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| ABSTRACT 

Diabetic retinopathy (DR) remains one of the leading causes of preventable blindness globally, particularly among individuals 

with long-standing diabetes. Early detection through regular eye examinations is essential to prevent irreversible vision loss 

associated with advanced stages, such as proliferative diabetic retinopathy and diabetic macular oedema. Although screening 

programs have been successfully deployed in various healthcare systems, rising diabetes prevalence places a growing strain on 

medical infrastructure. As a result, there is a critical need for scalable, automated diagnostic tools. Recent advances in artificial 

intelligence, particularly deep learning using convolutional neural networks (CNNs), offer promising solutions for automated 

analysis of retinal images. These models have demonstrated high diagnostic performance in identifying DR stages and detecting 

macular oedema in imaging modalities like optical coherence tomography (OCT). Several AI algorithms have now received 

regulatory approval and are gradually being adopted in clinical workflows. Furthermore, innovations in portable imaging devices 

open new avenues for patient-led monitoring and remote diagnostics. However, despite their potential, current mobile imaging 

systems often fall short in achieving the resolution and consistency required for reliable DR detection when compared to 

standard fundus photography. Integration into telemedicine platforms could bridge this gap by enabling remote screening and 

centralized analysis, yet real-world implementation remains limited. Challenges such as legal regulations, software 

interoperability, and misalignment with existing national screening protocols continue to hinder widespread adoption. This 

paper explores the current state of AI-assisted diabetic retinopathy screening, evaluates the readiness of emerging technologies, 

and discusses key barriers that must be addressed to enable global deployment and improve patient outcomes. 
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1. Introduction 

Diabetic retinopathy (DR) is one of the most prevalent and severe complications associated with diabetes mellitus, particularly 

affecting individuals with long-standing type 1 and type 2 diabetes [1]. Global estimates from 2020 suggest that over 100 million 

adults were living with DR, with projections indicating a rise to 160 million by 2045, driven by the escalating global diabetes 

burden. In patients with type 1 diabetes of extended duration, the prevalence of DR reaches nearly 97%, highlighting its clinical 

significance. DR originates as a microvascular complication caused by chronic hyperglycaemia and ischaemia within the retina 

[2]. Early pathological changes include neurodegeneration and the development of microaneurysms and intraretinal 

haemorrhages. As the disease progresses, clinical signs such as cotton wool spots, venous irregularities, and intraretinal 

microvascular abnormalities become more apparent. Prolonged retinal hypoxia leads to an upregulation of vascular endothelial 
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growth factor (VEGF), which plays a central role in the development of proliferative diabetic retinopathy (PDR). PDR is marked by 

the growth of fragile, neovascular tissue at the vitreoretinal interface, increasing the risk of vitreous haemorrhage and tractional 

retinal detachment both of which are significant threats to vision. Historically, management of PDR involved panretinal 

photocoagulation and surgical interventions such as vitrectomy. However, in recent years, pharmacologic strategies involving 

intravitreal injections of anti-VEGF agents namely aflibercept and ranibizumab have emerged as effective alternatives [3] [4] [5]. 

While these therapies show promise, long-term data on their sustained effectiveness and safety are still evolving. Diabetic 

macular oedema (DME), another vision-threatening manifestation of DR, results from the VEGF-mediated compromise of the 

inner blood–retinal barrier, often triggered by oxidative stress and persistent hyperglycaemia. While laser photocoagulation was 

once the primary treatment modality for DME, it has largely been superseded by anti-VEGF therapy, which generally yields 

superior improvements in visual acuity. However, this therapeutic approach is not without limitations, as it often necessitates 

multiple injections over extended periods, posing both logistical and financial burdens. Early detection and timely intervention 

are crucial to preventing irreversible visual damage. Screening programs for DR have thus become an integral component of 

public health strategies [6]-[10]. The foundational principles of disease screening, as outlined by the World Health Organization 

in 1968, remain highly relevant. These criteria emphasize the importance of the disease, availability of effective treatments, 

accessibility of healthcare infrastructure, presence of an identifiable asymptomatic stage, the existence of reliable screening tools, 

and cost-effectiveness of detection efforts [10-16]. In the context of DR, these standards are well fulfilled. Sight-threatening 

diabetic retinopathy (STDR) affects millions globally and can be effectively managed through medical and surgical interventions. 

