientists. Thus, it will broaden the scope as well as the depth of machine learning 

applications in the drug discovery process. This integrated approach will hopefully expedite the emergence of new effective cancer 

therapies from plant-based compounds as viable options for targeted and personalized treatments against cancer. 
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