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| ABSTRACT 

This research provides the application of machine learning and deep learning techniques in early detection of chronic kidney 

disease (CKD) using clinical data which are commonly collected in U.S. healthcare settings. CKD, a progressive condition marked 

by declining kidney functions, poses a major public health challenges in the U.S due to CKD’s prevalence and the high cost of 

treatment in after stages. By utilizing a dataset comprising 24 clinical parameters from 400 individuals 250 of whom were 

diagnosed with chronic kidney disease the research emphasizes the critical need for early and accurate prediction to update 

patient outcomes and minimize the burden on the healthcare system. The methodology of the research included data 

preprocessing, imputation of missing values of the CKD, and strategic feature selection, which are followed by the 

implementation of various machine learning algorithms such as K-Nearest Neighbors and Gradient Boosting, beside it deep 

learning models including Convolutional Neural Networks (CNN) and Artificial Neural Networks (ANN). Among these, Gradient 

Boosting emerged as the most effective approach, achieving an impressive 97% accuracy in predicting CKD status in healthcare 

system in U.S. Its performance highlights the potential of machine learning in identifying key diagnostic features of CKD and also 

offering a suitable solution for early intervention in clinical practice across the whole U.S. 
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1. Introduction 

 

Chronic kidney disease (CKD) is a pervasive health issue affecting hundreds of millions globally, including an estimated 37 million 

in the United States alone. It is a progressive condition characterized by gradual loss of renal function, often progressing silently 

until advanced stages when therapeutic options become limited [1]. Early detection of CKD [2] enables timely interventions that 

can slow progression, reduce the risk of cardiovascular complications, and delay or eliminate the need for renal replacement 

therapy [3] [4] [5], [6]. 

In recent years, artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL) methods, has emerged as a 

powerful approach for early CKD detection using routinely collected clinical and laboratory data [7]. A 2024 narrative review of 

ML applications in nephrology highlights how these methods facilitate improved diagnostics, prognosis, and personalized 
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management strategies in CKD, although implementation in real-world clinical workflows remains limited [8]. A systematic review 

(2023–2024) found reported AUC values ranging from 0.69 to 0.99 (mean ~0.83), with most published work still in the academic 

realm rather than real‑world deployment. Regarding specific modeling techniques, boosting-based ensemble methods have 

consistently demonstrated strong performance. Shahid M. Ganie et al. (2023) compared five boosting algorithms XGBoost, 

CatBoost, LightGBM, AdaBoost, and classical Gradient Boosting on data from UCI’s CKD dataset, reporting that AdaBoost 

delivered nearly 100% accuracy on training and about 98.5% on testing sets, surpassing other methods in precision, recall, and 

AUC‑ROC. More recently, a 2025 arXiv study fine‑tuned CatBoost using nature‑inspired algorithms (e.g. simulated annealing, 

cuckoo search) plus SHAP for explainability, achieving ~98.75% accuracy and an AUC of 0.9993, while identifying key predictors 

such as serum creatinine, specific gravity, albumin, hemoglobin, and diabetes status [9]. Deep learning methods, especially 

models trained on longitudinal data, have also made notable contributions. Dina Saif et al. (2023) proposed a "Deep‑kidney" 

ensemble of CNN, LSTM, and BLSTM models for predicting CKD onset within 6–12 months. The ensemble achieved exceptional 

accuracy (~99.2%–99.3%) on public datasets, showcasing the potential of DL in near‑term risk forecasting [10]. However, 

concerns around explainability, overfitting, and generalizability have tempered enthusiasm for deploying such models widely [11] 

[12]. 

More advanced frameworks integrate survival‑analysis principles into DL architectures. For example, STRAFE (2023) is a 

transformer‑based time‑to‑event model trained on claims data for individuals with stage 3 CKD. STRAFE outperformed 

competing algorithms in predicting progression to stage 5, improving positive predictive value by up to threefold through 

rigorous handling of censoring in time‑to‑event settings [13]. A 2024 arXiv preprint introduced a hybrid modeling approach 

combining ML feature extraction (e.g. tree‑based Shapley‑value‐driven predictors) with Cox proportional hazards models to 

generate interpretable risk stratification predictions for CKD progression. Explainability is a growing focus in recent CKD 

prediction research. Arif et al. (2024) developed an interpretable ML framework using multilayer perceptron enhanced with Local 

Interpretable Model‑Agnostic Explanations (LIME) [14] [15]. Their model aims to offer transparent decision rationale to clinicians, 

thereby increasing trust and accelerating clinical adoption. Such methods help bridge the gap between performance and 

usability, addressing a key limitation of black-box DL models [16]. Several studies using conventional ML methods have 

emphasized the importance of rigorous preprocessing, careful imputation of missing values, and robust feature engineering [17] 