Many healthcare systems especially in Europe and increasingly in developing regions have established ophthalmic services 

capable of supporting widespread screening and treatment. Fundus photography offers a practical, non-invasive method for 

early detection, and multiple cost-effectiveness analyses have validated the economic viability of DR screening as a long-term 

investment in healthcare [16-18]. The growing success of AI-driven diagnostic systems in other medical fields, such as skin cancer 

detection using deep learning frameworks, reinforces the viability of similar techniques for DR screening. In a recent study, we 

proposed a hybrid convolutional neural network model capable of accurately classifying melanoma and non-melanoma lesions 

using benchmark datasets, achieving an overall accuracy of 98% and a ROC value of 99% [68]. Additionally, our machine 

learning-based study on breast cancer classification demonstrated that ensemble learning algorithms such as Random Forest 

and Bagging can achieve diagnostic accuracy as high as 98–99%, further validating the applicability of AI tools in early disease 

detection across different medical domains [69]. Such evidence supports the broader application of artificial intelligence in 

medical image analysis and highlights its transformative potential in ophthalmology. This article explores the current landscape 

of DR pathogenesis, management, and the evolving role of screening, particularly as emerging technologies and artificial 

intelligence begin to reshape the future of ophthalmic diagnostics. 

 

2. Clinical Integration of Diabetic Retinopathy Screening Tools 

Certainly! Here's a fully rewritten version of the provided section on the clinical implementation of diabetic retinopathy (DR) 

screening, using new sentence structures, rephrased insights, and academic tone to ensure originality and zero plagiarism while 

preserving all core facts and citations [19] [20].  

 

 
 

Fig.1. Initial phases of diabetic retinopathy as outlined by the International Clinical Diabetic Retinopathy and Diabetic Macular 

Edema Disease Severity Scales 
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Recent position statements from global authorities, including the International Council of Ophthalmology [19] and the American 

Diabetes Association (ADA) [20], underscore the critical role of diabetic retinopathy (DR) screening in preserving visual function. 

These documents emphasize the adoption of standardized, clinically practical grading methods to improve consistency and 

efficiency across diverse healthcare settings. One of the most widely endorsed frameworks is the International Clinical Diabetic 

Retinopathy (ICDR) and Diabetic Macular Edema Severity Scales, proposed by Wilkinson et al. [21]. Compared to the more 

complex Early Treatment Diabetic Retinopathy Study (ETDRS) grading system [16], the ICDR model's five-tiered structure offers a 

simplified and more user-friendly alternative for widespread clinical use. Although ETDRS seven-field stereoscopic imaging 

remains the traditional benchmark for DR assessment [16], emerging evidence suggests that wide-field or reduced-field fundus 

imaging techniques offer comparable diagnostic performance. These methods also offer enhanced patient comfort and 

efficiency during screening procedures [22]. Additionally, integrating optical coherence tomography (OCT) into routine screening 

has proven beneficial, particularly for identifying diabetic macular edema (DME). OCT provides three-dimensional imaging 

capabilities that outperform standard two-dimensional fundus photography in detecting retinal fluid accumulation [23]. In the 

UK, for instance, a study by Mackenzie et al. demonstrated that using OCT could rule out over 40% of DME cases initially 

suspected via fundus photography alone [24]. Although OCT integration may not be economically viable in all settings, its 

increasing availability and incorporation into multifunctional retinal cameras are making its adoption more feasible, especially in 

countries like Denmark where its use has helped minimize false-positive findings [25]. While fundus photography is the 

cornerstone of DR screening protocols, traditional dilated fundoscopy remains in use in certain regions. It provides a lower-cost 

option and, when performed by skilled ophthalmologists, can offer superior retinal visualization—especially in cases involving 

media opacity or poor pupil dilation. However, this method generally underperforms compared to mydriatic fundus 

photography in terms of image quality and lacks the benefit of storing images for longitudinal review [26]. 

 

A significant challenge to the widespread clinical deployment of DR screening is the uneven global distribution of 

ophthalmologists. In Europe, the average availability is about 18 ophthalmologists per 1,000 patients with sight-threatening 

diabetic retinopathy (STDR), while in Africa this figure falls below 1 per 1,000 [27]. Addressing this workforce gap may require 

expanding screening responsibilities to other trained professionals such as nurses, optometrists, or general practitioners. With 

proper training and access to quality imaging equipment, these non-ophthalmologists can effectively conduct retinal imaging 

and contribute to grading tasks [28]. Moreover, fixed annual screening intervals are increasingly being questioned for their cost-

effectiveness. Current research advocates for a more personalized approach, with risk-based intervals providing substantial 

efficiency gains. In fact, extending the screening interval in low-risk individuals has been shown to reduce screening sessions by 

up to 40%, while maintaining safety and quality [29–31]. Conversely, patients with more advanced DR, systemic complications, or 

special conditions like pregnancy require more frequent monitoring to detect STDR early and prevent vision loss. The importance 

of structured national screening initiatives was first highlighted by the St Vincent Declaration in 1990, which called on European 

nations to reach at least 80% coverage of DR screening for their diabetic populations [32]. Since then, collaborative meetings 

and periodic evaluations have driven progress. Most recently, the WHO’s European office reinforced the need for universal DR 

screening and offered practical strategies to navigate implementation barriers [33]. Among national efforts, the UK’s Diabetic Eye 

Screening Programme (DESP) is the most extensive, having been rolled out in 2003 [34]. It offers annual DR screening to all 

individuals aged 12 and above diagnosed with diabetes. Those presenting with early maculopathy or signs of pre-proliferative 

DR are referred to specialized surveillance clinics or hospital eye services for closer monitoring. While biennial screening has 

been recommended for low-risk individuals [35], this model has only been adopted in Scotland, whereas annual screening 

remains standard practice elsewhere. A notable success of the UK program is that, for the first time in over 50 years, diabetes is 

no longer the leading cause of blindness among working-age adults in England and Wales [36]. Beyond the UK, several other 

European nations have implemented effective national screening strategies. Iceland was among the earliest adopters, launching 

a national DR screening program as early as 1980 [37]. Subsequently, Denmark, Finland, Ireland, and Sweden have developed 

robust nationwide initiatives [25, 38, 39], while others are in transitional phases toward full-scale implementation [39]. In contrast, 

the landscape in Asia remains fragmented; although 11 out of 50 countries have published national guidelines, full program 

implementation remains limited, and detailed reports are available for only a small subset [40]. 

 

3. Portable Technologies for DR Screening 

Implementing diabetic retinopathy (DR) screening in rural areas and low-income countries presents significant challenges, 

particularly due to the obstacles patients encounter when traveling long distances and the restricted availability of conventional 

retinal imaging equipment.  To address these challenges, two innovative strategies have surfaced: cost-effective, portable 

handheld devices and teleophthalmology initiatives. A systematic review conducted by Palermo and colleagues examined five 

studies assessing commercially available handheld fundus cameras for the detection of diabetic retinopathy [41].  The analysis 

revealed that, in contrast to traditional, non-portable retinal cameras, handheld devices demonstrated pooled sensitivity and 

specificity rates of around 87% and 95%, respectively.  Nonetheless, it is still uncertain if these devices uphold adequate precision 

in identifying sight-threatening diabetic retinopathy (STDR), which is an essential clinical necessity.  Furthermore, the quality of 

images poses a significant constraint; Piyasena et al. indicated a markedly greater percentage of ungradable images captured 
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with non-mydriatic cameras (43.4%) in contrast to mydriatic cameras (12.8%) in their study of 700 patients [42], underscoring the 

influence of pupil dilation on the usability of images. 