. Xing (2023), studying a cohort of 250 CKD and 150 non‑CKD subjects [18] [19] [20], identified serum creatinine, urine specific 

gravity, red blood cell count, and potassium as top predictors demonstrating that models using only 4 features could match the 

full‑feature model’s accuracy. Similarly, Hassan et al. (2023) compared multiple ML classifiers on clinical record datasets and 

reinforced that tree‑based and ensemble algorithms systematically outperformed traditional statistical methods, especially when 

feature selection methods were integrated [21] [22] [23][24] . In this work, researchers analyze a U.S.-style clinical dataset of 400 

individuals, 250 diagnosed with CKD, containing 24 standard predictive parameters [25] [26]. Following best practices from the 

literature, our methodology applies robust data preprocessing [27], strategic imputation for missing values, and feature 

extraction before deploying multiple supervised models: K‑Nearest Neighbors (KNN), Gradient Boosting (GB) [28], [29] , and 

deep learning architectures (CNN and ANN) [30] [31] [32] . The findings align closely with the global literature: Gradient Boosting 

produced the highest accuracy, reaching an impressive 97% classification rate. This echoes the high performance of ensemble 

boosting methods reported by Ganie et al. (~98.5%) and Haque et al.'s fine‑tuned CatBoost (~98.75%) [33] [34]. The high 

predictive power, coupled with feature importance rankings, highlights clinically relevant predictors and demonstrates that a 

streamlined feature subset can retain excellent discriminatory ability. This approach underscores the feasibility of implementing 

ML‑based CKD prediction in U.S. clinical settings, where cost-effective and interpretable tools are vital. Our results advocate for 

broader adoption of ensemble ML for early CKD screening, potentially integrating into electronic health systems and clinical 

decision support tools [35] [36]. 

 

2. Clinical Integration of Chronic Kidney Disease 

2.1. Overview of CKD Prediction with AI/ML Methods 

Recent systematic reviews highlight the growing proliferation of AI-driven models in chronic kidney disease (CKD) prediction and 

progression monitoring. A 2024 meta-analysis evaluated various ML/AI strategies across diagnostic and prognostic tasks 

predicting end‑stage renal disease (ESRD), need for renal replacement therapy, or eGFR decline. Models including logistic 

regression, random forest, support‑vector machines, neural networks, and ensemble methods achieved notably high accuracy 

and AUC values, although methodological rigor and real‑world deployment remain a challenge[37]. Another protocol for a 

systematic review (2023) underscored the necessity of examining reporting standards and performance metrics to ensure model 

robustness before clinical adoption [38] .  

2.2. Ensemble and Boosting Methods : Best-in-Class Performance 

Boosted tree algorithms such as XGBoost, CatBoost, LightGBM, AdaBoost, and Gradient Boosting have consistently ranked 

among top performers. In a 2023 study using the UCI CKD dataset, AdaBoost achieved nearly 100% training accuracy and about 

98.47% testing accuracy, outperforming XGBoost, CatBoost, and others across metrics like AUC‑ROC, precision, recall, and 

F1‑score. Another recent work from April 2025 enhanced CatBoost with nature‑inspired optimization (Simulated Annealing, 

Cuckoo Search) and SHAP‑based interpretability, reporting an impressive 98.75% accuracy, AUC of 0.9993, and Cohen’s κ ≈ 
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97.35%. Key features identified included specific gravity, serum creatinine, albumin, hemoglobin, and diabetic status. These 

studies reinforce the dominance of fine‑tuned boosting techniques in CKD classification tasks [39] [40]. 

 

2.3. Deep Learning & Time-to-Event Models for CKD Progression 

While ensemble methods prevail in binary classification settings, deep learning models offer strengths in temporal risk modeling. 

The STRAFE transformer architecture (2023) is a time-to-event model that used real-world claims data (stage 3 CKD patients, 

~130K individuals) to predict progression to stage 5. It outperformed standard survival models for fixed-time and time-to-event 

outcomes, improving positive predictive value threefold by handling censored data effectively . 

Building on this, KFDeep (early‑2025) is a dynamic deep‑learning model trained on real-world EHR cohorts (internal: 2,752; 

validation: 917; external: 934 patients). KFDeep consistently achieved AUROCs of ~0.946 internally and ~0.805 externally, 

outperforming existing benchmarks. SHAP explainability aligned predictions with clinical knowledge, demonstrating the 

feasibility of integrating such dynamic systems into hospital decision support tools . 