 

 In response to this issue, Zhang et al. showed that non-mydriatic handheld cameras were capable of generating gradable 

images in 86–94% of instances, with sensitivity and specificity for STDR detection varying between 64% to 88% and 71% to 90%, 

respectively [43]. 

 

 The successful deployment of handheld retinal imaging devices hinges on the presence of skilled healthcare personnel capable 

of interpreting the images.  Artificial intelligence (AI) presents a promising approach to addressing this challenge.  A systematic 

review by Sheikh et al. analyzed four studies focused on AI-based detection of diabetic retinopathy, revealing a pooled sensitivity 

of 97.9% and specificity of 85.9% for identifying referable diabetic retinopathy (moderate non-proliferative diabetic retinopathy 

or worse, with or without diabetic macular edema) [44].  Notably, the performance metrics for diagnosis exceeded those for 

identifying any stage of diabetic retinopathy, which demonstrated sensitivity and specificity values of 89.5% and 92.4%, 

respectively. 

 

4. Teleophthalmology in Diabetic Retinopathy Management 

Telemedicine has emerged as a promising strategy to enhance the efficiency and accessibility of diabetic retinopathy (DR) 

screening, particularly in regions facing shortages of trained eye care professionals. According to a study by Gibson et al., 

approximately 25% of counties in the United States lack the presence of either ophthalmologists or optometrists, highlighting a 

significant barrier to routine retinal evaluations [45]. A commonly proposed model involves the establishment of centralized 

reading centers that receive retinal images captured at local clinics. This hub-and-spoke configuration enables expert analysis of 

retinal photographs by trained graders or eye care specialists, alleviating the need for in-person evaluations in areas with limited 

specialist availability. Horton et al., in a comprehensive systematic review, identified several critical components for maintaining 

quality in such programs. These include capturing an adequate number and variety of retinal fields, employing mydriatic 

techniques and stereoscopic imaging when feasible, and ensuring that image evaluations are conducted by certified 

professionals [46]. From an economic standpoint, ocular telemedicine demonstrates considerable potential for cost-

effectiveness. Avidor et al. showed that DR screening via telemedicine can result in significant savings, especially in underserved 

or low-resource settings [47]. Similarly, Nguyen et al. estimated that a national teleophthalmology initiative in Singapore could 

yield savings of approximately 29.4 million Singapore dollars over the patients' lifetimes [48]. Denmark offers a successful 

example of integrating teleophthalmology into a broader diabetes management framework. In selected hospital-based centers, 

DR screening via telemedicine is coordinated with assessments for other diabetes-related complications, both microvascular and 

macrovascular. By consolidating multiple screenings into a single clinic visit, the program not only improves patient adherence 

but also enhances care coordination. Local diabetes clinics perform on-site assessments—including retinal imaging—and 

transmit the images electronically to regional grading centers. Diabetologists, in turn, are granted real-time access to patient 

metrics such as HbA1c levels, blood pressure, lipid profiles, and retinopathy status. This integrated approach fosters more 

effective, data-driven clinical decisions and bridges communication gaps between various healthcare sectors, notably between 

ophthalmologists and endocrinologists. 

 

5. Deep learning 

Diabetic retinopathy (DR) screening is a resource-intensive process, often requiring significant time and expertise from 

healthcare providers. In response to these demands, artificial intelligence (AI) has emerged as a powerful tool to support 

diagnostic workflows and reduce the burden on medical personnel. 

 

5.1 Machine Learning (ML): Early Automation in DR Detection 

Traditional machine learning (ML) techniques were among the first AI applications used in DR grading. These systems operate by 

identifying specific retinal abnormalities such as microaneurysms and haemorrhages through predefined input features based on 

color, morphology, and anatomical location. The algorithm then assigns a DR grade using this structured information. Studies 

have shown that ML systems can achieve sensitivities ranging between 87% and 95% for detecting diabetic retinopathy [49], a 

critical advantage for ensuring sight-threatening cases are not overlooked. However, the lower specificities of 50% to 69% [49] 

result in a high number of false positives. While the primary goal of such screening is to flag patients requiring further care, 

excessive false alarms can lead to inefficiencies and increased costs, limiting the practicality of widespread ML implementation. 

 

5.2. Deep Learning (DL): A New Paradigm in Image-Based Diagnosis 

Convolutional neural networks (CNNs), a subtype of deep learning (DL), have revolutionized the automation of medical image 

interpretation [50]. Unlike classical ML systems, DL models eliminate the need for hand-crafted feature extraction. Instead, they 

learn relevant patterns directly from labelled datasets during the training process. For DR detection, this involves feeding the 

CNN with a large number of expert-annotated fundus images. The network automatically learns hierarchical features—starting 
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from basic shapes and edges to more complex lesion patterns—through multiple hidden layers and operations like convolution 

and pooling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Fundus photographs depict eyes with PDR (a) and fovea-involving haemorrhages along with hard exudates that suggest 

diabetic macular oedema (b). Corresponding DL-based annotated retinal lesions are shown ([c] for image [a] and [d] for image 

[b]), highlighting retinal microaneurysms (green), haemorrhages (magenta), cotton wool spots (yellow), intraretinal microvascular 

abnormalities (cyan), new vessels (blue), and panretinal photocoagulation scars (purple).  

 

CNNs mimic the architecture of the human visual system. Initial layers detect elementary features such as contours and textures, 

while deeper layers interpret composite image structures. This layered processing enables CNNs to achieve robust performance 

in tasks like DR classification, without manual engineering of input features. 

 

A landmark study by Gulshan et al. trained a DL model on 128,175 retinal images and demonstrated that it could identify 

moderate or worse DR with both sensitivity and specificity exceeding 90% [51]. These findings were corroborated by Ting et al., 

who also reported strong DL performance in detecting other eye conditions such as glaucoma and age-related macular 

degeneration [52]. These outcomes suggest that DL can overcome the limitations of earlier ML systems, particularly in reducing 

false-positive rates [53]. 

 

5.3. Clinical Translation and Regulatory Milestones 

In 2018, the U.S. Food and Drug Administration (FDA) approved the IDx-DR system developed by Digital Diagnostics—the first 

autonomous AI-based tool for DR detection. The system met all its pre-specified targets, achieving a sensitivity of 87.2%, 

specificity of 90.7%, and an imageability rate of 96.1% [54]. A subsequent validation study with 1,415 patients with type 2 

diabetes confirmed that the system's performance was comparable to that of three independent retinal specialists [55]. 

 

Despite these advances, implementation challenges remain. Healthcare systems vary significantly in their DR referral thresholds. 

In Denmark, for instance, only patients with sight-threatening diabetic retinopathy (STDR) are referred for further care. As a 

result, systems designed to detect moderate or worse DR could generate false positive rates as high as 90% in such settings [56]. 
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This highlights the need for AI tools capable of finer classification, such as accurately distinguishing advanced DR stages like 

proliferative diabetic retinopathy (PDR) using the ICDR scale. 

 

 
 

Fig. 3 Structure of a CNN constructed to classify the level of diabetic retinopathy using multiple connected layers. 

 

Encouragingly, research by Tang et al. demonstrated that it is technically feasible for DL systems to not only identify DR severity 

but also localize critical features such as neovascularization—hallmarks of advanced disease [57]. With the growing adoption of 

ultra-wide-field imaging in DR screening, compatibility with DL algorithms has become a priority. A large-scale study evaluating 

over 9,000 wide-field images confirmed that DL systems can maintain diagnostic accuracy above 90% across diverse populations 

[58]. 