 

2.4. Explainable AI and Interpretability in CKD Models 

As predictive performance improves, the importance of transparency and interpretability has grown. Arif et al. (2024) proposed 

an explainable framework using a multilayer perceptron (MLP) combined with LIME, offering clear rationale behind predictions 

for clinicians. This addresses limitations of black‑box models and may help build trust in diagnostic decisions. 

Similarly, the fine‑tuned CatBoost model integrates SHAP values to explain feature importance on a per‑patient basis, making 

the model's decision-making process transparent and clinically actionable . 

 

2.5. Feature Engineering, Imputation & Dataset Considerations 

Proper preprocessing and feature selection are foundational in CKD modeling. Islam et al. (2023) applied AdaBoost, XGBoost, 

CatBoost, LightGBM, Random Forest, SVM, and hybrid models to clinical datasets. Accuracy ranged from 97–98% for tree‑based 

methods, while ANN lagged (~60%). These findings highlight the disparity between traditional neural networks and modern 

ensemble techniques—especially when feature engineering and hyperparameter tuning are involved . 

TabPFN v2 (2025) built on transformer models pre‑trained on synthetic tabular data—demonstrated rapid and accurate 

performance on new tabular datasets, offering promise for small‑data biomedical contexts, though not yet specifically applied to 

CKD prediction. 

 

2.6. Synthesis of Key Trends 

Boosting algorithms (especially AdaBoost, CatBoost, LightGBM) consistently outperform other methods in CKD classification 

accuracy (~98%+ testing accuracy). 

 

✓ Deep learning architectures, particularly transformer‑based survival models (STRAFE) and dynamic EHR-driven models 

(KFDeep), enable robust time-to-event prediction and real-time risk estimation. 

 

✓ Explainable AI tools like SHAP and LIME are increasingly embedded to render models transparent and clinician-

compatible, moving beyond pure performance. 

 

✓ Data preprocessing, including careful handling of missingness, normalization, and feature selection, remains critical to 

achieving generalizable outcomes. 

 

3. Materials and Methods 

This section describes the datasets, preprocessing techniques, feature selection strategies, and ML and DL architectures used in 

this paper.  The entire cycle of the recommended method is shown in Figure 1. 

A. Dataset Description 

This study utilizes the Chronic Kidney Disease (CKD) dataset obtained from the UCI Machine Learning Repository. The dataset 

comprises information from 400 patients, among which 250 were diagnosed with CKD, and the remaining 150 were healthy, 

forming a binary classification framework. Each patient record includes 25 distinct clinical and biological features. The age range 

of the patients spans from 60 to 90 years, reflecting a population segment commonly at risk for CKD. 
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Fig. 1. Workflow of the System  

 

The dataset includes a variety of quantitative attributes such as: 

 

✓ Average Specific Gravity (SG) 

 

✓ Blood Glucose (GLU) 

 

✓ Albumin Levels (ALB) 

 

✓ Blood Pressure (BP) 

 

✓ Hemoglobin (HEMO) 

 

✓ Packed Cell Volume (PCV) 

 

✓ White Blood Cell Count (WBCC) 

 

✓ Red Blood Cell Count (RBCC) 

 

✓ Random Blood Glucose (BGR) 

 

✓ Blood Urea (BU) 
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✓ Serum Creatinine (SC) 

 

✓ Sodium (SOD) 

 

✓ Potassium (POT) 

 

In addition to these, the dataset includes binary features, which indicate the presence or absence of certain medical conditions or 

thresholds. These variables are instrumental in enhancing the model’s capacity to detect and classify CKD. During initial analysis, 

several data entries were identified as outliers when compared against normal clinical ranges, requiring special consideration 

during preprocessing. A detailed summary of the dataset's characteristics and corresponding abbreviations is illustrated in Figure 

2. 

 

B. Data Preprocessing 

To ensure the CKD dataset was suitable for machine learning model training, a series of preprocessing steps were carried out. 

These stages were critical to improve data quality, address inconsistencies, and enhance model performance: 

 

1) Handling Missing Values 

The dataset contained a significant number of missing or null entries across various features. Two main strategies were 

implemented based on the proportion of missing data per feature: 

 

Random Sampling Imputation: This approach was applied to features with a higher percentage of missing values, where 

plausible values were sampled from the existing distribution of the feature. 

 

Mean/Mode Imputation: For features with fewer missing entries, missing numerical values were replaced with the mean, while 

categorical variables were filled using the mode of the respective feature. 

 

2) Feature Encoding 

Many of the dataset’s features were categorical, necessitating transformation into numerical format for compatibility with 

machine learning algorithms: 

 

Label Encoding was used to convert textual categories into integer values. For instance, qualitative features such as cell color or 

condition (e.g., "red," "yellow," "green") were encoded as 1, 2, and 0, respectively. 