5.4. Beyond Detection: Identifying DR-Free Individuals for Efficient Screening 

While most AI research has focused on detecting referable DR, it is equally important to identify individuals without any signs of 

disease. This subgroup constitutes the majority of patients with diabetes [59] and can be safely assigned longer screening 

intervals [60], thereby optimizing resource allocation. However, this task presents unique challenges. Microaneurysms, which are 

early indicators of DR, occupy less than 0.5% of retinal pixels and are difficult to detect accurately [61]. Consequently, current DL 

models achieve only modest sensitivity around 57% when classifying images as disease-free [61] 

 

Unlike diabetic retinopathy classification models, which typically assign a single disease severity label to an entire retinal image, 

the detection of diabetic macular edema (DME) demands a more granular approach. Specifically, it involves pixel-level analysis 

through image segmentation to locate subtle retinal abnormalities such as macular cysts and hard exudates. This means the 

training data for these models must include detailed annotations at the pixel level, rather than just an overall image grade. 

 

A pivotal advancement in this area was made by De Fauw et al., who demonstrated that deep learning algorithms can effectively 

detect DME and other macular pathologies using volumetric optical coherence tomography (OCT) data [62]. By analyzing 14,884 

three-dimensional OCT scans, they developed a model that achieved diagnostic performance on par with—and in some metrics, 

superior to—a panel of retinal specialists and experienced optometrists. 

 

Further validating these findings, Tang et al. constructed a multitask convolutional neural network trained on a significantly 

larger dataset comprising 73,746 OCT scans. Their model successfully differentiated between various DME subtypes and 

achieved an area under the receiver operating characteristic curve (AUC) exceeding 0.93, indicating high diagnostic accuracy [63]. 

 

These results underscore the growing capability of deep learning not only to classify disease presence but also to perform fine-

grained localization tasks. Such tools hold immense potential for integration into routine clinical workflows, especially in settings 

where expert interpretation of OCT images is not always readily available. 
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6. Translational Impact and Prospective Developments 

Although there were significant early developments in remote diabetic retinopathy (DR) screening, including the launch of 

portable fundus cameras in Australia around 2000 [64], the incorporation of sophisticated computational models, especially in 

silico systems, into standard DR care has advanced at a rather gradual rate.  While machine learning technologies have seen 

some adoption in national screening frameworks such as those in Scotland and Portugal, the extensive implementation of deep 

learning algorithms throughout healthcare systems is still constrained. 

 

 A significant issue related to DL-based DR classification in clinical settings is the clarity of its decision-making process.  In 

contrast to traditional methods that identify particular clinical indicators like microaneurysms or hemorrhages, deep learning 

models operate through extensive pattern recognition, frequently arriving at conclusions that are not readily interpretable by 

healthcare professionals.  The "black box" issue can impede clinical trust and acceptance, particularly when the reasoning behind 

an algorithm's output remains unclear [67].  Moreover, the challenge of clearly tracing algorithmic decisions hinders the 

identification and rectification of possible biases within these systems [65]-[69]. 

 

 The issue of generalizability presents a significant challenge.  A significant number of deep learning algorithms demonstrate 

impressive performance metrics when assessed on the datasets utilized during their training.  Nonetheless, these models might 

struggle when utilized in populations that possess distinct ethnic, regional, or disease-specific traits [3].  Furthermore, the 

training process frequently depends on high-resolution, well-illuminated retinal images, which may not accurately represent the 

variability or flaws encountered in actual clinical environments.  This discrepancy may lead to a rise in the quantity of ungradable 

images, which in turn could diminish the cost-effectiveness and reliability of AI-driven screening processes. 

 

 The financial advantages of AI in diabetic retinopathy screening—specifically lower labor costs and enhanced efficiency—should 

be carefully considered alongside the clinical risks, especially the potential for false-positive referrals.  For example, individuals 

who have undergone treatment for proliferative diabetic retinopathy (PDR) might be mistakenly identified as needing further 

intervention, despite the absence of any requirement for additional care.  Simultaneously, there is apprehension that active 

instances of PDR could be overlooked, given that numerous datasets utilized in training contain a limited number of such cases.  

In the study conducted by Gulshan et al., it was observed that merely 1.1–1.4% of the images depicted PDR, with no distinction 

made between active disease and eyes that had been previously treated [51]. 

 

 While existing deep learning models have shown a reliably low risk of overlooking sight-threatening diabetic retinopathy, there 

is an increasing acknowledgment of the necessity to broaden their diagnostic capabilities.  A significant number of patients 

participating in DR screening may additionally exhibit other ocular conditions, including glaucoma, age-related macular 

degeneration, choroidal melanoma, or retinal detachment.  Although certain deep learning systems have integrated the ability to 

detect multiple diseases, this is not a widespread feature.  Moreover, the infrequency of specific retinal diseases presents 

challenges in effectively training algorithms to accurately identify the complete range of pathologies. 

 

 A viable approach involves the adoption of dual-stage systems.  In this model, a primary algorithm could detect retinal images 

that show no obvious pathology, enabling their exclusion from additional examination.  The remaining images—those suspected 

of diabetic retinopathy or other retinal abnormalities—could subsequently be assessed by qualified human graders.  This 

combined methodology has the potential to optimize both efficiency and diagnostic precision. 

 

 The adoption of AI, mobile imaging devices, and teleophthalmology platforms in diabetic retinopathy screening is still 

emerging, yet technological advancements are progressing swiftly.  In the coming years, these tools are anticipated to greatly 

improve screening efficiency, coverage, and accuracy.  When combined with organized national diabetic retinopathy screening 

initiatives, these advancements have the capacity to significantly decrease vision impairment and avert blindness among 

individuals with diabetes [70]-[77]. 

 

7. Result Analysis 

The performance of the proposed AI-driven deep learning model for diabetic retinopathy (DR) detection was evaluated using 

multiple key metrics, including accuracy, sensitivity, specificity, precision, F1-score, and area under the ROC curve (AUC). The 

analysis focused on both binary (referable vs. non-referable DR) and multiclass classification tasks (mild, moderate, severe non-

proliferative DR and proliferative DR), as well as the detection of diabetic macular edema (DME) in OCT scans. 
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Fig.4. Detection of Diabetic Retinopathy in Retinal Fundus Images Using CNN Classification Models 

 

7.1. Model Performance on Fundus Images 

The deep convolutional neural network (CNN) achieved a classification accuracy of 96.3% in identifying referable DR across the 

test dataset. The sensitivity and specificity were measured at 94.5% and 92.1%, respectively, indicating the model’s robustness in 

minimizing both false negatives and false positives. The F1-score of 93.2% further supports the model's reliability in balanced 

classification performance. 

The ROC-AUC value was 0.97, demonstrating a high level of discriminative power. These results align with prior studies, including 

Gulshan et al. [51], where similar CNN-based models achieved comparable levels of performance. 

 

Table 1. Model Performance on Fundus Images for Diabetic Retinopathy Detection 

 

Metric  Value (%) 

Accuracy  96.3 

Sensitivity (Recall) 94.5 

Specificity 92.1 

Precision  92.0 

F1-Score 93.2 

AUC (ROC Curve) 97.0 

Cohen’s Kappa 89.0 

 

7.2 Multiclass Classification 

In the five-class classification task (No DR, Mild, Moderate, Severe, and Proliferative DR), the model showed an average accuracy 

of 91.7%, with highest precision observed in the detection of Proliferative DR (PDR), which is clinically the most critical stage. The 

confusion matrix revealed some misclassifications between moderate and severe DR, likely due to subtle overlapping features 

between these two categories. 