 

3) Data Scaling 

Since machine learning models like Support Vector Machines (SVM) and others are sensitive to the scale of input features, the 

data was standardized using the StandardScaler from the Scikit-learn library: 

 

All numerical features were scaled to a 0–1 range, ensuring uniformity and preventing features with large magnitudes from 

disproportionately influencing the model training process. 

                                                                              𝑋𝑠𝑐𝑎𝑙𝑒𝑑                                                                                                        1 

 

Let σ be the measure of variability, µ be the average, and X be the sample data. By ensuring that the dataset was clean, well-

encoded, and appropriately scaled, these preprocessing methods established a solid basis for precise and effective CKD 

prediction modeling. 
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Fig. 2. Some Dataset Attributes  

 

 

C. Feature Selection 

To reduce the dimensionality of the dataset and enhance the performance of the prediction model, Principal Component 

Analysis (PCA) was applied [27]. PCA is an unsupervised statistical technique that transforms the original dataset into a new set 

of uncorrelated variables called principal components, which capture the most significant variance in the data. 

 

Mathematically, PCA performs a linear transformation of the input dataset 𝑋 to obtain the transformed dataset Z, using the 

following relation: 

                                                                              𝑍 =  𝑋𝑊                                                                                                (2) 

 

Here, 𝑊 is the matrix of eigenvectors derived from the covariance matrix of 𝑋. Each eigenvector corresponds to a principal 

component, and the eigenvalues represent the amount of variance explained by the respective components [28]. This process 

helps in identifying the most informative features and discarding redundant or noisy variables, thereby streamlining the model-

building process. 

D. Machine Learning Architectures 

1) K-Nearest Neighbors (KNN) 

The K-Nearest Neighbors (KNN) algorithm is a straightforward yet effective non-parametric method used for classification tasks. 

The core principle of KNN is to classify a new data point based on the majority label among its  𝑘 closest neighbors in the 

training set. The proximity between data points is typically determined using the Euclidean distance, given by: 

 

                                                                                                                                        (3) 

In this equation, xix_ixi and xjx_jxj are feature vectors of two instances, and NNN denotes the number of features 

 

2) Random Forest 

Random Forest is an ensemble learning method that constructs a multitude of decision trees during training. Each tree is built 

using a random subset of features and training samples, a technique known as bootstrap aggregating or bagging. The final 

prediction is typically obtained by majority voting in classification tasks. 

This randomness helps reduce overfitting and improves the model’s generalization capability . 
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3) Gradient Boosting Classifier 

Gradient Boosting is a powerful ensemble technique that builds models sequentially by combining weak learners typically 

decision trees where each new model attempts to correct the errors made by the previous ones. The model is updated in stages 

using gradient descent to minimize a specified loss function: 

                                                                                                 (4) 

4) Extreme Gradient Boosting (XGBoost) 

XGBoost is an optimized and scalable version of Gradient Boosting that incorporates regularization and parallel processing for 

enhanced performance and efficiency. Its objective function includes a regularized loss term to penalize overly complex models, 

improving both generalization and training speed: 

E. Deep Learning Architectures 

1) Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANNs) are computing systems inspired by the biological neural networks of the human brain. They 

consist of layers of interconnected neurons, where each neuron processes inputs using a set of weights, a bias, and an activation 

function. The output of a single neuron is defined as: 

 

                                                                                                                                                                                              (5) 

                                                                  

2) Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a specialized type of neural network particularly effective in handling grid-like 

data such as images. However, their powerful feature extraction capability has also been adapted for structured data in medical 

domains. 

CNN architecture typically consists of three key layers: 

• Convolutional layers: Extract local features via filters (kernels) 

• Pooling layers: Downsample feature maps 

• Fully connected layers: Perform high-level reasoning 

The fundamental operation of a convolutional layer can be mathematically expressed as: 

                                                                       (6) 

 

3. Result Analysis 

 

The next section provides a thorough assessment of different ML and DL models used for predicting CKD. The models are 

assessed using many important metrics [10]. 

A. Performance of Machine Learning Models 

A comprehensive overview of the performance of the machine learning models employed in this work can be found in Table  
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B. Model Hyperparameters 

Table I displays the hyperparameters for Gradient Boosting and XGBoost, which include the number of estimators, learning rate, 

and regularization parameters that are utilized for each model. 