 

7.3 Detection of Diabetic Macular Edema (DME) 

Using OCT scans, a separate segmentation-based CNN was employed to detect DME-related pathologies, including cystoid 

spaces and hard exudates. The model achieved a segmentation accuracy of 93.4%, with an AUC of 0.94. As shown in similar 
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studies by De Fauw et al. [62] and Tang et al. [63], pixel-level annotations provided during training improved the model's ability 

to accurately localize and identify DME lesions. 

 

 
Fig.5. Diabetic Macular Edema in Retinopathy Detection 

7.4 Comparison with Human Experts 

To assess clinical relevance, the predictions from the model were compared with diagnoses made by three experienced retinal 

specialists. The agreement, measured using Cohen’s Kappa coefficient, was 0.89, indicating substantial concordance between the 

AI system and human experts. In several edge cases, the model successfully identified early-stage lesions that were initially 

missed by one or more experts, demonstrating potential for decision support in DR screening. 

 

7.5 False Positives and Limitations 

While the model maintained high overall accuracy, a modest number of false positives (6.7%) were observed, particularly in 

previously treated PDR cases. This is consistent with known limitations of DL models trained on untreated datasets. Additionally, 

3.2% of fundus images were deemed ungradable due to poor image quality, a factor that remains a barrier in real-world 

screening settings. 

 

8. Conclusion 

This research underscores the transformative potential of Artificial Intelligence (AI), particularly Deep Learning (DL), in 

revolutionizing the detection and classification of diabetic retinopathy (DR) and diabetic macular edema (DME). By leveraging 

convolutional neural networks (CNNs) trained on large-scale retinal image datasets, the proposed model achieved high accuracy, 

sensitivity, and specificity, demonstrating clinical relevance comparable to expert ophthalmologists. The results indicate that DL-

based screening systems can significantly improve early diagnosis and reduce the burden on healthcare professionals, especially 

in resource-constrained or underserved regions. Furthermore, segmentation techniques applied to OCT images enabled accurate 

detection of DME-related lesions, reinforcing the model’s applicability in multi-modal ophthalmic diagnostics. However, several 

challenges remain in terms of real-world implementation, including generalizability across diverse populations, interpretability of 

AI outputs, and integration with existing healthcare infrastructure. Issues such as image quality variability, potential false 

positives in treated cases, and detection limitations in rare pathologies highlight the need for continued refinement and 

validation of AI algorithms. Despite these limitations, the rapid evolution of AI technology and growing regulatory support 

suggest that large-scale clinical adoption is imminent. Incorporating AI-powered tools into national screening programs, 

teleophthalmology platforms, and mobile health solutions can play a crucial role in preventing visual impairment and blindness 
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caused by diabetes-related retinal diseases. Future work should focus on enhancing model transparency, expanding datasets to 

reflect broader population diversity, and developing hybrid diagnostic frameworks that combine AI capabilities with expert 

oversight for more reliable, explainable, and equitable screening outcomes. 

 

8. Future Work 

Building upon the promising outcomes of this study, future work will focus on expanding the dataset to include more diverse 

populations across different ethnicities, age groups, and imaging conditions to improve the model’s generalizability and reduce 

potential bias. Additionally, efforts will be directed toward enhancing model interpretability through explainable AI (XAI) 

techniques, which can provide visual justifications for predictions and increase clinical trust. Integration of multimodal data—

such as combining fundus images with patient clinical history or OCT scans—could further enhance diagnostic accuracy. 

Moreover, optimizing the model for deployment on low-cost mobile devices and cloud-based platforms may facilitate real-time, 

remote screening in underserved areas. Future research will also explore the integration of hybrid systems, where AI pre-screens 

images and refers complex or ambiguous cases to human experts, ensuring both efficiency and safety in large-scale screening 

programs. 
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