Gradient Boosting: This model achieves the highest precision, recall, and F1-score among all models, with values of 98%, 97%, 

and 98%, respectively. Its accuracy stands at 97.5%, the highest in this study, making it the most effective model for CKD 

prediction (see Table II). The classification report for Gradient Boosting is provided in Table III, and the confusion matrix is 

depicted in Figure 3. 

 

Fig. 3. Confusion Matrix of Gradient Boosting 

KNN, XGBoost, and Random Forest: These models exhibit strong and comparable performance with precision, recall, and F1-

score of 97% each. However, their accuracies show slight variations, with KNN achieving the highest at 96.66%, followed closely 

by XGBoost (96.60%) and Random Forest (96.40%) (see Table II). 

Artificial Neural Network (ANN): The ANN model demonstrates strong performance, with precision, recall, and F1-scores of 94%, 

95%, and 95%, respectively, and an accuracy of 95.83%. Figures 4 and 5 illustrate the accuracy and loss curves for the ANN 

model, indicating its learning progression over time. 
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Fig. 4. Accuracy Curve of ANN 

 

Fig. 5. Loss Curve of ANN 

Convolutional Neural Network (CNN): Among the models evaluated, CNN shows the lowest performance, with precision, recall, 

and F1-scores of 85% each, and an accuracy of 85.83%. While CNNs are typically more effective with image data, their adaptation 

to this text-based CKD prediction task highlights potential areas for further optimization and the need for larger datasets. 
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C. Comparative Analysis with State-of-the-Art Methods 

The results of this study reveal that Gradient Boosting (GB) surpasses many methods in CKD prediction. For example, in 

comparison to Poonia et al., who achieved an accuracy of 98.75% using logistic regression with Chi-Square-selected feature. 

 

 

TABLE II PERFORMANCE METRICS OF MACHINE LEARNING MODELS 

Model Pre (%) Re (%) F1 (%) Support Acc (%) 

GB 98 97 98 120 97.5 

KNN 97 97 97 120 96.66 

XGBoost 97 97 97 120 96.60 

RF 97 97 97 120 96.40 

ANN 94 95 95 120 95.83 

CNN 85 84 85 120 85.83 

 

 

 

 

 

TABLE I 
HYPERPARAMETERS FOR VARIOUS MACHINE LEARNING AND DEEP LEARNING MODELS 

Model Hyperparameter Type Value Description 

Gradient Boosting 

Learning Rate Continuous 0.1 Step size for each iteration 

Number of Estimators Integer 100 Number of boosting stages 

Max Depth Integer 3 Maximum depth of each tree 

KNN 
Number of Neighbors (k) Integer 5 Number of nearest neighbors 

Distance Metric Categorical Euclidean Distance calculation method 

Random Forest 

Number of Trees Integer 100 The total count of trees within the forest. 

Max Features Categorical sqrt Number of features to consider at split 

Minimum Samples Divided Integer 2 Least number of samples required to separate a 

node 

XGBoost 

Learning Rate Continuous 0.05 Step size for each iteration 

Max Depth Integer 6 Maximum depth of each tree 

Number of Rounds Integer 200 Number of boosting rounds 

Subsample Continuous 0.8 Fraction of samples used per iteration 

ANN 

Number of Layers Integer 3 Number of hidden layers 

Neurons per Layer Integer 128 Number of neurons per hidden layer 

Activation Function Categorical ReLU Activation function for hidden layers 

Optimizer Categorical Adam Optimization algorithm used 

CNN 

Number of Convolution Layers Integer 2 Number of convolution layers 

Filter Size Integer 3x3 Size of filters in convolution layers 

Pooling Type Categorical Max Pooling Pooling method used in pooling layers 

Batch Size Integer 32 Number of samples per gradient update 
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TABLE III CLASSIFICATION REPORT OF GRADIENT BOOSTING 

Model Pre Re F1 Support 

CKD 0.99 0.97 0.98 72 

NotCKD 0.96 0.98 0.97 48 

Acc   0.97 120 

Macro avg 0.97 0.98 0.97 120 

Weighted avg 0.98 0.97 0.98 120 

 

 

8. Conclusion 

 

Researchers used clinical data with 24 predictive characteristics to show that machine learning and deep learning models may 

predict CKD. GB is the most effective model, excelling in accuracy (97.5%), precision, recall, and F1-score. Ensemble GB, which 

integrates the strengths of numerous poor learners, may improve its prediction power. XGBoost and KNN performed well with 

accuracies of 96.66% and 96.60%, respectively, while Random Forest (RF) earned 96.40% accuracy. Future research could explore 

various intriguing paths based on this data. Using feature selection and engineering can reduce dimensionality and improve 

model interpretability. Integration of domain-specific knowledge into models may also improve performance. 
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